共查询到20条相似文献,搜索用时 32 毫秒
1.
The degradation of chlorsulfuron and triasulfuron was investigated in alkaline soils (pH 7.1–9.4) spiked at 40 μg a.i. kg–1 under laboratory conditions at 25 °C and a moisture content corresponding to 70% field capacity (–33 kPa), using high-performance liquid chromatography. Degradation data for the two herbicides did not follow first-order kinetics, and observed DT50 values in surface soils ranged from 19 to 42 days and from 3 to 24 days for chlorsulfuron and triasulfuron respectively. Disappearance of both chlorsulfuron and triasulfuron was faster in non-sterile than in sterile soil, demonstrating the importance of microbes in the breakdown process. The persistence of chlorsulfuron increased with increasing depth, which can be attributed to the decline in the microbial populations down the profile. The DT50 value for chlorsulfuron at 30–40 cm depth was nearly four times higher than that in the top-soil. The results obtained show that persistence of these herbicides in alkaline surface soils at 25 °C and at a moisture content of 70% field capacity is similar to those reported in other European and North American soils. The study shows that if these herbicides are contained in surface soil layers, the risk of residue carry-over under southern Australian conditions is small. However, the rate of their degradation in alkaline subsoils is very slow, and under conditions conducive to leaching their prolonged persistence in the soil profile is possible. 相似文献
2.
Comparison of sulfonylurea herbicide residue detection in soil by bioassay, enzyme-linked immunosorbent assay and hplc 总被引:3,自引:0,他引:3
The ability of bioassay, enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (hplc) methods to detect sulfonylurea herbicides in soil was evaluated as part of a project studying the leaching and persistence of these herbicides in the alkaline soils of south-eastern Australia. Soil samples with known concentrations between 0.1 and 10 μg a.i. kg−1 chlorsulfuron, metsulfuron-methyl or triasulfuron were prepared by an independent laboratory and supplied in coded bags to separate laboratories for testing. The accuracy of the results was analysed, and the merits of each method are discussed. Bioassay was suitable for measuring biologically active residues from 0.1 to 1.0 μg a.i. kg−1 . ELISA accurately measured residues in the range of 0.1–10 μg a.i. kg−1 , making it the most widely adaptable assay tested. It will be useful for measuring residues in sodic subsoils where bioassay plants grow poorly. There was good reproducibility between the bioassay and ELISA. The hplc technique used in this study was not as accurate as bioassay or ELISA at quantifying residues of 3.0–10 μg a.i. kg−1 and could not detect residues at or below 1.0 μg a.i. kg−1 . 相似文献
3.
Photolysis of chlorsulfuron and metsulfuron-methyl was studied in methanol under UV light. Their rates of primary photolysis followed first-order kinetics. The main photoproducts were identified as 2-methoxy-4-methyl-1,3,5-triazin-6-amine, 2-chloro-benzenesulfonamide and methyl 2-(aminosulfonyl)benzoate, which entailed the cleavage of the two N–C ureic bonds. Further photolysis of benzenesulfonamide derivatives involved oxidation of −NH2, cyclisation with loss of CH3OH, and scission of the C–S bond A trace of methyl o-mercaptobenzoate was also detected. The corresponding photolysis pathways of chlorsulfuron and metsulfuron-methyl were tentatively proposed. © 1999 Society of Chemical Industry 相似文献
4.
R J Jettner S R Walker J D Churchett F P C Blamey S W Adkins & K Bell 《Weed Research》1999,39(4):287-295
The sensitivity of 22 major crops, pastures and weeds from the north-east grain region of Australia to atrazine and chlorsulfuron residues was determined in a glasshouse using a soil-free bioassay system. A logistic equation was fitted to the seedling fresh weights as a function of the logarithm of herbicide concentration by non-linear regression and used to calculate the doses for 10%, 30% and 50% inhibition of seedling growth (ID10 , ID30 and ID50 ). The ID50 for atrazine ranged from 0.03 to 0.04 mg a.i. L–1 for Salvia reflexa Hornem. and barley to 1.47 mg a.i. L–1 for sorghum. The ID50 for chlorsulfuron ranged from 0.19 to 0.21 μg a.i. L–1 for lucerne and snail medic to 102 μg a.i. L–1 for wheat. Based on ID50 values measured, the predicted responses of each species to a range of concentrations of atrazine and chlorsulfuron were classified into four categories ranging from no damage to severe damage. These sensitivity data will assist in planning cropping sequences in soils previously treated with atrazine or chlorsulfuron. 相似文献
5.
The relative movement and persistence in soil of chlorsulfuron, metsulfuron-methyl and triasulfuron 总被引:6,自引:0,他引:6
Summary. Adsorption and degradation rates of triasulfuron in 8 different soils were negatively correlated with soil pH and were generally lower in subsoils than in soils from the plough layer. The half-life at 20°C varied from 33 days in a top soil at pH 5·8 to 120 days in a subsoil at pH 7·4. Adsorption distribution coefficients in these two soils were 0·55 and 0·19, respectively. Movement and persistence of residues of chlorsulfuron, triasulfuron and metsulfuron-methyl were compared in a field experiment prepared in spring 1987. Triasulfuron was less mobile in the soil than the other two compounds. Residues of all three herbicides were largely confined to the upper 40–50 cm soil 148 days after application. With an initial dose of 32 g ha−1 , residues in the surface soil layers were sufficient to affect growth of lettuce and sugar-beet sown approximately one year after application. Laboratory adsorption and degradation data were used with appropriate weather data in a computer model of herbicide transport in soil. The model gave good predictions of total soil residues during the first five months following application, and also predicted successfully the maximum depth of penetration of the herbicides into the soil during this period. However, more herbicide was retained close to the soil surface than was predicted by the model. The model predicted extensive movement of the herbicides in the soil during winter but did not predict that residues sufficient to affect crop growth could be present in the upper 15–20 cm soil after one year. 相似文献
6.
The olive industry generates residues which can be applied as amendments to soils in their original form (olive cake) or after composting or vermicomposting processes. The addition, fresh or incubated, of these amendments to soil and of their different organic fractions was studied in relation to the sorption/desorption of three sulfonylurea herbicides, bensulfuron‐methyl, chlorsulfuron and prosulfuron. Herbicide sorption was low or very low, slightly promoted by the addition of the agricultural by‐products, especially olive cake, and mainly affected by pH of the soil solution, with the organic carbon content having no significant effect on herbicide retention. Desorption was only reduced when fresh olive cake was added. The incubation of soil and amendments for 3 months did not modify herbicide sorption, but made desorption reversible except for olive cake. The transformation of the organic matter of the amendments due to humification and maturity processes are likely to be responsible for this behaviour. Different organic fractions were removed to assess the influence of each fraction on sulfonylurea sorption. Only the removal of all studied organic fractions increased herbicide sorption, revealing the role of humin and mineral fractions in this process. Therefore, the use of organic amendments is not useful for reducing the risk of movement of ionisable molecules in soil. 相似文献
7.
磺酰脲类除草剂的降解机制及代谢产物的研究进展 总被引:6,自引:0,他引:6
磺酰脲类除草剂是一类高效,低毒和高选择性的除草剂,该类除草剂能有效防除阔叶杂草,其中有些品种对禾本科杂草也有一定的抑制作用。但同时因其用量低、对哺乳动物低毒以及独特的除草活性等特点而得到广泛应用。因此,了解磺酰脲类除草剂在土壤中的环境行为及归趋对于其科学合理使用、防止作物药害和保护农业生态环境具有非常重要的意义。根据笔者对磺酰脲类除草剂的深入研究,并总结归纳国内外的相关文献报道,对磺酰脲类除草剂的降解机制及其代谢产物的研究进行了综述,最后展望了磺酰脲类除草剂未来的发展趋势。 相似文献
8.
Resistance of Raphanus raphanistrum to chlorsulfuron in the Republic of South Africa 总被引:2,自引:0,他引:2
Herbicide resistance poses a substantial threat to the agricultural industry throughout the world and during the past decade several reports regarding herbicide resistance have been published. Raphanus raphanistrum L., from two wheat farms located in the winter rainfall region of South Africa, showed indications of resistance to chlorsulfuron. Seeds from these suspected resistant biotypes as well as seeds from a susceptible biotype were collected and transported to the ARC-Small Grain Institute for herbicide resistance studies. Herbicides registered for R. raphanistrum control, i.e. chlorsulfuron, MCPA and bromoxynil, were used in this study. Significant differences in the degree of control were found between the susceptible and two resistant biotypes, when treated with chlorsulfuron. The LD50 values for the resistant biotypes (WR 1 & WR 2) were 45 and 11.3 g a.i. ha–1 , respectively, whereas the LD50 value for the susceptible biotype was 5.6 g a.i. ha–1 . The almost eightfold difference between the susceptible and resistant biotype (WR 1), indicated that resistance has developed to chlorsulfuron. Only twofold resistance was established between the other resistant biotype (WR 2) and the susceptible biotype. Significant differences between herbicide rates were also established with the MCPA and bromoxynil experiments. No significant difference could, however, be found between the susceptible and resistant biotypes when treated with MCPA and bromoxynil, indicating the importance of different modes of action of herbicide as a strategy to prevent herbicide resistance. 相似文献
9.
Thirty separate soil samples were taken from different locations at the Brimstone farm experimental site, Oxfordshire, UK. Incubations of isoproturon under standard conditions (15 °C; ?33 kPa soil water potential) indicated considerable variation in degradation rate in the soil, with the time to 50% loss (DT50) varying from 6 to 30 days. These differences were confirmed in a second comparative experiment in which degradation rates were assessed in 11 samples of the same soil in two separate laboratories using an identical protocol. There was a significant negative linear relationship (r2= 0.746) between the DT50 values and soil pH in this group of soils. In a third experiment, degradation rates of the related compound chlorotoluron were compared with those of isoproturon in 12 separate soil samples, six of which had been stored for several months, and six of which were freshly collected from the field. Degradation of both herbicides occurred more slowly in the stored samples than in the fresh samples but, in all of them, chlorotoluron degraded more slowly than isoproturon, and there was a highly significant linear relationship (r2=0.916) between the respective DT50 values. 相似文献
10.
Hugh M. Brown 《Pest management science》1990,29(3):263-281
The sulfonylurea herbicides are characterized by broad-spectrum weed control at very low use rates (c. 2–75 g ha?1), good crop selectivity, and very low acute and chronic animal toxicity. This class of herbicides acts through inhibition of acetolactate synthase (EC 4.1.3.18; also known as acetohydroxyacid synthase), thereby blocking the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. This inhibition leads to the rapid cessation of plant cell division and growth. Crop-selective sulfonylurea herbicides have been commercialized for use in wheat, barley, rice, corn, soybeans and oilseed rape, with additional crop-selective compounds in cotton, potatoes, and sugarbeet having been noted. Crop selectivity results from rapid metabolic inactivation of the herbicide in the tolerant crop. Under growth-room conditions, metabolic half-lives in tolerant crop plants range from 1–5 h, while sensitive plant species metabolize these herbicides much more slowly, with half-lives > 20 h. Pathways by which sulfonylurea herbicides are inactivated among these plants include aryl and aliphatic hydroxylation followed by glucose conjugation, sulfonylurea bridge hydrolysis and sulfonamide bond cleavage, oxidative O-demethylation and direct conjugation with (homo)glutathione. Sulfonylurea herbicides degrade in soil through a combination of bridge hydrolysis and microbial degradation. Hydrolysis is significantly faster under acidic (pH 5) than alkaline (pH 8) conditions, allowing the use of soil pH as a predictor of soil residual activity. Chemical and microbial processes combine to give typical field dissipation half-lives of 1–6 weeks, depending on the soil type, location and compound. Very short residual sulfonylurea herbicides with enhanced susceptibility to hydrolysis (DPX-L5300) and microbial degradation (thifensulfuron-methyl) have been developed. 相似文献
11.
12.
13.
Subhasish K Chakraborty Anjan Bhattacharya Ashim Chowdhury 《Pest management science》1999,55(9):943-948
Residual fate and behaviour of the herbicide oxadiazon in Kalyani soil, paddy straw and grain were studied under subtropical conditions, in West Bengal following application @ 1 kg and 2 kg ha−1. Dissipation of oxadiazon in soil followed first-order kinetics and DT50 values ranged from 44 to 45 days. Residues at harvest in paddy grains and straw were also studied. Degradation of oxadiazon after 60 days of incubation at 28(± 1) °C in alluvial soil at water holding capacity yielded 10 metabolites of which four were characterised by spectroscopy. © 1999 Society of Chemical Industry 相似文献
14.
Biodegradation of [ring-14C] mecoprop (2-(4-chloro-2-methylphenoxy)propionic acid) was determined in surface and sub-surface soil at concentrations of 0·0005, 0·05, 0·5, 5, 50, 500, 5000 and 25000 mg kg-1. The kinetics of mineralisation were evaluated from the mineralisation rates as a function of time and by non-linear regression analysis. In the sub-surface soil, degradation was 6–8 times slower than in surface soil, but the shape of the curves was the same in both layers. At concentrations between 0·0005 and 0·5 mg kg-1, in both surface and sub-surface soil, degradation was initially zero-order followed by first-order kinetics. At 5 to 500 mg kg-1 in surface soil and 5 to 50 mg kg-1 in sub-surface soil the degradation rate was initially either constant or decreasing followed by exponential degradation indicating increasing populations of mecoprop decomposers in the soil. At 5000 and 25000 mg kg-1 in the surface soil and at 500, 5000 and 25000 mg kg-1 in the sub-surface soil, the degradation was negligible, as determined by the percentage [14C] carbon dioxide evolved. By non-linear regression, the three-half order model was found to describe the mineralisation. © 1998 SCI 相似文献
15.
The sulfonylurea herbicides are a relatively new group of compounds which control broad-leaved weeds and some grasses in cereal crops. This literature review emphasises work reported on chlorsulfuron and met-sulfuron-methyl. The activity of the herbicides, their fate in soil and in plants, and their mode of action are discussed. In addition some of the methods of assaying these compounds are described. 相似文献
16.
The separate enantiomers of diclofop-methyl and fenoxaprop-ethyl were incubated with two soils under aerobic conditions. Rapid hydrolysis to the corresponding acids diclofop and fenoxaprop was observed. At various time intervals after soil treatment the parent compound and its free acid were extracted and the extracts were investigated by high-performance liquid chromatography. The determination of the K:S-ratio using a chiral stationary phase revealed that no racemisation of the esters took place. However, inversion of the hydrolysis products was observed. In both soils the acids with the S-configuration showed a significantly higher inversion tendency than the acids with the R-configuration. In one soil the S-acids of both herbicides were inverted (50% inversion in 4–7 days) to yield, ultimately, a residue containing 70% R- and 30% S-enantiomer. 相似文献
17.
The use of persistent herbicides has increased the potential for contamination of soil, soil water and groundwater. The mobility, dissipation and fate of four herbicides, norflurazon, oxadiazon, oxyfluorfen and trifluralin, used in South Australian viticulture, have been studied in a typical sand‐over‐clay vineyard soil. Following herbicide application at field rates to plots up‐slope of miniature lysimeters, surface soil and soil water were sampled regularly over the period of annual rainfall. The concentration of each herbicide in the soil cores, surface soil and soil water was determined by GLC‐NPD following solid‐phase concentration procedures where necessary. Oxadiazon dissipated more quickly than the other three herbicides in the soil. Norflurazon was the most mobile of these herbicides in this soil. However all four herbicides were found in the soil water within the first year, though only norflurazon was found in the soil water in the subsequent year. Norflurazon moved laterally to a greater extent than the other herbicides. © 2000 Society of Chemical Industry 相似文献
18.
Petri dish bioassays, based on root response of corn grown in soil or in perlite, were used to study the activity, adsorption,
mobility and field persistence of sulfosulfuron in a silty clay loam and a sandy loam soil. Both bioassays indicated that
activity of sulfosulfuron increased with increasing herbicide concentration, and to a slightly greater degree in sandy loam
soil than in silty clay loam soil. More sulfosulfuron was adsorbed on the sandy loam (not biologically available) than on
the silty clay loam soil. Consequently, slightly greater amounts of sulfosulfuron were leached through the silty clay loam
than through the sandy loam soil. Biologically available sulfosulfuron was not detected at depths below 40 cm after application
in sandy loam, but this was not the case for the silty clay loam soil. In 2002, all sulfosulfuron rates showed field persistence
of less than 5 months. On the other hand, in 2003, biologically available sulfosulfuron was detected in the 0–10-cm soil depth
150 days after application.
http://www.phytoparasitica.org posting May 6, 2004. 相似文献
19.
Influence of straw management, nitrogen fertilization and dosage rates on the dissipation of five sulfonylureas in soil 总被引:5,自引:0,他引:5
The dissipation behaviour of metsulfuron-methyl, tribenuron-methyl, thifensulfuron-methyl, triasulfuron and amidosulfuron were studied in soil following post-emergence spring applications to cereal crops. Incorporation or removal of straw and different fertilizer applications had no influence on the disappearance time (DT50 ) of the herbicides. However, in laboratory trials dissipation of metsulfuron-methyl, triasulfuron and amidosulfuron at higher application rates was accelerated after incorporation of straw into the soil. The addition of straw decreases soil pH thereby causing faster hydrolysis of the compounds. Addition of nitrogen fertilizer increased the half-lives (t1/2 ) of the herbicides. Combination of both straw and N fertilizer, however, had no effect. Neither straw nor N influenced the degradation of tribenuron-methyl and thifensulfuron-methyl.
The DT50 of all herbicides investigated varied from 6 to 17 days in the field trials. Except for amidosulfuron, herbicides could not be detected 38–68 days after application. In the laboratory, t1/2 values were higher than those in the field at 75 days (amidosulfuron), 63 days (metsulfuron-methyl), 35 days (triasulfuron) and 13 days (tribenuron-methyl). Only the t1/2 of thifensulfuron-methyl was at 29 h faster under laboratory conditions. T1/2 values of all herbicides were influenced by their initial concentration. The t1/2 values of amidosulfuron and tribenuron-methyl at 1 mg a.i. kg−1 soil were 2–2.5 times higher than at the recommended field application rate of 42 μg a.i. kg−1 soil. 相似文献
The DT
20.
R. Cohen H. Eizenberg M. Edelstien C. Horev T. Lande A. Porat G. Achdari J. Hershenhorn 《Phytoparasitica》2008,36(1):66-73
Grafted watermelon is a combination of two plants, aCucurbita rootstock and a watermelon scion. Therefore, weed control for this crop faces a unique problem: the safety of the selected
herbicide has to be tested for both plants that make up the grafted plant. In the current study, we evaluated the usage safety
of selected herbicides forCucurbita rootstocks as well as for non-grafted and grafted watermelons, and the control ofAmaranthus retroflexus by the same herbicides. In addition, the residual effect of the herbicides was tested for seeded and transplanted melons
representing the next crop following cultivation of the grafted watermelons. The herbicides ethalfluralin, pendimethalin,
ethalfluralin, sulfentrazone, oxyfluorfen, chlorsulfuron and clomazone were chosen for their potential to controlA. retroflexus. Pendimethalin and trifluralin were less effective than the other herbicides in controllingA. retroflexus; sulfentrazone, chlorsulfuron and clomazone were not safe for use on the tested cucurbits and thus cannot be recommended
for weed control in grafted watermelons. Therefore, by eliminating the herbicides that are toxic to cucurbits and those that
are ineffective forA. retroflexus control, it was concluded that the herbicides ethalfluralin and oxyfluorfen can be considered effective and safe for weed
control in grafted watermelons. It was shown that trifluralin and oxyfluorfen have the potential to be applied effectively
through the drip irrigation system.
http://www.phytoparasitica.org posting Jan. 10, 2008. 相似文献