首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire induces changes in ecosystem nutrient regimes and can cause major losses of N and P. Much has been written about the effect of fire on nutrient availability in soil; most studies have been concerned with the short-term effects of shock. The primary objective of our study was to discover the effect of forest fires on long-term N and P availability, for which we used the ion exchange membrane method in a chronosequence of forest fires (1987, 1990, 1994, 1998, 2000 and 2005). The study was conducted on the island of La Palma (Canary Islands, Spain) in October 2006. We hypothesized that a rapid increase in nutrient availability would occur after the fire, followed by a reduction due to erosion and leaching, and then gradual recovery and an eventual return to initial levels. NH4-N, NO3-N and mineral-N availability peaked significantly 1 year after the fire. However, 5 years after the fire the N levels were similar to those found on unburned land. P availability decreased significantly a year after the fire, but gradually recovered over time. The N and P availability ratio increased significantly after the fire, falling during the chronosequence, with the lowest levels found on the unburned land. These results confirm that fire produces (a) a rapid and short-term increase in N availability, without a long-term decline, and (b) a long-term reduction in P availability, which tends to recover over time after the fire.  相似文献   

2.
Boreal forests are crucial to climate change predictions because of their large land area and ability to sequester and store carbon, which is controlled by water availability. Heterogeneity of these forests is predicted to increase with climate change through more frequent wildfires, warmer, longer growing seasons and potential drainage of forested wetlands. This study aims at quantifying controls over tree transpiration with drainage condition, stand age and species in a central Canadian black spruce boreal forest. Heat dissipation sensors were installed in 2007 and data were collected through 2008 on 118 trees (69 Picea mariana (Mill.) Britton, Sterns & Poggenb. (black spruce), 25 Populus tremuloides Michx. (trembling aspen), 19 Pinus banksiana Lamb. (jack pine), 3 Larix laricina (Du Roi) K. Koch (tamarack) and 2 Salix spp. (willow)) at four stand ages (18, 43, 77 and 157 years old) each containing a well- and poorly-drained stand. Transpiration estimates from sap flux were expressed per unit xylem area, J(S), per unit ground area, E(C) and per unit leaf area, E(L), using sapwood (A(S)) and leaf (A(L)) area calculated from stand- and species-specific allometry. Soil drainage differences in transpiration were variable; only the 43- and 157-year-old poorly-drained stands had?~?50% higher total stand E(C) than well-drained locations. Total stand E(C) tended to decrease with stand age after an initial increase between the 18- and 43-year-old stands. Soil drainage differences in transpiration were controlled primarily by short-term physiological drivers such as vapor pressure deficit and soil moisture whereas stand age differences were controlled by successional species shifts and changes in tree size (i.e., A(S)). Future predictions of boreal climate change must include stand age, species and soil drainage heterogeneity to avoid biased estimates of forest water loss and latent energy exchanges.  相似文献   

3.
Changes in soil N mineralization pathways occurring along a full rotation cycle have received little attention to date, while tree uptake for N may change during forest ageing. The aims of this study were (i) to characterize changes in potential net N mineralization and potential net nitrification within organic layers and the topsoil (organo-mineral horizon) along a 100-year chronosequence for a temperate oak–hornbeam forest and (ii) to reveal covariances between potential net N mineralization pathways and the properties of the humic epipedon (defined as the sum of organic layers and topsoil). For that purpose, a space-for-time substitution procedure and aerobic laboratory incubation method for 28 days at 28 °C in the dark were used. In addition, acetylene and captan were used to discriminate between autotrophic and heterotrophic (bacterial and/or fungal) nitrification. Several humic epipedon properties were determined, e.g. pH, exchangeable cation concentrations, effective cation exchange capacity, total C and N, dissolved organic C and N, fungal and microbial biomass N. Potential net N mineralization and nitrification pathways changed greatly along the mixed forest chronosequence. Potential net N mineralization in the organic layers increased with stand maturation whereas potential net nitrification in the topsoil decreased significantly. Selective inhibitors revealed changes in nitrification pathways along the chronosequence, i.e. potential net nitrification was autotrophic in the topsoil while it was mainly heterotrophic within the organic layers. In the organic layer, potential net nitrification was autotrophic at the onset of the chronosequence while it appeared heterotrophic during the aggradation phase and finally fungal in mature stands. A Co-Inertia Analysis was used to reveal covariances between N mineralization pathways and humic epipedon properties. The analysis showed two functional temporal shifts within N cycling along the chronosequence, one probably controlled by organic matter quality and high competition for available N resulting in the autotrophic versus heterotrophic nitrification shift in the organic layers and one mainly controlled by (i) fine organic matter abundance, allowing high N mineralization in the organic layers and (ii) acidity inhibited autotrophic nitrification in the topsoil.  相似文献   

4.

Introduction   

We investigated changes in humus morphology and soil potential net N mineralization pathways along a pure beech even-aged forest chronosequence, composed of four stages (15, 65, 95, and 130 years old) on Luvisol.  相似文献   

5.
Accurate estimates of forest soil organic matter (OM) are now crucial to predictions of global C cycling. This work addresses soil C stocks and dynamics throughout a managed beechwood chronosequence (28–197 years old, Normandy, France). Throughout this rotation, we investigated the variation patterns of (i) C stocks in soil and humic epipedon, (ii) macro-morphological characteristics of humic epipedon, and (iii) mass, C content and C-to-N ratio in physical fractions of humic epipedon. The fractions isolated were large debris (>2000 μm), coarse particular OM (cPOM, 200–2000 μm), fine particular OM (fPOM, 50–200 μm) and the mineral associated OM (MaOM, <50 μm).  相似文献   

6.
We examined the availability and quality of standing dead trees (snags) for nesting habitat in a harvest chronosequence of boreal forests dominated by balsam fir (Abies balsamea) in western Newfoundland. Snag density declined substantially 10–15 years after harvest, then increased to reach its highest level in 81- to 100-year-old forests that had become senescent. Most (55%) of 1260 snags encountered were balsam fir, which contained 41% of the 81 cavities identified. Cavity presence was most strongly positively correlated to snag diameter at breast height (dbh), followed by decay class, time since harvest and height. Less than 40% of snags available throughout the chronosequence had large enough dbh for cavity nesters. Downy Woodpeckers (Picoides pubescens) were responsible for 47% of all cavities identified, excavating balsam fir 50% of the time. Two larger cavity nesters present, Northern Flickers (Colaptes auratus) and Three-toed Woodpeckers (Picoides tridactylus), were more likely to use large-diameter white birch (Betula papyrifera) snags. Northern Flickers excavated the largest cavities, potentially providing habitat for the greatest variety of secondary cavity nesters. Managing for snags with >30 cm dbh, which flickers target for excavation, has the greatest potential to enhance the broader snag cavity-based community in western Newfoundland.  相似文献   

7.
The influence of forest ageing on fine-root morphology and relations between fine-root and leaf characteristics is poorly studied. The aim of this study was to analyse age-driven changes in ectomycorrhizal roots (EcM roots) and leaf morphology in a chronosequence of silver birch (Betula pendula Roth.), which would provide a better understanding of adaptation responses and acclimation capacity of tree roots and leaves. The chronosequence included six age classes (3, 6, 14, 32, 45, and 60 years.). All stands had regenerated naturally and grew in a highly productive Oxalis forest site type in Estonia. Most changes in the morphology of EcM roots and leaves of silver birch occur faster at a young age. The functional parameters—mean specific area of EcM root (SRA) and leaf specific area (SLA) as well as leaf N—decreased with age. EcM root SRA and specific root length (SRL) decreased with stand age as a result of increased mean diameter and tissue density. In age classes of 6, 14, and 32 years, the total number of dominating EcM taxa was 34, and the distribution of four different dominating EcM exploration types (contact-, short-, medium-, long-distance) was similar. We conclude that high values of SRA, SLA, and leaf N measured in young silver birch stands indicate high activity of physiological processes necessary for fast-growing young trees. A decrease of SLA and SRA and N in the chronosequence of fertile stands of silver birch is most probably caused by down-regulation of growth, affecting simultaneously leaves and fine roots.  相似文献   

8.
Phillips N  Bergh J  Oren R  Linder S 《Tree physiology》2001,21(12-13):851-860
We investigated effects of nutrition and soil water availability on sap flux density, transpiration per unit leaf area (EL), and canopy stomatal conductance (GS) of Norway spruce (Picea abies L. (Karst.)) in northern Sweden during the 1996 growing season. Our objectives were to determine (1) if artificially imposed drought (65% rain diversion) reduces soil water sufficiently to cause physiological limitations to whole-tree and plot-scale water transport, and (2) whether increased capacity for water transport resulting from fertilization-induced increases in leaf (> 3-fold) and sapwood areas (> 2.3-fold) deplete soil water sufficiently to cause a negative feedback on GS and EL. We monitored soil water content (theta) and soil water potential (PsiS) in control (C), drought (D), fertilized (F) and irrigated + fertilized (IL) treatment plots, along with site meteorological conditions. Ten trees per plot were monitored for sap flow. Although there were significant treatment differences in mean daily EL (C > D > F; P < 0.01) and GS (C > D > F; P < 0.05), variation in absolute magnitudes was small. Therefore, transpiration differences on a unit ground area basis (EC) were nearly proportional to leaf area differences. Precipitation was well distributed throughout the study period and so PsiS remained high, except during short dry periods in Plot F when it declined rapidly. Thus, although soil water was not limiting to GS, EL or EC when precipitation was uniformly distributed throughout the growing season, we cannot conclude that water availability would not limit GS in fertilized stands if the seasonal distribution of precipitation were altered.  相似文献   

9.
Wildfire severity and subsequent ecological effects may be influenced by prior land management, via modification of forest structure and lingering changes in fuels. In 2002, the Hayman wildfire burned as a low to moderate-severity surface fire through a 21-year pine regeneration experiment with two overstory harvest cuttings (shelterwood, seed-tree) and two site preparations (scarified, unscarified) that had been applied in a mature ponderosa pine forest in the montane zone of the Colorado Front Range in 1981. We used this event to examine how pre-fire fine fuels, surface-level burn severity and post-fire soil nitrogen-availability varied with pre-fire silvicultural treatments. Prior to the wildfire, litter cover was higher under both shelterwood and unscarified treatments than seed-tree and scarified treatments. Immediately after the fire in 2002, we assessed burn severity under 346 mature trees, around 502 planted saplings, and in 448 4 m2 microplots nested within the original experimental treatments. In one-fourth of the microplots, we measured resin-bound soil nitrate and ammonium accumulated over the second and third post-fire growing season. Microplots burned less severely than bases of trees and saplings with only 6.8% of microplot area burned down to mineral soil as compared to >28% of tree and sapling bases. Sapling burn severity was highest in unscarified treatments but did not differ by overstory harvest. Microplot burn severity was higher under the densest overstory (shelterwood) and in unscarified treatments and was positively related to pre-fire litter/duff cover and negatively associated with pre-fire total plant cover, grass cover and distance to tree. In both years, resin-bound nitrate and ammonium (NH4+-N) increased weakly with burn severity and NH4+-N availability was higher in unscarified than scarified plots. The lasting effects of soil scarification and overstory harvest regime on modern patterns of surface burn severity after two decades underscores the importance of historic landuse and silviculture on fire behavior and ecological response. Unraveling causes of these patterns in burn severity may lead to more sustainable fire and forest management in ponderosa pine ecosystems.  相似文献   

10.
11.
王晓艳 《江苏林业科技》2021,48(5):28-32,38
为进一步减少化学肥料的使用、改善土壤状况,开展了以不同功能性微生物组合形成的菌肥(提升固氮能力的1号菌肥,促进钾吸收的2号、3号和4号菌肥,助益磷代谢的5号菌肥,及促进氮、磷、钾吸收的6号菌肥)对油茶叶内源激素及氮、磷、钾含量和林下土壤理化性质等影响的试验,施用6个月后,测定结果表明:施用4号菌肥的土壤含水率最高,且与施用1号、3号、5号、6号菌肥的土壤含水率差异显著;施用5号菌肥的土壤电导率显著高于施用1号、2号、3号、4号、6号菌肥及对照的土壤电导率;施用5号菌肥的土壤pH值最高,且与施用1号、2号、3号、6号菌肥及对照的土壤pH值差异显著;6个菌肥施用区,油茶叶内的GA,IAA,ABA含量平均值显著高于对照区油茶叶内的含量,而叶内BR的含量平均值与对照区之间,均无显著差异;2号、3号、4号菌肥施用区,叶内氮相对含量与对照之间,具显著差异;6号菌肥施用区,叶内磷、钾相对含量最高;5号、6号菌肥施用区,叶内磷相对含量与2号菌肥施用区、对照组相比,具有显著性差异.该研究表明,施加微生物菌肥可对油茶叶内源激素含量及氮、磷、钾元素含量和林下土壤理化性质产生影响,尤以施用5号菌肥的效果最好.  相似文献   

12.
European Journal of Forest Research - This study was conducted following the fires that took place in Rocallaura (Spain) between 23/06/2016 and 19/07/2017. The aim is to analyse the importance of...  相似文献   

13.
杉木根、枝和叶的C、N、P生态化学计量特征   总被引:1,自引:0,他引:1  
以湖南会同杉木基地Ⅲ号集水区25年生杉木人工林为研究对象,测定1月份杉木根、枝和叶的C、N、P含量,研究其C、N、P生态化学计量特征。结果表明:杉木根、枝和叶中C含量平均值分别为561.04、515.93、513.56 g/kg,表现为根枝叶;N含量平均值分别为6.86、8.78、7.97 g/kg,表现为枝叶根;P含量平均值分别为1.45、0.71、1.54 g/kg,表现为叶根枝。根的C∶N、C∶P、N∶P的平均值分别为92.50、521.72、5.29;枝的C∶N、C∶P、N∶P的平均值分别为65.17、789.82、12.46;叶的C∶N、C∶P、N∶P的平均值分别为69.31、355.56、5.53。叶的C含量和枝的呈显著正相关;叶的N含量和枝的呈极显著正相关;叶的N含量和根的呈极显著正相关;P的含量在根、枝和叶之间均呈显著正相关。  相似文献   

14.
Yields under alley cropping might be improved if the most limiting nutrients not adequately supplied or cycled by the leaves could be added as an inorganic fertilizer supplement. Three historic leaf management strategies had been in effect for 3 years ina Leucaena leucocephala alley cropping trial on the Lilongwe Plain of central Malawi : 1) leaves returned; 2) leaves removed; and 3) leaves removed, with 100 kg inorganic N ha−1 added. An initial soil analysis showed P status to be suboptimal under all strategies. A confounded 34 factorial experiment was conducted with the following treatments: leaf management strategy (as above), N fertilizer rate (0, 30, and 60 kg N ha−1), P fertilizer rate (0, 18, and 35 kg P ha−1), and maize population (14,800, 29,600, and 44,400 plants ha−1). Both N and P were yield limiting, and interacted positively to improve yields. The addition of 30 kg N and 18 kg P ha−1 improved yields similarly under all leaf management strategies by an average of 2440 kg ha−1. Increasing the rates to 60 kg N and 35 kg P ha−1 improved yields an additional 1990 kg ha−1 in the ‘leaves returned’ and leaves removed + N’ strategies, but did not improve yields under the ‘leaves removed’ strategy. Lower yields were related to lack of P response at the highest P rate in this treatment, which may have induced Zn deficiency. Plots receiving leaves had higher organic C, total N, pH, exchangeable Ca, Mg, K, and S, and lower C/N ratios in the 0–15 cm soil layer than did plots where leaves had been removed. Leaf removal with N addition was similar to leaf removal alone for all soil factors measured except for organic C and total N, which were higher where N had been added. The results show that N and P were the primary yield-limiting nutrients. Historic N application maintained the soil's ability to respond to N and P on par with leaf additions.  相似文献   

15.
In the boreal forest of Alberta, fire and wind often open gaps in the canopy where late-successional species can establish and over time cause a shift in the species distribution from deciduous (e.g., trembling aspen) dominated to mixedwood, to shade-tolerant conifer (e.g., white spruce) dominated stands. This study attempted to understand the change of density-dependent competition in a boreal chronosequence and the role of tree competition in affecting stand structure and mortality. Four 1-ha stem-mapped plots were established to represent a chronosequence comprised of aspen dominated, mixedwood, and spruce dominated stands in Alberta. Second order spatial point-pattern analysis using Ripley's K(t) function showed that intraspecific competition is a prevailing force causing conspecific tree mortality and thus shaping the stand structure. The results of bivariate K(t) function analysis did not reveal sufficient evidence of interspecific competition. This suggested that competitive interaction among heterospecific trees was not strong enough to cause significant tree mortality, but the analysis of marked correlation function revealed that interspecific competition could have a negative impact on tree growth. This study highlights the importance of density-dependent competition in understanding stand dynamics of boreal forests over succession.  相似文献   

16.
Plasticity of structural and physiological leaf traits elicited by irradiance and soil nutrients was investigated in two sympatric mediterranean oaks: a sclerophyllous (Quercus suber L.) and a non-sclerophyllous species (Q. canariensis Willd.). Seedlings were grown for 2 years in pots in a 2-way crossed factors design. Leaf mass-to-area ratio (LMA) and nitrogen were recorded, and photosynthetic capacity (i.e. the apparent maximal carboxylation rate by rubisco, V cmax) was derived from response curves of net CO2 assimilation (A) versus intercellular CO2 mol fraction (C i). Structural equation modelling was applied to the data for disentangling the complex correlation structure between variables. The two species differed significantly in photosynthetic nitrogen use efficiency (PNUE). They displayed the expected responses to irradiance, with large increases in LMA, V cmax and nitrogen per unit leaf area and decreases in mass-based nitrogen content. Nutrient availability modulated severely leaf N content (mass- and area-based) and mass-based maximal carboxylation rate, but not the plastic response of all these parameters to irradiance. Irradiance primarily modulated leaf structure (LMA), and secondarily nitrogen content, while nutrient availability modulated directly nitrogen content. Nitrogen content in turn had a severe impact on mass-based photosynthetic capacity. It is concluded that in young trees solely leaf structure displayed irradiance-elicited plasticity. This plasticity was not modulated by nutrient availability and was similar in a sclerophyllous and a non-sclerophyllous species.  相似文献   

17.
We quantified the contributions of root respiration (RC) and heterotrophic respiration to soil surface CO2 flux (RS) by comparing trenched and untrenched plots in well-drained and poorly drained stands of a black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Our objectives were to: (1) test different equations for modeling RS as a function of soil temperature; and (2) model annual RS and RC for the chronosequence from continuous soil temperature measurements. The choice of equation to model RS strongly affected annual RS and RC, with an Arrhenius-based model giving the best fit to the data, especially at low temperatures. Modeled values of annual RS were positively correlated with soil temperature at 2-cm depth and were affected by year of burn and trenching, but not by soil drainage. During the growing season, measured RC was low in May, peaked in late July and declined to low values by the end of the growing season. Annual RC was < 5% of RS in the recently burned stands, approximately 40% in the 21-year-old stands and 5-15% in the oldest (152-year-old) stands. Evidence suggests that RC may have been underestimated in the oldest stands, with residual root decay from trenching accounting for 5-10% of trenched plot RS at most sites.  相似文献   

18.
19.
The premise of this paper is that continued improvement in the understanding of wildfire impacts on soil erosion and better prediction of resulting hazards can be best achieved by adopting a concept of global regional variants and endemic factors that distinguish some regions in terms of post-fire erosion characteristics. The need for such an approach is exemplified here based on the fire-prone eucalypt forests in south-east Australia. Wildfire effects on vegetation, fauna, soil erodibility and erosion in this environment are evaluated and placed in the context of the global state-of-the-art for forest environments. In addition to expected variation resulting from, for example, geology, topography and climate of the area, it is argued that a distinctive post-fire behaviour is caused in these eucalypt forests by the interaction between specific characteristics of the vegetation, litter, soil properties, faunal activity and micro-scale surface features. Soil erosion limited only by post-fire rainfall intensity and quantity, or until bedrock is exposed, might be expected after wildfire on steep slopes in these forests given the non-cohesive character of the often sandy soils and their universally water repellent character. That this scenario is not realised, except possibly under extreme rainfall conditions, which rarely occur during the vulnerable post-fire period, can be attributed to a unique suite of features that disrupt or provide sinks for overland flow, bind the loose in situ soil and trap mobilised sediment. These include mats of fine roots, litter dam–microterrace complexes and faunal activity by small mammals and ants. In combination, these characteristics reduce post-fire hillslope-channel sediment transfer, at least under light to moderate intensity rainfall typical of post-fire periods following recent wildfires. Evidence is discussed suggesting that the long-term geomorphological role of wildfires in south-east Australia may be of relatively minor importance and confined largely to enhanced weathering of exposed outcrops and redistribution of soil across existing erosional and depositional landforms. The soil fertility and downstream water quality implications of widespread transfer of topsoil to watercourses resulting from frequent, often severe wildfires are nevertheless significant.  相似文献   

20.
The conversion of forests to agroecosystems or agroforests comes with many changes in biological and chemical processes. Agroforestry, a tree based agroecosystem, has shown promise with respect to enhanced system nutrient accumulation after land conversion as compared to sole cropping systems. Previous research on tropical agroforestry systems has revealed increases in soil organic matter and total organic nitrogen in the short term. However, research is lacking on long-term system level sustainability of nutrient cycles and storage, specifically in traditional multi-strata agroforestry systems, as data on both the scope and duration of nutrient instability are inconclusive and often conflicting. This study, conducted in Ghana, West Africa, focused on carbon and nitrogen dynamics in a twenty-five year chronosequence of cacao (Theobroma cacao Linn.) plantations. Three treatments were selected as on-farm research sites: 2, 15 and 25-year-old plantations. Soil carbon (C, to a depth of 15 cm) varied between treatments (2 years: 22.6 Mg C ha−1; 15 years: 17.6 Mg C ha−1; 25 years: 18.2 Mg C ha−1) with a significant difference between the 2- and 15- and the 2- and 25-year-old treatments (p < 0.05). Total soil nitrogen in the top 15 cm varied between 1.09 and 1.25 Mg N ha−1 but no significant differences were noted between treatments. Soil nitrification rates and litter fall increased significantly with treatment age. However, photosynthetically active radiation (PAR) and soil temperature showed a significant decrease with age. No difference was found between decay rates of litter at each treatment age. By 25 years, system carbon sequestration rates were 3 Mg C ha−1 y−1, although results suggest that even by 15 years, system-level attributes were progressing towards those of a natural system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号