首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gastrointestinal nematodes are of concern in sheep production because of production and economic losses. Control of these nematodes is primarily based on the use of anthelmintic treatment and pasture management. The almost exclusive use of anthelmintic treatment has resulted in development of anthelmintic resistance which has led to the need for other parasite control options to be explored. The blood sucking abomasal parasitic nematode Haemonchus contortus causes severe losses in small ruminant production in the warm, humid sub-tropic and tropics. This study evaluated the effectiveness of a nematode trapping fungus, Duddingtonia flagrans, in reducing availability of parasitic nematode larvae, specifically H. contortus, on pasture. Chlamydospores of D. flagrans were mixed with a supplement feed which was fed daily to a group of crossbred ewes for the duration of the summer grazing season. A control group was fed the same supplement feed without chlamydospores. A reduction in infective larval numbers was observed in fecal cultures of the fungus-fed group. Herbage samples from the pasture grazed by the fungus-fed group also showed a reduction in infective larvae. There were no significant (P > 0.05) differences in overall fecal egg count, packed cell volume or animal weight between fungus-fed and control groups. Tracer animals were placed on the study pastures at the end of the study to assess pasture infectivity. Although tracer animals were only two per group, those that grazed with the fungus-fed group had substantially reduced (96.8%) nematode burdens as compared to those from the control group pasture. Results demonstrated that the fungus did have activity against nematode larvae in the feces which reduced pasture infectivity and subsequently nematode burdens in tracer animals. This study showed that D. flagrans, fed daily to grazing ewes, was an effective biological control agent in reducing a predominantly H. contortus larval population on pasture.  相似文献   

2.
The nematode-trapping fungus Duddingtonia flagrans may be used in biological control of parasitic nematode larvae in faeces of domestic host animals after feeding the hosts with fungal chlamydospores. In this experiment a possible undesirable fungal impact on earthworms, of the species Aporrectodea longa, was investigated. As earthworms eat animal faeces, D. flagrans may come into contact with earthworms both in their alimentary tract and on their body surface. However during the experimental period of 20 days, when earthworms were living in soil and eating cattle faeces that were heavily infested with viable chlamydospores of D. flagrans there were no indications of internal or external mycosis among the earthworms.  相似文献   

3.
The control of sheep nematode parasites in extensive mountain/transhumant management systems using the nematophagous fungus Duddingtonia flagrans was assessed in this study. Two groups of Churra Tensina ewes were allowed to graze for 8 weeks in autumn on two separate paddocks of infected pasture near their winter sheds in the valley. At lambing, ewes and their twin lambs were turned out into the same paddocks for the following 12 weeks. One group of ewes received a daily dose of 5 x 10(5) chlamydospores of Duddingtonia flagrans/kg live weight per day both in autumn and in spring, while the other group was used as a non-treated control. Daily dosing of grazing ewes with the fungus D. flagrans had a clear effect on reducing autumn pasture contamination. This had a subsequent effect on the over-wintering larvae population that was confirmed by a 20% lower worm burden of tracer lambs kept in early spring on the paddock previously grazed by fungus treated ewes. In spring, pasture contamination was also significantly reduced in the paddock grazed by fungi-treated ewes and their lambs showed a 61% lower worm burden and a better performance than the control lambs. Results herein show that fungal spores fed to sheep at critical times with regard to the epidemiology of parasite infection, can have a significant effect on the infective larvae present on pasture, which could further improve lambs performance. This novel approach to parasite control would be of interest amongst both organic and conventional sheep farmers operating in mountain regions.  相似文献   

4.
Approximately 2,800 fresh dung samples from animals, mainly ruminant livestock, were screened for the presence of nematophagous fungi in Malaysia. Arthrobotrys spp. was noted on numerous occasions, but only one isolate of Duddingtonia flagrans was made. For the purposes of producing sufficient quantities of this fungus for feeding trials in sheep, various, commonly available, cheap plant materials were tested as possible growth substrates. This showed that cereal grains (wheat, millet and rice) were the best media for fungal growth. Pen feeding trials were carried out using sheep, both naturally and experimentally infected with nematode parasites (predominantely Haemonchus contortus), to test the efficiency of D. flagrans when administered either in a grain supplement, or incorporated into a feed block. These showed that the fungus survived gut passage in sheep and that dose rates of approximately 1 x 10(6) D. flagrans spores / animal / day, reduced the percentage of infective larvae developing in faecal cultures by more than 90%. These results indicate that using D. flagrans as a biological control agent of nematode parasites, is a promising alternative to nematode parasite control of small ruminants in Malaysia, where anthelmintic resistance is now a major problem.  相似文献   

5.
For oral applications, biocontrol of animal parasitic nematodes in ruminants, ion beam implanted nematode-trapping fungi must have the capacity to survive the passage through the digestive tract and be efficient in reducing infective larvae of nematodes in the faeces.Ion beams induced mutation in the spores of nematode-trapping Arthrobotrys oligospora. Mutants with genetic stability were bred. The fungi were cultured in bottles with corn kernels as growth media, and spores of different doses were, respectively, administered orally to each group of sheep naturally infected with gastrointestinal nematodes. The control group did not receive fungi. The faeces of these experimental animals were collected and faecal cultivations carried out. The fungal germination, growth, reproduction and predation of livestock parasitic nematode larvae were tested in laboratory. The efficacy of an A. oligospora N mutant in nematode-trapping larvae after passage through the digestive tract of sheep was tested. The results indicated that the ion beam implantation induced mutation of the nematode-trapping fungi is a positive mutation. The mutant spores through the digestive tract of sheep can kill livestock parasite nematode larvae in vitro. These results indicate the potential of the A. oligospora N mutant as a biological control agent for sheep nematodes.This study showed that such biotechnology could be explored for improving the effectiveness of the use of fungal infections to control livestock parasitic nematodes. This work represents the first application of nematode-trapping fungi in eukaryotic microorganisms.  相似文献   

6.
The ability of the nematode-killing fungus Duddingtonia flagrans to reduce number of infective larvae of three species of gastro-intestinal parasitic nematodes developing in dung was investigated in both goats and sheep. Groups of lambs and kids (12-20 weeks old) were given mono-specific infections of Haemonchus contortus, Ostertagia (Teladorsagia) circumcincta or Trichostrongylus colubriformis. Following patency of the infections (t1) faecal samples were collected for determination of faecal nematode egg count (FEC) and culture of parasite larvae. Groups of animals were then dosed on 2 consecutive days with one of the two dose rates of the fungus (250,000 or 500,000 spores/kg liveweight). One (t2) and 5 (t3) days after the second dose of fungus samples were again collected for FEC and culture. The number of larvae recovered from the faecal cultures at t1 and t3 were used as controls to assess the efficacy of the experimental treatment at t2. Average efficacy was 78% with group means ranging from 40 to 93%. Dose rate of fungus appeared to influence efficacy against O. circumcincta but not against H. contortus or T. colubriformis. Overall, there were no differences in the efficacy of the fungus against any of the parasite species or in either host animal. The results of this trial indicate the potential use of this fungus as a broad spectrum anti-parasite agent for use in both goats and sheep.  相似文献   

7.
The ability of the nematophagous fungus Duddingtonia flagrans to reduce the number of infective nematode larvae in coproculture was investigated in goats using different doses of chlamydospores (0, 1.25 x 10(5), 2.5 x 10(5), 5 x 10(5) chlamydospores/kg BW/day) given by oral administration or by voluntary consumption in feed during natural or experimental infections with nematodes. The kinetics of excretion of D. flagrans chlamydospores in the faeces was also determined using a dose of 5 x 10(5) chlamydospores/kg BW/day for five days. For all the trials, the faecal nematode egg outputs were determined by a modified McMaster method and standard coprocultures were set up (14 days, 25 degrees C) to determine the number of larvae emerging from culture in fungus treated and control faeces. When chlamydospores were orally administered, the number of larvae were reduced by 50 to 97% when compared to control cultures. No difference in the level of larval emergence from the culture was seen for experimental or natural infections at the different chlamydospore dose rates. In contrast, when chlamydospores were distributed in the feed, a dose-dependent relationship was observed 10 days after the start of administration, the larval development being 2.0%, 14.0% and 86.9% for 5 x 10(5), 2.5 x 10(5) and 0 spores/kg BW/day, respectively. In addition, the kinetic study showed that the larval emergence from coproculture in the fungus group was statistically lower than in the control group from the second day of administration of the chlamydospores and remained lower until the second day after the last administration (p < 0.05). The results indicate that, for goats in farm conditions, a minimum daily dose of 5 x 10(5) chlamydospores/kg BW must be used to ensure a high treatment efficacy and that daily administration is preferable for maintenance of efficacy over time.  相似文献   

8.
Gastrointestinal (GI) nematode infection is a major constraint for grazing livestock production. The increasing prevalence and severity of anthelmintic-resistant nematodes in many parts of the world has led to a search for non-chemical control options. Under experimental conditions, the nematophagous fungus Duddingtonia flagrans is emerging as an alternative to chemotherapy for the control of GI nematode infection in biological production systems. Also, recent information points to the role of energy nutrition to increase the immune response against GI nematode infection. In this study the effect of D. flagrans and energy supplementation on the epidemiology of GI nematode infections is explored on grazing kids. Four groups of 10, 4-month old goats were turned out on infected pasture in the early spring and allocated to four separate paddocks where they were rotationally grazed for 16 weeks. One of these groups (F) received 0.5 x 10(6) D. flagrans spores/kg BW/d. Another group (S) was supplemented with 100 g barley grain per day. A third group (F+S) received both nematophagous fungi and barley supplement treatments simultaneously while the fourth group (C) was used as a non-treated control. Both nematophagous fungi and barley supplement had a significant effect (P<0.01) on reducing pasture infectivity, faecal egg excretion and worm burdens at slaughter that was particularly evident for Trichostrongylus colubriformis. The combination of both treatments showed a synergistic effect on the control of gastrointestinal nematode infections. At slaughter, the average total post-mortem worm count of the F+S group was reduced by 65% compared with the non-treated control. The results herein show that D. flagrans can act as an efficient biological control agent against kid GI nematode infections on pasture, which could further improve carcass characteristics. While small amounts of energy supplement can also reduce kid infection, the effect of D. flagrans as a biological control agent appeared clearly enhanced both in magnitude and duration by energy supplementation. This has clear implications for grazing animals and provides an efficient method for the practical control of parasitic nematodes in biological production systems.  相似文献   

9.
Consequences of nematode infections due to Haemonchus contortus are a serious constraint for the sheep industry worldwide. Development of anthelmintic resistance and increasing concern about the impact of anthelmintic use dictate the need of alternative control. Such an alternative is using the nematode trapping fungus Duddingtonia flagrans to reduce infective larvae levels on pasture. Two trials were conducted to determine the effect of D. flagrans in reducing infective larvae (predominantly H. contortus) in feces. The first trial determined the dose effect of D. flagrans in reducing infective larvae in feces. Eighteen ewes were dewormed to remove existing infections and randomly assigned to six treatment groups: 5 x 10(4), 1 x 10(5), 2.5 x 10(5), 5 x 10(5), 1 x 10(6) or no (control) spores of D. flagrans per kg of body weight mixed in their feed for 7 days. Fecal samples were collected daily from these and from infected donor ewes. Feces from individual-treated ewes were mixed with equal amounts of donor ewe feces, theoretically approximating oral dose spore concentrations of 2.5 x 10(4), 5 x 10(4), 1.25 x 10(5), 2.5 x 10(5), 5 x 10(5) and no spores, and were cultured. Across dosages and during the 7 days of fungus feeding, percent reduction of infective larvae ranged from 76.6 to 100.0%. The second trial determined the effect of D. flagrans at the dose of 10(5) spores per kg body weight on reducing infective larvae in feces from naturally infected lambs. Twenty lambs were randomly assigned to either treatment or control groups based on fecal egg count. Treatment lambs were fed spores mixed in feed for 7 days. Feces were collected daily and cultured. During the 7 days of fungus feeding, the percent reduction of infective larvae ranged from 82.8 to 99.7%. Results of these trials demonstrated that the nematode trapping fungus D. flagrans was highly effective in reducing infective larvae in sheep feces and should be considered as a biological control agent for integrated nematode control programs.  相似文献   

10.
An experiment was performed during the grazing seasons of 1998, 1999 and 2000 to study the influence of the antiparasitic drug ivermectin and the nematophagous fungus Duddingtonia flagrans on cattle dung disintegration. The faeces originated from groups of animals that were part of a separate grazing experiment where different control strategies for nematode parasite infections were investigated. Each group consisted of 10 first-season grazing cattle that were either untreated, treated with the ivermectin sustained-release bolus, or fed chlamydospores of D. flagrans. Faeces were collected monthly on 4 occasions and out of pooled faeces from each group, 4 artificial 1 kg dung pats were prepared and deposited on nylon mesh on an enclosed pasture and protected from birds. The position of the new set of pats was repeated throughout the 3 years of the study. Each year, the dung pats were weighed 4, 6, 8 and 10 weeks after deposition and immediately afterwards replaced to their initial positions. Results showed that there was no difference in faecal pat disintegration between groups. However, the time-lag between deposition and complete disintegration of the faeces varied significantly between deposition occasions. Dung pats disappeared within 2 weeks (visual observation) when subjected to heavy rainfall early after deposition, whereas an extended dry period coincided with faeces still remaining 12 months after deposition.  相似文献   

11.
Effective alternatives to anthelmintic treatment against nematode parasites of goats are required because of the high prevalence of benzimidazole resistance. Towards this objective, the nematophagous fungus, Duddingtonia flagrans (Df), was used in a plot study against two main parasitic nematode species of goats, Teladorsagia circumcincta (Tcir) and Trichostrongylus colubriformis (Tcol). Worm-free, culled goats were experimentally infected with strains of Tcir and Tcol to constitute donors. Half of the animals were periodically given Df chlamydospores at a daily dose of 2.5 x 10(5) spores/kg BW while the remaining animals were kept as controls. At 5 time periods i.e. March, May, July, September and November 2001, corresponding to the main grazing season in France for goats, faeces were collected from the 6th day of fungus administration for the following 2 days to obtain approximately 1 kg of faeces from each group of animals: Tcir/Control, Tcol/Control, Tcir/Fungus, Tcol/Fungus. For each period and each group, the faeces were deposited on a 1 m2 grass plot and the grass was cut (3 replicates) on weeks 2, 4, 6, 8,12 after deposition, for infective larval recovery. Larvae were counted and the results were expressed as a ratio of larvae/eggs deposited. On the plots with the control faeces deposited in March, July and September, the grass infectivity due to Tcir and Tcol was similar and the maximum number occurred between 2 and 4 weeks post deposition. In May, the maximum numbers of larvae were not recorded until 8 weeks after deposition, due to high daily temperatures and dryness. In November, larval development took place only for Tcir. On the plots with the fungus treated faeces, a significant reduction in grass infectivity occurred for both nematodes and ranged from 50-60% in May, July and November deposits to 80-90% in the September deposit. On the contrary to these findings, no difference was recorded between the fungus and control plots for the March deposit. In conclusion, D. flagrans is suitable for reducing the number of infective larvae in the herbage during the main part of the grazing period for the most important digestive nematodes of goats.  相似文献   

12.
Two experiments were performed in 2002 and 2003 to evaluate the effect of biological control of gastrointestinal nematodes in sheep through the daily feeding of 500,000 chlamydospores of Duddingtonia flagrans/kg bodyweight to lactating ewes during the first 9 weeks with their young lambs on pasture. In both experiments four groups of eight ewes and their April-borne lambs were used. They were turned out on four separate plots (plots A) at the beginning of May, moved to similar separate plots after 3 (plots B) and 6 weeks (plots C), respectively, and weaning occurred after 9 weeks. In both experiments, two groups were fed spores daily while the two other groups served as controls. The effect of D. flagrans application was evaluated through faecal egg counts of ewes and lambs, the yield of faecal cultures in ewes, pasture larval counts and worm counts of lambs and tracer lambs. The results demonstrated no effect of D. flagrans application during the first 5 (2002) or 4 (2003) weeks. Subsequently, fungus application strongly reduced the yield in faecal cultures of the ewes. This was, however, not reflected in the pasture larval counts, but lower worm burdens were observed in tracer lambs of 'treated' plots C in 2002 than on those of 'control' plots. In 2003 worm burdens in 'treated' lambs returned to plots B were lower than those of 'control' lambs and a tendency for the same was observed for plots C. However, in all groups, lambs and tracer lambs developed severe haemonchosis.  相似文献   

13.

Management of nematode parasites of grazing livestock is essential, but there is concern about the potential environmental risk from agents used in their control. In this experiment, parasites in young cattle were controlled, using ivermectin boluses or the predacious fungus Duddingtonia flagrans , over 3 years. Treatment differences were sought among the soil nematodes recovered from soil samples collected from the paddocks on which treated animals grazed, and compared with similar samples taken from an untreated control paddock. Analysis of the soil nematode fauna on 21 occasions failed to demonstrate any impact of parasite management on soil nematodes. In 0-22 mm soil total nematode abundance averaged 524 000 m -2 , with 18 nominal taxa and H' diversity 2.41. There were both underlying paddock and year-to-year, climate-related, differences. The results of this trial not only confirm the lack of any adverse environmental impact of D. flagrans , a promising biological control agent, on soil nematodes, but also fail to show any impact arising from the use of ivermectin boluses.  相似文献   

14.
An in vitro trial with carbendazim fungicide on the growth profile of the predatory fungus Duddingtonia flagrans was undertaken and in vivo trials in sheep and buffaloes, fed on chlamydospores of D. flagrans and administered albendazole anthelmintic, were conducted. Although no growth inhibition was detected at a carbendazim concentration of 0.05 ppm, growth inhibition was recorded of 50% and above at concentrations of 0.25 and 1.00 ppm (p < 0.001) and of around 90% at concentrations of 2.00 to 5.00 ppm (p <0.0001). Scanty recovery of the fungus was made from faecal culture 48 h following a single dose of albendazole both in sheep and buffaloes. However, profuse fungal recovery was made from 96 h post dosing onwards. When the drug was used as an intraruminal slow-release capsule, no faecal fungal recovery could be made from day 3 after administration of the capsule, when the albendazole sulphoxide concentration was around 1.0 microg/ml. However, profuse and scanty fungal recovery could be made on days 1 and 2, respectively, after administration of the capsule, when the plasma albendazole sulphoxide concentration was around 0.4 and 0.9 microg/ml, respectively. The implications for use of a combination of anthelmintics and biological control in sustainable parasite control programmes are discussed.  相似文献   

15.
Gastrointestinal nematodes (GIN) of ruminants (cattle, sheep and goats) are ubiquitous and can cause severe injuries to infected animals and significant losses in farming revenues. GIN are able to survive severe environmental and host conditions, but mankind has developed a number of ingenious methods for parasite control. The commerce and use of modern anthelmintic drugs with a broad spectrum of activity has been a solid tool for nearly 40 years, however the continuous use of these drugs, has led to the selection of populations of drug-resistant worms worldwide. At present, the ever-growing agricultural systems in Latin America are facing many challenges and cannot rely on the far-reaching objective of parasitic elimination from the host or the environment. The lack of extensive programs for monitoring drug resistance exacerbates the negative consequences of reduced efficacy, which is evident in some areas with the increase in mortality rate even after treatment. Experts agree that new schemes of parasitic control are needed and should be based on the strategy of targeted selective treatment where affected hosts are identified and treated accordingly. In this article, we will focus our discussion on the challenges for the control of GIN in Latin America by 2020 imposed by reduced drug efficacy. We will evaluate phenotypic and molecular markers, methods for single-animal evaluation, and the implementation of schemes for anthelmintic treatment that address parasites in refugia.  相似文献   

16.
A study was conducted over 3 years (1998-2000) to investigate larval availability of gastrointestinal nematodes from faeces of cattle reared under different parasite control schemes. These cattle were part of a parallel, but separate grazing trial, and were used as donor animals for the faecal material used in this experiment. At monthly intervals, faeces were collected and pooled from three groups of first-season grazing cattle. These groups were either untreated, ivermectin bolus treated or fed the nematophagous fungus Duddingtonia flagrans. The untreated and fungus treated animals were infected with gastrointestinal nematodes and the number of eggs per gram (epg) pooled faeces ranged between 50 and 700 in the untreated group and between 25 and 525 epg in the fungus treated group. Each year between June and September, artificial 1 kg dung pats were prepared and deposited on pasture and protected from birds. The same treatments, deposition times and locations were repeated throughout the study. Larval recovery from herbage of an entire circular area surrounding the dung pats was made in a sequential fashion. This was achieved by clipping samples in replicate 1/4 sectors around the dung pats 4, 6, 8 and 10 weeks after deposition. In addition, coinciding with the usual time of livestock turn-out in early May of the following year, grass samples were taken from a circular area centred where the dung pats had been located to estimate the number of overwintered larvae, which had not been harvested during the intensive grass sampling the previous year. It was found that recovery and number of infective larvae varied considerably within and between seasons. Although the faecal egg counts in 1999 never exceeded 300 epg of the faecal pats derived from the untreated animals, the abnormally dry conditions of this year generated the highest level of overwintered larvae found on herbage in early May 2000, for the 3 years of the study. Overall, biological control with D. flagrans significantly reduced larval availability on herbage, both during and between the grazing seasons, when compared with the untreated control. However, the fungus did not significantly reduce overwintered larvae derived from early season depositions (June and July), particularly when dung pats disappeared within 2 weeks after deposition. Very low number of larvae (<3 per kg dry herbage) were sporadically recovered from grass samples surrounding the ivermectin bolus faecal pats.  相似文献   

17.
The small lungworm Muellerius capillaris is very prevalent in goats and causes production losses. Its control is particularly difficult. The nematophagous fungus Duddingtonia flagrans has been shown to be effective in trapping a large range of gastro-intestinal nematode larvae but its trapping activity against small lungworm remains to be assessed. The purpose of this work was firstly, to evaluate the ability of first-stage larvae of M. capillaris (L1) to induce trap formation in in vitro conditions and secondly, to determine the effect of D. flagrans on the L1 infectivity to snails. In experiments on agar, the presence of L1 failed to induce any D. flagrans traps whereas in the same conditions, gastro-intestinal third-stage larvae induced 44-135 traps/cm(2) depending on the species. Moreover, when the traps were pre-induced by Haemonchus contortus larvae, the L1 of M. capillaris were not trapped. For the in vivo trial, two goats naturally infected with M. capillaris received D. flagrans chlamydospores at the daily dose rate of 5x10(5) spores/kg BW for 8 days. Faeces were collected individually before, during and 11 days after spore administration. On each day of harvest, the initial larval output was determined. The remaining faeces were subjected to coproculture at 21 degrees C for 7 days. At the end of this period, L1 were collected and used to infect snails (30 snails per goat isolate each snail given 40 L1 by direct deposit of the larvae on the foot of the snail). These snails were artificially challenged in contrast to others that were exposed to natural infection by exposure to faeces carrying first-stage M. capillaris larvae. The natural infection used the same number of snails, i.e. 30 snails deposited on the faeces of each goat. After 3 weeks at room temperature, the infective larvae present in the snail foot were counted. There was no difference in the survival of the L1 in faeces after coproculture whether the faeces contained D. flagrans or not. The infectivity of the extracted larvae from the two goats before and after fungal administration was the same. The number of infective larvae per snail obtained after "natural" infection showed variations that were not related to the presence of D. flagrans mycelium in faeces. These trials clearly indicate that D. flagrans was unable to trap or to alter the infectivity of M. capillaris first-stage larvae and thus cannot be considered as a non-chemotherapeutic alternative approach to the control of the small lungworm in goats.  相似文献   

18.
Studies showed that chlamydospores of the nematophagous fungus, Duddingtonia flagrans, are capable of surviving pressures of several tonnes when incorporated into matrices and pressed into tablets for the manufacture of prototype intraruminal controlled release devices (CRDs). They remain viable in this tabletted form for at least 9 months when stored at 4 degrees C. In vitro studies demonstrated that there was no effect on spore viability of prolonged exposure to either room or elevated temperature (40 degrees C) in air, or under an atmosphere of either of the major ruminal gases, carbon dioxide and methane. In vivo, studies showed that viable chlamydospores could be detected at the erosion surface of prototype CRDs recovered from the rumen and also in faeces of fistulated sheep, for up to 3 weeks after administration. Further studies have shown that chlamydospores released from such devices can substantially reduce the number of infective larvae that develop in cultures of faeces collected from sheep infected with the nematode parasite, Haemonchus contortus. This work demonstrates, in principle, that the deployment of chlamydospores of D. flagrans in intraruminal CRDs, is another possibility in the development of a range of methods for the biological control of parasites in livestock.  相似文献   

19.
Investigations were made into the timing of administration of Duddingtonia flagrans as a biological control agent against ovine parasitic nematodes including stongylid and Nematodirus spp. Faeces from 3-4 months old male lambs were deposited onto pasture plots that had never been grazed by sheep. The trial was conducted over two consecutive years (1998 and 1999). For both years, the following three plot types were involved: Sim plots had faeces containing nematode eggs and Duddingtonia flagrans spores deposited simultaneously; Post plots had faeces containing nematode eggs followed 2 weeks later by faeces containing D. flagrans spores alone; Control plots had faeces containing only nematode eggs; Prior plots (included in 1999) had faeces containing D. flagrans spores alone followed 2 weeks later by faeces containing nematode eggs. In each year, two deposition periods were involved: July and August in 1998 and June and July in 1999. During the first year pasture samples were collected at 2, 4, 6, 8 and 12 weeks after initial deposition. In 1999, additional samples were collected at 10, 16 and 20 weeks. Larvae were extracted from the pasture samples and counts performed to estimate the number and species of infective third-stage (L(3), larvae) present. The number of third-stage strongylid larvae on pasture was significantly lower on Sim plots compared to the remaining plot types for both years at all deposition times (P<0.001). This was also the case for the number of Nematodirus infective larvae in August deposition plots in 1998 (P<0. 02). There was no significant difference between treatments in both deposition times in 1999 and July deposition plots in 1998 for the Nematodirus data. These results suggest that D. flagrans, if deposited at the same time as parasite eggs prevents transmission of third-stage larvae from the faecal deposit onto pasture, including occasionally Nematodirus species, but does not have an effect on third-stage parasitic nematode larvae in the surrounding soil.  相似文献   

20.
A field study was conducted on three Swiss farms to investigate the efficacy of Duddingtonia flagrans against naturally acquired infections of gastrointestinal nematodes in adult dairy sheep. On each farm the ewes were divided into two equal groups. One group received Duddingtonia during a period of 4 months at a daily dose rate of 10(6) chlamydospores per kilogram body weight, the second group acted as controls. At an overall moderate infection level in all farms D. flagrans did not have a significant effect on the observed parasitological parameters with the exception of a significantly reduced herbage infectivity in one farm. In contrast, the results from faecal cultures indicated a mean suppression of larval development during the fungus-feeding period between 82, 89 and 93% on the three farms, respectively. The discrepancy observed between the fungus efficacy in coprocultures and on pasture, which was also observed in several other studies deserves further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号