首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT

In the arid, low biomass producing areas of Ethiopia, Acacia woodlands suffered a severe degradation due to exploitation for various uses, and conversion to grazing and cultivated lands. However, little is known on the impact of agricultural land uses on soil organic carbon (SOC), total nitrogen (TN) stocks, and other soil quality indicators. This study was planned to evaluate SOC and TN stock changes under parkland agroforestry (PAF), managed pastureland (MPL), and treeless cropland (TLCL) regimes by considering the remnant protected woodland (PWL) as a reference. We found that SOC and TN stocks were significantly higher in PWL and MPL areas. Conversion of Acacia woodlands to MPL, PAF, and TLCL resulted in the loss of SOC stock by 23, 50, and 56%, respectively. Higher SOC and TN stocks were found under PWL (144.3 Mg ha?1) and MPL (108.2 Mg ha?1). Significant changes in available phosphorous (P), exchangeable cations, and cation exchangeable capacity were observed following the woodland conversion to different land use types. Available P was the highest in MPL compared with the other land use regimes. Within the study area, the MPL land use type was the best land management option for protecting SOC and TN soil stocks.  相似文献   

2.
3.
Agroforestry systems have the potential to contribute significantly to climate change mitigation and adaptation. However, data on tree and soil organic carbon (SOC) pools for most agroforestry systems are lacking because reliable methods for estimating ecosystem carbon (C) pools are scarce. This study quantified the effects of five Leucaena species (L. leucocephala, L. macrophylla, L. diversifolia, L. collinsii and L. pulverulenta) on vegetal and soil C stocks and on mean annual increment (MAI) in aboveground tree C stocks. Specifically, it tested the validity of the CO2FIX model using empirical data from 7?year-old woodlots at Msekera, Zambia, and assessed the impact of converting a degraded agricultural ecosystem to woodlots on C stocks. Measured above- and below-ground tree C stocks and MAI of aboveground biomass differed significantly among the Leucaena species. Measured stem and total aboveground tree C stocks in seven-year old woodlots ranged from 17.1 to 29.2 and from 24.5 to 55.9?Mg?ha?1, respectively. Measured SOC stocks at 0?C200?cm depth in Leucaena stands ranged from 106.9 (L. diversifolia) to 186.0?Mg?ha?1 (L. leucocephala). Modeled stem and branch C stocks closely matched measured stocks, but the soil module of CO2FIX did not predict the soil C. The soil C data are inconclusive at this stage. We recommend that a fractionation and a soil aggregate hierarchy study backed by C dating is carried out to explain soil C dynamics in these soils. However, the model can be used only for estimating changes in aboveground tree C stocks in woodlots until soil C module is proven to predict SOC stocks.  相似文献   

4.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

5.
Agroforestry systems may play an important role in mitigating climate change, having the ability to sequester atmospheric carbon dioxide (CO2) in plant parts and soil. A meta-analysis was carried out to investigate changes in soil organic carbon (SOC) stocks at 0–15, 0–30, 0–60, 0–100, and 0 ≥ 100 cm, after land conversion to agroforestry. Data was collected from 53 published studies. Results revealed a significant decrease in SOC stocks of 26 and 24% in the land-use change from forest to agroforestry at 0–15 and 0–30 cm respectively. The transition from agriculture to agroforestry significantly increased SOC stock of 26, 40, and 34% at 0–15, 0–30, and 0–100 cm respectively. The conversion from pasture/grassland to agroforestry produced significant SOC stock increases at 0–30 cm (9%) and 0–30 cm (10%). Switching from uncultivated/other land-uses to agroforestry increased SOC by 25% at 0–30 cm, while a decrease was observed at 0–60 cm (23%). Among agroforestry systems, significant SOC stocks increases were reported at various soil horizons and depths in the land-use change from agriculture to agrisilviculture and to silvopasture, pasture/grassland to agrosilvopastoral systems, forest to silvopasture, forest plantation to silvopasture, and uncultivated/other to agrisilviculture. On the other hand, significant decreases were observed in the transition from forest to agrisilviculture, agrosilvopastoral and silvopasture systems, and uncultivated/other to silvopasture. Overall, SOC stocks increased when land-use changed from less complex systems, such as agricultural systems. However, heterogeneity, inconsistencies in study design, lack of standardized sampling procedures, failure to report variance estimators, and lack of important explanatory variables, may have influenced the outcomes.  相似文献   

6.
Ecosystem-level assessments of carbon (C) stocks of agroforestry systems are scarce. We quantified the ecosystem-level C stocks of one agroforestry-based oil palm production system (AFSP) and one agroforestry-based oil palm and cacao production system (AFSP+C) in eastern Amazonia. We quantified the stocks of C in four pools: aboveground live biomass, litter, roots, and soil. We evaluated the distribution of litter, roots, and soil C stocks in the oil palm management zones and in the area planted with cacao and other agroforestry species. The ecosystem-C stock was higher in AFSP+C (116.7 ± 1.5 Mg C ha?1) than in AFSP (99.1 ± 3.1 Mg C ha?1). The total litter-C stock was higher in AFSP+C (3.27 ± 0.01 Mg C ha?1) than in AFSP (2.26 ± 0.06 Mg C ha?1). Total root and soil C stocks (0–30 cm) did not differ between agroforestry systems. Ecosystem-C stocks varied between agroforestry systems due to differences in both aboveground and belowground stocks. In general, the belowground-C stocks varied spatially in response to the management in the oil palm and non-oil palm strips; these results have important implications for the monitoring of ecosystem-level C dynamics and the refinement of soil management.  相似文献   

7.

Context

In N-saturated forests nitrate concentrations in seepage water ( $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ ) regularly show high spatial variability even within homogeneous stands. Up to now the reasons of this variability are not fully understood.

Aims

The main objective was to identify the crucial parameters that control spatial variability of $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ at the H?glwald site.

Methods

We investigated a multitude of parameters (e.g. N turnover, root biomass, soil chemistry, soil physics, stand parameters) and related them to $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ , measured in 40?cm depth with suction cups.

Results

A small number of biological parameters (net N mineralization, root distribution, and stand density) explained up to 93?% of the variability of $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ in linear regression models. Net N-mineralization rates in the humus layer and fine root biomass in the upper mineral soil influenced $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ positively. Fine root biomass in deeper soil layers (30?C40?cm depth) and stand density had a negative influence.

Conclusion

The rate of net N mineralization in the organic layer is decisive for the nitrate production in the soil. Roots in the upper mineral soil increase $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ by intensive water uptake but excluding nitrate at the same time. The variation of these two parameters is responsible for most of the small-scale variability of $ {\text{N}}{{\text{O}}_3}{^{ - }_{\text{seepage}}} $ .  相似文献   

8.
Large amounts of plant litter deposited in cacao agroforestry systems play a key role in nutrient cycling. Organic matter, nitrogen and phosphorus cycling and microbial biomass were investigated in cacao agroforestry systems on Latosols and Cambisols in Bahia, Brazil. The objective of this study was to characterize the microbial C and N, mineralizable N and organic P in two soil orders under three types of cacao agroforestry systems and an adjacent natural forest in Bahia, Brazil and also to evaluate the relationship between P fractions, microbial biomass and mineralized N with other soil attributes. Overall, the average stocks of organic C, total N and total organic P across all systems for 0?C50?cm soil depth were 89,072, 8,838 and 790?kg?ha?1, respectively. At this soil depth the average stock of labile organic P was 55.5?kg?ha?1. For 0?C10?cm soil depth, there were large amounts of microbial biomass C (mean of 286?kg?ha?1), microbial biomass N (mean of 168?kg?ha?1) and mineralizable N (mean of 79?kg?ha?1). Organic P (total and labile) was negatively related to organic C, reflecting that the dynamics of organic P in these cacao agroforestry systems are not directly associated with organic C dynamics in soils, in contrast to the dynamics of N. Furthermore, the amounts of soil microbial biomass, mineralizable N, and organic P could be relevant for cacao nutrition, considering the low amount of N and P exported in cacao seeds.  相似文献   

9.
Carbon sequestration potential of agroforestry systems has attracted worldwide attention following the recognition of agroforestry as a greenhouse gas mitigation strategy. However, little is known about carbon stocks in poplar–maize intercropping systems in arid regions of China. This study was conducted in the temperate desert region of northwestern China, a region with large area of poplar–maize intercropping systems. The objective of this study was to assess biomass production and carbon stock under three poplar–maize intercropping systems (configuration A, 177 trees ha?1; configuration B, 231 trees ha?1; and configuration C, 269 trees ha?1). We observed a significant difference in the carbon stock of poplar trees between the three configurations, with the highest value of 36.46 t ha?1 in configuration C. The highest carbon stock of maize was achieved in configuration B, which was significantly higher than configuration A. The grain yield was highest in configuration A, but there was no significant difference from the other two configurations. In the soil system (0–100 cm depth), the total carbon stock was highest in configuration C (77.37 t ha?1). The results of this study suggest that configuration C is the optimum agroforestry system in terms of both economic benefits and carbon sequestration.  相似文献   

10.
No information is available about carbon (C) sequestration potentials in ecosystems on Andisols of the Chilean Patagonia. This study was undertaken to measure the size of C stocks in three predominant ecosystems: Pinus ponderosa-based silvopastoral systems (SPS), pine plantations (PPP) and natural pasture (PST), and examine how clover affect tree growth and stocks of soil C. The C contents of trees and pasture were determined by destructive sampling and dry combustion. Soil samples were taken at 0?C5, 5?C20, 20?C40?cm depths in order to determine soil C and N. For PPP and SPS total aboveground tree C was 38.4 and 53.1?kg tree?1 and belowground was 21.3 and 23.4?kg tree?1, respectively. Annual diameter increment at breast height was 1 and 2?cm in PPP and SPS, respectively, and was significantly higher in SPS. Trees in SPS, due to lower density and the presence of leguminous pasture, demonstrated enhanced growth and C sequestration. Soil organic C (SOC) stocks at 0?C40?cm depth were 193.76, 177.10 and 149.25?Mg?ha?1 in SPS, PST and PPP, respectively. The conversion of PPP to SPS and PST to PPP resulted in an increase of 44.51?Mg?ha?1 and a decrease of 27.85?Mg?ha?1 in SOC, respectively. Favorable microclimatic conditions in relation to air temperature and soil moisture were observed in SPS as well as a synergy between trees and pasture.  相似文献   

11.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

12.
We hypothesized that long-term loblolly pine (Pinus taeda L.) land-use restores SOC stock and lability of a subtropical Cambisol to the original levels of the natural forest (NF). Additionally, we hypothesized that roots are the major contributor to SOC and that soil stores most of the ecosystem total carbon (ETC). We investigated a chronosequence of loblolly pine land-use of 17 (first rotation) and 32 years (second rotation, unthinned or thinned) following clearing of the NF. The original SOC stock to 100 cm of NF (209?±?9.4 Mg C ha?1) was depleted by 22% after 17 years of pine, possibly because of intense soil disturbance and low quantity and quality of the residue inputted during the pine stand implementation. However, the SOC stock was restored to the original stock of NF after 32 years of pine, with the input of above and belowground biomass at harvest of the first rotation possibly playing a role in this recovery. Thinning did not affect SOC stocks after 1 year. The POM-C reduced after 17 years and was not recovered after 32 years. We could not ascertain in 5-year evaluation whether root or litter was the major contributor to SOC. Soil held 72% of the ETC in NF and 48–59% in pine plantations, confirming that it stores most of the ETC. Overall, long-term loblolly pine land-use seems to restore the original soil carbon stock in this subtropical site, regardless of some lability losses.  相似文献   

13.
Modeling height–diameter relationships is an important component in estimating and predicting forest development under different forest management scenarios. In this paper, ten widely used candidate height–diameter models were fitted to tree height and diameter at breast height(DBH)data for Populus euphratica Oliv. within a 100 ha permanent plots at Arghan Village in the lower reaches of the Tarim River, Xinjiang Uyghur Autonomous Region of China. Data from 4781 trees were used and split randomly into two sets:75 % of the data were used to estimate model parameters(model calibration), and the remaining data(25 %) were reserved for model validation. All model performances were evaluated and compared by means of multiple model performance criteria such as asymptotic t-statistics of model parameters, standardized residuals against predicted height,root mean square error(RMSE), Akaike’s informationcriterion(AIC), mean prediction error(ME) and mean absolute error(MAE). The estimated parameter a for model(6) was not statistically significant at a level of a = 0.05. RMSE and AIC test result for all models showed that exponential models(1),(2),(3) and(4) performed significantly better than others. All ten models had very small MEs and MAEs. Nearly all models underestimated tree heights except for model(6). Comparing the MEs and MAEs of models, model(1) produced smaller MEs(0.0059) and MAEs(1.3754) than other models. To assess the predictive performance of models, we also calculated MEs by dividing the model validation data set into 10-cm DBH classes. This suggested that all models were likely to create higher mean prediction errors for tree DBH classes[20 cm. However, no clear trend was found among models.Model(6) generated significantly smaller mean prediction errors across all tree DBH classes. Considering all the aforementioned criteria, model(1): TH ? 1:3 t a= e1 t b?eàc?DBHT and model(6): TH ? 1:3 t DBH2= ea t b?DBH t c ? DBH2T are recommended as suitable models for describing the height–diameter relationship of P. euphratica. The limitations of other models showing poor performance in predicting tree height are discussed. We provide explanations for these shortcomings.  相似文献   

14.
Soil fertility decline caused by deforestation, soil degradation and low input use has become a primary factor limiting sustainable utilization of soil resources in cocoa agroforestry systems on acid soils in lowland humid Ghana. Changes in and responses of soil physico-chemical properties and soil quality to land-use change was investigated along a chronosequence of farm fields on a Ferric Lixisol in the Ashanti region of Ghana. Soil bulk density increased significantly only in the top 0–10 cm soil layer. Concentrations and stocks of soil organic carbon (SOC) and total N decreased significantly in the top 0–10 and 10–20 cm soil depths. By 30 years after forest conversion, cocoa system had re-accumulated up to 38.8 Mg C ha?1 or 85 % of initial forest carbon stock values. Total porosity (%) decreased significantly in shaded-cocoa fields in comparison with the natural semi-deciduous forest. An assessment of soil deterioration using degradation indices (DIs) revealed that total soil quality (0–20 cm) deteriorated significantly (DI = –60.6) in 3-year-old of cocoa system but improved in 15 and 30-year-old systems. Available P stocks declined consistently while soil exchangeable Ca, K and Mg stocks as well as cation exchange capacity (CEC) and base saturation remained more or less stable with a tendency to improve. The inclusion of leguminous shade trees during early plantation development, development of mechanisms for the integration of cover crops and enhancement of farmer capability in improved farm management are required to maintain high C and nutrient base, minimize soil quality degradation during plantation development phase and sustain long-term productivity.  相似文献   

15.
Simulated rainfall and runoff were used to compare the effectiveness of 6 m and 3 m wide filter strips of switchgrass (Panicum virgatum) and cool-season filter strips consisting of bromegrass (Bromus inermis), timothy (Phleum pratense) and fescue (Festuca spp.) in reducing sediment, nitrogen and phosphorus in surface runoff from adjacent crop fields. The 6 m and 3 m wide strips represented 20:1 and 40:1 area ratios, respectively. Twelve plots, six each, in the switchgrass and cool-season grass strips, were laid out on Coland soil, having an average slope of 3%. Plots received simulated rainfall of 5.1 cm hr1 intensity and simulated runoff containing known quantities of sediment and nutrients. Three runon samples, each integrated over 15 minutes, and nine runoff samples, each integrated over five minutes, were collected from each plot and analyzed for sediment, total-N, -N, total-P and P. The 6 m wide filter strips removed 77% while the 3 m removed 66% of the incoming sediment from surface runoff. The 6 m filter strips removed 46% of total-N, 42% of -N, 52% of total-P, and 43% of -P; and the 3 m filter strips removed 28% of total-N, 25% of -N, 37% of total-P and 34% of -P. Differences between 6 m and 3 m filter strips were significant (P < 0.05) for sediment and nutrient removal. Switchgrass filter strips removed significantly more total-N, -N, total-P and -P than cool-season grass filter strips (P < 0.05). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
《Southern Forests》2013,75(3):235-245
Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha?1 (SD 21.3) and mean topsoil (0–20 cm depth) SOC stock was 42.2 Mg C ha?1 (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p < 0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p < 0.001) and AGC and Shannon index (r = 0.375, p < 0.05). The correlation between AGC and SOC was weak (r = 0.17, p < 0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.  相似文献   

17.
Karki  Himani  Bargali  Kiran  Bargali  S. S. 《Agroforestry Systems》2021,95(8):1603-1617

To access the process of nitrogen mineralization in soil, the buried-bag technique was used among traditional agroforestry systems in the Bhabhar belt of Kumaun Himalaya. The present study, determined the relationship between various parameters of N-mineralization with agroforestry systems, seasons and soil depths. Season and soil depth have significantly (p?<?0.001) affected the process of ammonification, nitrification and net N-mineralization. The soil ammonium-N pool was comparatively higher than the nitrate-N pool. Highest amount of ammonium and nitrate-N were recorded in the agri-horticulture (AH) system, and lowest in the agri-horti-silviculture (AHS) system. Among the systems, highest amount of inorganic-N (ammonium?+?nitrate) was recorded during rainy season while, lowest during winter season. The highest ammonification rate (6.47?±?1.47 mg kg?1 month?1) was observed in agri-silviculture system and lowest (5.67?±?1.68 mg kg?1 month?1) in AHS system, while nitrification value was maximum (2.53?±?0.40 mg kg?1 month?1) in AH system and minimum (2.23?±?0.37 mg kg?1 month?1) in AHS system. The values of net N-mineralization were ranged from 4.03?±?0.53 to 13.29?±?0.44 mg kg?1 month?1. The values of inorganic-N and net N-mineralization were significantly more (P?<?0.01) in the surface soil layer (0–20 cm) than the subsurface layers (20–40 cm and 40–60 cm). Nitrogen mineralization was negatively correlated with the soil pH and positively correlated with soil organic carbon and total soil nitrogen. Higher rate of N-mineralization in AHS system indicated rapid turnover of nitrogen due to soil management practices and suggested that the changes in agroforestry based land-use systems alter the process of net N-mineralization, nitrification and ammonification.

  相似文献   

18.
Our understanding of the processes influencing the storage and dynamics of carbon (C) in soils under semi-arid agroforestry systems in Sub-Saharan Africa (SSA) is limited. This study evaluated soil C pools in woodlot species of Albizia lebbeck (L.) Benth., Leucaena leucocephala (Lam.) de Wit, Melia azedarach (L.), and Gmelina arborea Roxb.; and in farmland and Ngitili, a traditional silvopastoral system in northwestern Tanzania. Soil organic carbon (SOC) was analyzed in the whole soil to 1 m depth and to 0.4 m in macroaggregates (2000–250 μm), microaggregates (250–53 μm), and silt and clay-sized aggregates (<53 μm) to provide information of C dynamics and stabilization in various land uses. Synchrotron-based C K-edge x-ray absorption near-edge structure (XANES) spectroscopy was also used to study the influence of these land use systems on the soil organic matter (SOM) chemistry to understand the mechanisms of soil C changes. Whole soil C stocks in woodlots (43–67 Mg C ha?1) were similar to those in the reserved Ngitili systems (50–59 Mg C ha?1), indicating the ability of the planted woodlots on degraded lands to restore SOC levels similar to the natural woodlands. SOC in the woodlots were found to be associated more with the micro and silt-and clay-sized aggregates than with macroaggregates, reflecting higher stability of SOC in the woodlot systems. The continuous addition of litter in the woodlots preserved recalcitrant aromatic C compounds in the silt and clay-sized aggregates as revealed by the XANES C K-edge spectra. Therefore establishment of woodlots in semi-arid regions in Tanzania appear to make significant contributions to the long-term SOC stabilization in soil fractions.  相似文献   

19.
Phosphorus (P) in soil exists both in organic and inorganic forms and their relative abundance could determine P supplying capacity of soil. Differential input of exogenous and plant-mediated phosphorus and carbon in soil under different land-uses could influence P availability and fertilizer P management. While the effect of land-use on soil organic carbon (SOC) is fairly well-documented, its effect on soil P fractions is relatively less known. We investigated the effect of different land-uses including rice–wheat, maize–wheat, cotton–wheat cropping systems and poplar-based agroforestry systems on soil P fractions and organic carbon accrual in soils. Total P concentration was the highest under agroforestry (569 mg P kg?1) and the lowest under maize–wheat (449 mg P kg?1) cropping systems. On the contrary, soils under rice–wheat had significantly higher available P concentration than the agroforestry systems, probably because of higher fertilizer P application in rice–wheat and prevailing wetland conditions during rice growth. In soils under sole cropping systems viz. rice–wheat, maize–wheat and cotton–wheat, inorganic P was the dominant fraction and accounted for 92.2–94.6% of total P. However, the soils under agroforestry had smaller proportion (73%) of total P existing as inorganic P. Among soil P fractions, water soluble inorganic P (0.13–0.26%) represented the smallest proportion inorganic P in soils under different land-uses. Agroforestry showed significantly (p < 0.05) higher concentrations of SOC than the other land-uses. Soil organic C was significantly correlated with soil P fractions. It was concluded that poplar-based agroforestry systems besides leading to C accrual in soil result in build-up of organic P and the P supplying capacity of soil.  相似文献   

20.
The unique forest ecosystems investigated were created on the place of natural steppe biogeocoenoses 60?years ago. The aim of the study was to elucidate the effect of plant species on the formation of organic C and N stocks in soils and to estimate nitrogen availability for artificial wood plantation. For this purpose, 290 soil samples were taken from four forest monocultures (Quercus robur L., Pinus sylvestris L., Cotinus coggygria Scop., and Acer tataricum L.) and from virgin steppe ecosystem. The amounts and stocks of organic C, total and readily nitrified N, and seasonal dynamics of NO3 ? and NH4 + ions activities were determined. It was shown that the species composition of the stands influenced the stock of organic C and N in soils. The storages of C and total N differed by 74 and 4.4?Mg/ha?1, respectively, in the litter and upper horizons (0–40-cm layer) in the stands studied. The differences in distribution of stocks of these elements in virgin steppe and artificial forest ecosystems were found. Organic C and N stocks increased 1.6–6.6 times in the forest litter compared to the steppe one, while in 5–40-cm layer, the storages of C and N decreased by 20–35% compared to the virgin soil. The impact of litter on total N content in arid climate was limited in 0–5-cm layer. The deficit of mineral N compounds was observed in autumn in soil with low stock of total N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号