首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grazed sward surface height was controlled within the range 3·25–4·75 cm during spring and summer in two experiments. In Experiment 1, the effects of stocking two breeds of ewe of similar size but different potential levels of reproductive performance [Brecknock Cheviot (C) and Beulah Speckled Face (B)] at different annual stocking rates of twelve (SR12) and twenty (SR20) per hectare, rates of nitrogen fertilizer of 100 (N100) and 200 (N200) kg N ha?1 annum?1 and different lamb:ewe ratios (C1·2, B1·2 and B1·5) were measured in four treatments (SR20N200C1·2; SR20N200B1·2; SR20N200B1·5; SR12N100C1·2) replicated three times. In each of three years animal performance and yield of silage from areas of pasture surplus to grazing requirements were measured. In Experiment 2, breed B was compared with the Welsh Mule (W) breed, a larger with a higher potential reproductive performance, at two stocking rates, two rates of nitrogen fertilizer and two lamb:ewe ratios set on the basis of results from Experiment 1 (SR18N200B1·5; SR12N100B1·5; SR18N200W1·5; SR18N200W1·7). The treatments were replicated three times. The same terminal sire (Suffolk) was used in both experiments. A primary aim of the experiments was to test the validity of the experimental procedures used for comparing breeds of sheep where nutrition is provided predominately from grazed pastures. In Experiment 1, there was no difference between breeds C and B in the live weights of individual lambs at weaning at the same SR (20), N rate (200) and lamb:ewe ratio (1·2). Breeds C and B produced similar total yields of lamb (633 kg lamb ha?1± 10·5) and silage (193 kg DM ewe?1± 37·7), but breed B had a higher level of potential reproductive performance (1·59 vs. 1·37 lambs ewe?1: P < 0·001). The treatments SR20N200B1·5 and SR12N100C1·2 produced, respectively, greater and lesser yields of lamb (725 vs. 384 kg lamb ha?1, P < 0·001) and lesser and greater yields of silage (123 vs. 327 kg DM ewe?1, P < 0·001). In Experiment 2, the live weight of lambs at weaning from breed W were heavier than from breed B (29·1 vs. 26·2 kg lamb?1, P < 0·01) but there was no significant difference in total yield of lamb weaned between breeds W and B at the same SR (18), N rate (200) and lamb:ewe ratio (1·5) (747 kg lamb ha?1± 19·2), or in the yield of silage (66 kg DM ewe?1± 16·4), but breed W had a higher potential reproductive performance (1·85 vs. 1·58 lambs ewe?1, P < 0·05). The treatments SR18N200W1·7 and SR12N100B1·5 produced, respectively, greater and lesser yields of lamb (840 vs. 473 kg lamb ha?1, P < 0·001) and similar and greater yields of silage (60 vs. 141 kg DM ewe?1, P < 0·05). The experimental approach adopted and the management protocols used provided a basis for ranking the performance of the breeds of ewes examined at appropriate levels of annual stocking rate, N-fertilizer input and lamb:ewe ratio.  相似文献   

2.
In 1988 and 1989, swards of grass (G0), while clover (C0) and grass/white clover (GC0) receiving no N fertilizer, and a grass sward supplied with 420 kg N ha?1 (G420), were grazed by non-lactating sheep to maintain a sward surface height of 6 cm. Herbage organic matter (OM) intakes averaged between 1200 and 1700 g OM ewe?1 d?1. For treatments G0, C0, GC0 and G420 respectively, the ewes' live weight gain was 102, 112, 100 and 110 g d?1 and changes in body condition scores were +0·28, +0·52, +0·36 and +0·44 units season?1. However, the effect of treatment was not significant for either variable. There were similar levels of output of faecal N ewe?1 but significantly more urinary N ewe?1 was excreted on treatments C0 and G420, where the concentrations of N in herbage laminae were also higher. For example, in 1989, total daily N excreted was 39·7, 64·4, 44·0 and 63·3 g N ewe?1 for G0, C0, GC0 and G420 respectively. Taking into account the mean daily stocking rates, which were 19·4, 26·6, 27·2 and 36·5 ewe ha?1, the total faeces and urine returns over the season were 161, 358, 249 and 484 kg N ha?1 for each treatment respectively. The herbage OM intakes ewes?1 d?1 measured in September and October were similar for C0 and G420, and so the intake of herbage OM ha?1 d?1 was related to stocking rate, i. e. the estimated herbage intake ha?1 over the growing season for the white clover monoculture was 73% of that for N-fertilized grass. Excretal nitrogen returns to the pasture from grazed mono-cultures of clover were high, and similar to those from a grass sward receiving 420 kg fertilizer N ha?1. Consequently potential losses of N to the environment are high under these management systems.  相似文献   

3.
The sustainability of white clover in grass/clover swards of an upland sheep system, which included silage making, was studied over 5 years for four nitrogen fertilizer rates [0 (N0), 50 (N50), 100 (N100) and 150 (N150) kg N ha?1]. A common stocking rate of 6 ewes ha?1 was used at all rates of N fertilizer with additional stocking rates at the N0 fertilizer rate of 4 ewes ha?1 and at the N150 fertilizer rate of 10 ewes ha?1. Grazed sward height was controlled, for ewes with their lambs, from spring until weaning in late summer by adjusting the proportions of the total area to be grazed in response to changes in herbage growth; surplus pasture areas were harvested for silage. Thereafter sward height was controlled on separate areas for ewes and weaned lambs. Areas of pasture continuously grazed in one year were used to make silage in the next year. For treatments N0 and N150, white clover stolon densities (s.e.m.) were 7670 (205·4) and 2296 (99·8) cm m?2, growing point densities were 4459 (148·9) and 1584 (76·0) m?2 and growing point densities per unit length of stolon were 0·71 (0·015) and 0·67 (0·026) cm?1 respectively, while grass tiller densities were 13 765 (209·1) and 18 825 (269·9) m?2 for treatments N0 and N150 respectively. White clover stolon density increased over the first year from 780 (91·7) cm m?2 and was maintained thereafter until year 5, reaching 8234 (814·3) and 2787 (570·8) cm m?2 for treatments N0 and N150 respectively. Growing point density of white clover increased on treatment N0 from 705 (123·1) m?2 to 2734 (260·7) m?2 in year 5 and it returned to the initial level on treatment N150 having peaked in the intermediate years. Stolon density of white clover was maintained when the management involved the annual interchange of continuously grazed and ensiled areas. The non‐grazing period during ensiling reduced grass tiller density during the late spring and summer, when white clover has the most competitive advantage in relation to grass. The increase in stolon length of white clover in this period appears to compensate for the loss of stolon during periods when the sward is grazed and over winter when white clover is at a competitive disadvantage in relation to grass. The implications for the management of sheep systems and the sustainability of white clover are discussed.  相似文献   

4.
Grassland and its management is central to the productivity of and nitrogen (N) losses from dairy farms in north‐west Europe. Botanical composition, production and N surplus of grassland were assessed during five consecutive years. The experiment consisted of all combinations of five defoliation systems: cutting‐only (CO), rotational grazing (GO), grazing + one (MSI) or two silage cuts (MSII) and simulated grazing (SG). Four mineral N fertilization rates (0–300 kg N ha?1 year?1) and two slurry levels (0 and 20 m3 slurry ha?1 year?1) were applied. Fertilizer N was more efficient in producing net energy (NEL) in grazing‐dominated, low white clover systems (GO and MSI systems: 70 and 88 MJ NEL kg?1 N) than in white clover‐rich systems (MSII, CO and SG systems: ≤60 MJ NEL kg?1 N). While sward productivity in system MSI was similar to that in system GO, system MSII benefited from increased N2 fixation at low N rates. There were small differences in NEL concentrations of the herbage between defoliation systems. Crude protein concentration of the herbage increased with increasing N supply from fertilizer, excreta and N2 fixation. N surpluses (?63 to +369 kg N ha?1 year?1) increased with increasing grazing intensity and increasing N fertilization rate. The average response in N surplus applied was 0·81, 0·59, 0·40, 0·33 and 0·24 kg N ha?1 in systems GO, MSI, MSII, CO and SG respectively.  相似文献   

5.
The effects of continuous stocking by sheep at sward surface heights (SSH) of 3, 5, 7 and 9 cm in grass/clover (GC) and nitrogen-fertilized grass (GN) swards were examined in relation to herbage mass and quality, clover content, tiller density and rates of herbage production and senescence in two periods in each of three grazing seasons (1987-89). The GN swards received a total of 300 kg N ha?1 each year in six equal dressings from March; GC swards received a single dressing of 50 kg N ha?1 in March each year. Herbage mass measured from ground level increased linearly with SSH with overall mean herbage masses of 0·89, 1·38, 1·78 and 2·12 t OM ha?1 (s.e.m.0·024, P < 0·001) at SSH of 3, 5, 7 and 9 cm respectively. GN and GC swards had mean herbage masses of 1·58 and 1·51 t OM ha?1 (s.e.m. 0·051, NS) respectively. Mean N content of herbage on GN swards was greater than that on GC swards and declined with increasing SSH. Crude, fibre (CF) content of herbage was similar for both sward types and increased with increasing SSH. Clover content of GC swards remained low throughout the experiment, ranging from 0·002 to 0·074 of herbage mass. However, from tissue turnover rates it was estimated that its contribution to herbage production was in the range of 0·049–0·219 of net herbage growth. Total growth increased with increasing SSH in both sward types, with maximum growth rates in GN swards of 143 and 130 kg DM ha?1 d?1 and in GC swards of 88·2 and 85·4 kg DM ha?1 d?1 in Periods 1 (up to early July) and 2 (after July) respectively. Senescence rates ranged between 13·3 and 50·1 kg DM ha?1 d?1 and tended to be higher in Period 2 than in Period 1. Net production increased with increasing SSH in Period 1, while in Period 2 net production declined at SSH above 6·5 cm. The increased net herbage production in taller swards was not associated with greater utilized metabolizable energy production at sward heights above 5 cm.  相似文献   

6.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

7.
This experiment was carried out to improve understanding of sward and soil responses to cattle and/or sheep rotational grazing of low-input (no N fertilizer), natural swards dominated by smooth-stalked meadowgrass (Poa pratensis) syn. Kentucky bluegrass and based on white clover (Trifolium repens). Treatments during two grazing seasons (1989–90) were: cattle grazing alone (C); cattle grazing followed by topping (CT); cattle grazing followed by sheep grazing (CS); and sheep grazing alone (S), Mean target pre- and post-grazing herbage masses were 2200 and 1100 kg dry matter (DM) ha?1. Plants in sheep-grazed swards regrew more quickly and accumulated more herbage (8·28 compared to 5·35 t DM ha?1 for cattle-grazed swards, unadjusted for rejected area) than in other treatments. After 2 years, soil in sheep-grazed areas contained 0·25% N, 5·7 kg available P ha?1, and 379 kg K ha?1, compared to an average of 0·19, 3·9, and 179 respectively for the same soil nutrients in cattle-grazed treatments. Besides differences in manure distribution and sward rejection, differences in soil compaction among treatments also may have affected soil organisms and thus plant growth. After 2 years, soil bulk densities (g cc?1) were 1·37, 1·37, 1·27, and 1·12; soil penetrometer measurements (kg cm sec?1 sec?1) to 20-cm soil depth were 9·8, 9·3, 9·5, and 6·7; soil nematodes per 100 g of soil were: 5333, 8705, 2810, and 15208; soil rotifers per 100 g soil were: 288, 242, 715, and 33; and earthworms m?2 (and their biomass (g m?2)) were 262 (205), 157 (162), 344 (409), and 294 (343) for C, CT, CS, and S treatments, respectively.  相似文献   

8.
A 2‐year whole‐farm system study compared the accumulation, utilization and nutritive value of grass in spring‐calving grass‐based systems differing in stocking rate (SR) and calving date (CD). Six treatments (systems) were compared over two complete grazing seasons. Stocking rates used in the study were low (2·5 cows ha?1), medium (2·9 cows ha?1) and high (3·3 cows ha?1), respectively, and mean CDs were 12 February (early) and 25 February (late). Each system had its own farmlet of eighteen paddocks and one herd that remained on the same farmlet area for the duration of the study. Stocking rate had a small effect on total herbage accumulation (11 860 kg DM ha?1 year?1), but had no effect on total herbage utilization (11 700 kg DM ha?1 year?1). Milk and milk solids (MS; fat + protein) production per ha increased by 2580 and 196 kg ha?1 as SR increased from 2·5 to 3·3 cows ha?1. Milk production per ha and net herbage accumulation and utilization were unaffected by CD. Winter feed production was reduced as SR increased. Increased SR, associated with increased grazing severity, resulted in swards of increased leaf content and nutritive value. The results indicate that, although associated with increased milk production per ha, grazed grass utilization and improved sward nutritive value, the potential benefits of increased SR on Irish dairy farms can only be realized if the average level of herbage production and utilization is increased.  相似文献   

9.
This study investigated the effect of using a trailing‐shoe system to apply cattle slurry, under different conditions of grass height (low [LG]: freshly cut sward [4–5 cm height] vs. high [HG]: application delayed by 7–19 d and applied to taller grass sward [4–11 cm] height) and month of application (June vs. April), on the nitrogen fertilizer replacement value (NFRV) and apparent N recovery (ANRS) of cattle slurry applied to grassland. NFRV was calculated using two methods: (i) NFRVN based on the apparent recovery of slurry‐N relative to that of mineral‐N fertilizer; and (ii) NFRVDM based on DM yield. The effect of applying slurry into HG swards, relative to LG swards, decreased the DM yield by 0·47 t ha?1 ( 0·001), N uptake by 5 kg ha?1 (P = 0·05), ANRS by 0·05 kg kg?1 (P = 0·036), NFRVN by 0·05 kg kg?1 (P = 0·090) and NFRVDM by 0·11 kg kg?1 (< 0·001). It was concluded that the main factor causing these decreases with HG, compared with LG applications, was wheel damage affecting subsequent N uptake and growth of the taller grass sward.  相似文献   

10.
The objective of this study was to quantify the effect of perennial ryegrass (Lolium perenne L.; PRG) sward density on seasonal and total DM yield under simulated grazing and animal grazing by cattle, and to assess the effectiveness of visually estimated ground scores (GSs) for predicting sward PRG density. The study incorporated five different seeding rates of PRG, each replicated three times, to simulate swards ranging in PRG density typical of different ages and conditions. There was no significant difference between defoliation managements for total DM yield, but sward PRG density had a significant effect on both the seasonal and total DM herbage yield under both systems. Under simulated grazing, total DM yield ranged from 10·7 to 12·0 t DM ha?1 with increasing sward PRG density at a GS range of 1·70–4·28 (mean of 2 years’ data, P < 0·01). Under animal grazing, the yield range was from 10·3 to 12·2 t DM ha?1 for a GS range of 1·50–3·39 (mean of 2 years’ data, P < 0·01). The largest differences in DM yield occurred during the spring period. The relationship between sward DM yield and GS was significant (P < 0·001) for both simulated and animal‐grazed swards. Each unit increase in midseason GS (June) related to an average yield increase of 350 kg DM ha?1 under simulated grazing and a 721 kg DM ha?1 increase under cattle grazing. Every unit increase in the GS at the end of the grazing season (December) was associated with a 460 or 1194 kg DM ha?1 increase under simulated and animal grazing, respectively. These results show that visual estimates of density were an effective tool in describing PRG density and that this could be related to DM yield potential. Further investigations may provide a threshold value below which the renewal of swards could be advised based on a visual GS of PRG.  相似文献   

11.
Results for years 4–8 of a long-term grazing experiment on swards of a diploid perennial ryegrass (Lolium perenne), var. Contender (D swards), a tetraploid ryegrass, var. Condesa (T swards) and Condesa with S184 white clover (Trifolium repens) (TC swards), direct sown in May 1987, are presented. The swards were continuously stocked with sheep from 1988 to 1990, as previously reported, and for a further 5 years, 1991–95, at a target sward surface height (SSH) of 4–6 cm. Control of sward height was successfully achieved by variable stocking, except in 1993 when paddocks were set stocked and the resulting mean SSH was 9·3 cm. Grass swards received on average 160 kg N ha?1 year?1; grass/clover swards were mainly not fertilized with N with the exception that they were given 30 kg N ha?1 as a remedial mid-summer application during a period of low herbage mass on offer in 1994 and 1995. Mean white clover content of the swards fell from 18·2% of herbage dry-matter (DM) in 1992 to 8·5% in 1993, whereas stolon lengths fell from 120 to 58 m m?2. A return to lower sward heights in 1994–95 resulted in an increase in white clover content to 12·8% by the final sampling in August 1995. Perennial ryegrass content of the grass swards remained high throughout (mean 96·7% in 1995). Perennial ryegrass tiller densities recorded in August 1991, 1993 and 1994 showed consistently significant (P < 0·001) sward differences (3-year mean 16 600, 13 700 and 10 100 perennial ryegrass tillers m?2 for the D, T and TC swards). In 1994, the year after lax grazing, a low perennial ryegrass tiller density (9100 m?2) and low white clover content (mean 4·3%) in the TC swards resulted in a much lower herbage bulk density than in the grass swards (April–July means 72, 94 and 44 kg OM ha?1 cm?1 for the D, T and TC swards). There was a consistent 40 g d?1 increase in lamb liveweight gain on the TC swards over the T swards, except in 1994. In that year there was a reduction in lamb liveweight gain of 33 g d?1 on the TC swards and a significant increase in ewe liveweight loss (117 g d?1) associated with low herbage bulk density despite optimal sward height. Lamb output (kg liveweight ha?1) on TC swards reflected white clover content, falling from a similar output to that produced from grass given 160 kg N ha?1, at 18% white clover DM content, down to 60% of grass + N swards with around 5% clover. A 6% greater output from the T than the D swards was achieved mainly through higher stocking rate. The experiment demonstrated a rapid, loss in white clover under lax grazing, and showed that the relationship between performance and sward height is also dependent on herbage density. High lamb output from a grass/clover sward was only achieved when the clover content was maintained at 15–20% of the herbage DM.  相似文献   

12.
Perennial ryegrass/white clover pastures grazed by sheep and receiving either no fertilizer N (No) or 120 kg N ha?1 year?1 (N0) were maintained with surface heights of 2·5, 3·5 and 5·0 cm for over four years. The treatments were replicated. The white clover (WC) population was greatest in the N0treatment, and declined during the study. Between-year variation in WC was negatively related to rainfall and positively related to temperature, WC as a proportion of the total plant population decreased during the summer in the Nl treatment. The perennial ryegrass (PRG) population was greater in the Nl treatment, declined during the study and both within and between years was positively related to temperature. The population density of the unsown grasses was highest in the N-fertilized treatment and in the swards maintained at the lowest heights (these treatments also had the highest stocking rate); it increased during the study, within-years being positively related to temperature and between-years being positively related to rainfall. The WC stolon extension rate was largely unaffected by N fertilizer application and was greatest in the taller swards. Leaf appearance rate was unaffected by N fertilizer application and sward height; it was positively related to temperature and negatively related to rainfall. Branching rate was greater in the N0 treatment with significant sward height effects confined to a negative relationship with local sward height within treatment plots on one occasion; it was negatively related to rainfall. The ground level red:far red light ratio was negatively related to local sward height. The total live weight of sheep carried in the No treatments was 0·7 of that in the N1 treatments. Expected photomorphogenic responses by we were confined to stolon extension. It was concluded that on the poorly drained clay-loam soil used in this study the effects of sheep, in interaction with climatic factors, had an overriding effect on clover branching rate and the ultimate species composition.  相似文献   

13.
In a small-plot trial five grass varieties bromegrass cv. Grasslands Matua, perennial ryegrass CVS. Melle (diploid) and Bastion, Condesa and Meltra (tetraploid) were established as grass/white clover swards with white clover cv. Menna. Productivity was measured under 6-weekIy cutting both without N fertilizer (No) and with 100 kg N ha?1 applied in spring (N100) Evaluation was made over 2 harvest years, 1986–87. Total mean annual production of herbage dry matter (DM) in the first harvest year at No and No was 5·07 t ha?1 and 6·93 t ha?1 respectively. In year 2, corresponding values were 11·81 and 12·67 t ha?1. In year 1, Matua swards at No and N100 yielded 5·08 and 6·65 t DM ha?1 compared with 507 and 70 t DM ha?1 for the mean of the four ryegrass varieties. In year 2, corresponding values were 12·90 and 12·29 for Matua and 11·54 and 12·78 for the four ryegrasses. In year 1, the digestable organic matter in the dry matter (DOMD) of the Matua swards was lower than that of Melle, Bastion and Condesa at NO, particularly at the first cut. In year 2, differences in DOMD between treatments and varieties were not significant. The proportion of white clover was found to be higher in the No than the N100 treatment, and also higher in year 2 in most treatments. For the No treatment Matua swards had the highest proportion of white clover in year 1 (32% compared with 24% for the mean of the ryegrass varieties) but the lowest proportion in year 2 (27% compared with 60% for the ryegrasses). For the No treatment in year 1 clover production was also 43% higher, on average, from the tetraploid treatments than with Melle as the companion grass; for this comparison in year 2 the differences were not significant. It is concluded that Matua bromegrass/white clover swards receiving no N fertilizer may have a good potential under cutting management. However, the evidence from this trial is that in the second year the proportion of white clover is lower with Matua swards than with perennial ryegrass as the companion grass.  相似文献   

14.
In three successive years, sward height was maintained at 3, 5, 7 or 9 cm on grass swards receiving a total of 300 kg N ha?1 in six equal monthly dressings from April, and on grass/clover swards receiving 50 kg N ha?1 as a single dressing in early spring. From turnout in April until weaning in July, 64 ewes and their lambs (mean litter size 1·5) were continuously grazed at the four sward surface heights on the two sward types. White clover content of grass/clover swards remained low throughout the experiment ranging from 0·2 to 7·4% of the herbage mass. During the first two years, lamb gains averaged over sward types were 204, 260, 285 and 308 g d?1 up to weaning, while in the third year gains were 238, 296, 296 and 260 g d?1 on 3, 5, 7 and 9 cm swards respectively. Ewes lost live weight on 3 cm swards but apart from this sward height had little effect on performance. During the autumn, weaned lambs gained — 27, 87, 147 and 167 g d?1 on 3, 5, 7 and 9 cm swards respectively. Sward type had only a small effect on the performance of lambs up to weaning but in the autumn, mean gains of weaned lambs were lower on grass/N swards (73 g d?1) than on grass/clover swards (115 g d?1). Relative to 3 cm swards, carrying capacities of 5, 7 and 9 cm swards were 0·76, 0·57 and 0·52 respectively from turnout to weaning and 0·66, 0·52 and 0·44 respectively during autumn. Grass/clover swards carried 0·67 of the ewes carried by grass/N swards from turnout to weaning and 0·51 of the live weight carried by grass/N swards during autumn. The reaction of the two sward types to sward height did not appear to differ but in the third year there was evidence of a reduction in white clover content when swards were grazed at 9 cm. The data suggest that lamb growth rates will increase as sward height increases up to 9 cm and the evidence for this was stronger with weaned lambs in autumn than with suckling lambs in spring.  相似文献   

15.
Nitrogen (N), accumulating in stubble, stolons and roots, is an important component in N balances in perennial ryegrass–white clover swards, and the effects of cutting frequency on the biomass of above‐ and below‐harvest height were studied during two consecutive years. Total dry matter (DM) and total N production, and N2 fixation, were measured at two cutting frequencies imposed in the summers of two years either by cutting infrequently at monthly intervals to simulate mowing or by frequent cutting at weekly intervals to simulate grazing. Total DM production harvested was in the range of 3000–7000 kg DM ha?1 with lower DM production associated with the frequent cutting treatment, and it was significantly affected by the different weather conditions in the two years. The higher cutting frequency also reduced the biomass below harvest height but the different weather conditions between years had less effect on stubble and, in particular, biomass of roots. The biomass of roots of white clover was significantly lower than that of roots of perennial ryegrass and remained at a relatively constant level (200–500 kg DM ha?1) throughout the experiment, whereas the biomass of perennial ryegrass roots increased from 2400 kg DM ha?1 in the year of establishment to 10 200 kg DM ha?1 in the infrequent cutting treatment and 6650 kg DM ha?1 in the frequent cutting treatment by the end of the experiment, giving shoot:root ratios of 4·7–16·6 and 0·5–1·6 for white clover and perennial ryegrass respectively. Annual N2 fixation was in the range of 28–214 kg N ha?1, and the proportion of N fixed in stolons and roots was on average 0·28. However, as weather conditions affect the harvested DM production and the shoot:root ratio, care must be taken when estimating total N2 fixation based on an assumed or fixed shoot:root ratio.  相似文献   

16.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

17.
Abstract Four sward height treatments were imposed by continuous variable stocking using at least ten Suffolk × Greyface lambs per plot from late July to late August: constant 3·5 cm. constant 6·0 cm. 3·5cm increasing to 6·0 cm and 6·0 cm decreasing to 3·5 cm. The treatments were established on two swards given fertilizer N applications over the season of 97 and 160 kg N ha?1 respectively. Animal density was greater on the high fertilizer treatment, at the lower sward height and especially on the decreasing height treatments. Liveweight change of lambs was higher (P <0·001) on the 6-cm than on the 3·5-cm treatments (+159 vs-13g d?1 and was also higher (P <0·001) on the increasing than on the decreasing sward height treatments (+92 vs-26 g d?1). Herbage organic matter intake (OMI), measured on two occasions in the experiment, was greater (P <0·001) on the 6·0 cm than on the 3·5-cm sward heights whereas values for the increasing sward height treatments were much greater than those for the decreasing sward height treatments. There was little difference in the organic matter digestibility of the diet between treatments. Diets were composed largely of lamina, although there was more pseudostem and dead herbage in the diets of Iambs grazing the decreasing than the increasing sward height treatments at the end of the experiment. Bite mass was closely related to OMI but the treatment and period differences were relatively greater than for OMI. Bite mass was more closely related to the depth of the lamina layer (sward height-pseudostem height) than it was to sward height. There was evidence that pseudostem acted as a barrier to defoliation on these short swards and also that the proportion of youngest leaf in the diet was positively related to sward height and to increases in sward height. Sward height and especially the direction of change in sward height, together with associated stock density, were potent influences on lamb growth rate. This was a consequence of differences in herbage intake, which was strongly influenced by bite mass.  相似文献   

18.
The effect of feeding a urea-based supplement for the last 8 weeks of pregnancy was examined on ewes grazing the grass-shrub steppes of NW Patagonia, Argentina. The productivity of ewes and lambs and the utilization rate of the major, less preferred, grass species (Stipa speciosa, 27% cover) was analysed. In a paddock-scale experiment, ewes grazed two areas of 450–500 ha from 15 August to 15 February at a stocking rate of 0·5 ewes ha?1. From 15 August to 10 October, one group of ewes was given access to a urea-based supplement containing 300 g kg?1 urea, 320 g kg?1 salt, 30 g kg?1 molasses and 300 g kg?1 bone meal. Average supplement consumption was 3·5 g ewe?1 d?1. The performance of 100 ewes in each of the two areas was evaluated. Supplemented ewes gained 4·2 kg more live weight than the control ewes between 15 August and 10 October (prepartum) (liveweight gain was 10·3 vs. 6·1 kg ewe?1, P < 0·05). The number of live lambs at 8 weeks of age, as a proportion of ewes mated, was 15% higher in the supplemented than in the control group (0·634 vs. 0·553, P < 0·05). A similar increase in the live weight of lambs at 8 weeks of age in the supplemented group compared with the controls was also observed (12·1 vs. 10·6 kg, P < 0·05). In the paddock with the supplemented ewes, there was a significant increase in the proportion of Stipa speciosa plants defoliated (0·62 vs. 0·38, P < 0·05) and in the intensity of defoliation of these plants. It was concluded that urea-based supplements increased productivity of ewes and that this was likely to be associated with an increase in the intake, and possibly digestibility, of the less preferred species such as Stipa speciosa.  相似文献   

19.
The use of imaging spectroscopy to predict the herbage mass of dry matter (DM), DM content of herbage and crude fibre, ash, total sugars and mineral (N, P, K, S, Ca, Mg, Mn, Zn and Fe) concentrations was evaluated. The experimental system used measured reflectance between 404 and 1650 nm at high spatial (0·28–1·45 mm2) and spectral resolution. Data from two experiments with Lolium perenne L. mini‐swards were used where the degree of sward damage or N‐fertilizer application varied. Regression models were calibrated and validated and the potential reduction in prediction error with multiple observations was estimated. The mean prediction errors for DM mass, DM content and N, total sugars, ash and crude fibre concentrations were 235–268 kg ha?1, 9·6–16·8 g kg?1, 2·4–3·4 g kg DM?1, 16·2–27·7 g kg DM?1, 5·8–6·5 g kg DM?1 and 8·4–10·4 g kg DM?1 respectively. The predictions for concentrations of P, K, S and Mg allowed identification of deficiency levels, in contrast to the concentrations of Na, Zn, Mn and Ca which could not be predicted with adequate precision. Prediction errors of DM mass may be maximally reduced to 95–142 kg ha?1 with 25 replicate measurements per field. It is concluded that imaging spectroscopy can provide an accurate means for assessment of DM mass of standing grass herbage. Predictions of macronutrient content and feeding value were satisfactory. The methodology requires further evaluation under field conditions.  相似文献   

20.
A small‐plot experiment was carried out in Northern Ireland on a predominantly perennial ryegrass sward over the period July 1993 to March 1994 to investigate the effect of timing and rate of fertilizer nitrogen (N) application on herbage mass and its chemical composition over the winter period. Eighty treatment combinations, involving four N fertilizer application dates (28 July, 9 and 30 August and 20 September 1993), four rates of N fertilizer (0, 30, 60 and 90 kg N ha?1) and five harvest dates (1 October, 1 November, 1 December 1993, 1 February and 1 March 1994), were replicated three times in a randomized block design experiment. N application increased herbage mass at each of the harvest dates, but in general there was a decrease in response to N with increasing rate of N and delay in time of application. Mean responses to N applications were 13·0, 11·5 and 9·5 kg DM kg?1 N at 30, 60 and 90 kg N ha?1 respectively. Delaying N application, which also reduced the length of the period of growth, reduced the mean response to N fertilizer from 14·3 to 7·4 kg DM kg?1 N for N applied on 28 July and 20 September respectively. Increasing rate of N application increased the N concentration and reduced the dry‐matter (DM) content and water‐soluble carbohydrate (WSC) concentration of the herbage but had little effect on the acid‐detergent fibre (ADF) concentration. Delaying N application increased N concentration and reduced DM content of the herbage. The effect of date of N application on WSC concentration varied between harvests. A decrease in herbage mass occurred from November onwards which was associated with a decrease in the proportion of live leaf and stem material and an increase in the proportion of dead material in the sward. It is concluded that there is considerable potential to increase the herbage mass available for autumn/early winter grazing by applying up to 60 kg N ha?1 in early September.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号