首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential clam farming areas containing clean sandy sediment accessible at low tide are limited in New South Wales, Australia. The availability of farming infrastructure such as oyster racks and floating devices along with the prevalence of sediment other than clean sand prompted the assessment of farming methods for Tapes dorsatus (Lamarck) and Katelysia rhytiphora (Lamy) and sediment preferences for T. dorsatus. This study indicates that both clam species, when contained in baskets, grow (whole weight and shell length increase) significantly faster (P < 0.05) in the sediment followed by in floating baskets, on racks or on the sediment in that order. However, the survival of K. rhytiphora was significantly higher (P < 0.05) on the rack (99%) than in the other situations (72–85%). A similar trend was observed for T. dorsatus but it was not significant (P > 0.05). Tapes dorsatus held in a sandy-shell substrate grew faster than those cultured in substrates of only shell, sand or mud at the same intertidal site, Survival rates over 6 months were high in all these translocated sediments and ranged from 95 to 100%. Tapes dorsatus grown in the same sediments in a nearby tidally-exchanged subtidal pond reached market size (~ 38 mm) after 6 months of grow-out and were over twice as heavy (whole weight 10.0–11.9 g) as those grown inter-tidally (whole weight 3.7–5.7 g).  相似文献   

2.
Marbled spinefoot, Siganus rivulatus, is a herbivorous euryhaline teleost widely distributed in the Eastern Mediterranean. It is an economically valuable species and a suitable candidate for warm water aquaculture. Accordingly, understanding the effects of environmental factors on fish metabolism is important to optimize culture conditions. Two experiments were performed to establish standard metabolic rate and study the effect of salinity on metabolism of marbled spinefoot. In the first experiment, a series of flow‐through respirometry experiments was performed at 27°C and 35 g L?1. The standard metabolic rate of marbled spinefoot juveniles was calculated as 0.57 ± 0.02 mg O2 g?1 h?1 (mean ± SE). In the second experiment, fish were maintained at salinities of 25, 30, 35 and 40 g L?1 for 2 weeks. Flow‐through respirometry was performed to measure respiration rates at the various salinities. Respiration rates were similar among fish in salinities of 30, 35 and 40 g L?1 but increased significantly at 25 g L?1. Results suggest that despite the euryhalinity of marbled spinefoot, farmers should maintain salinity within the optimal range of 30–40 g L?1 in order to improve productivity.  相似文献   

3.
The effects of salinity on haemolymph osmolality, oxygen consumption and ammonia excretion were investigated in adult kuruma shrimp, Marsupenaeus japonicus (Bate), at salinities of 20, 25, 30 and 35 g L?1. Haemolymph osmolality showed a positive linear relationship (r2=0.9854) with medium osmolality. The isosmotic point calculated from this relationship was 1039 mOsm kg?1, which corresponds to a salinity of approximately 35 g L?1. The slope of the regression equation was very high (0.81), suggesting that M. japonicus adults are poor osmoregulators compared with the adults of other penaeids and to conspecific young. The difference between haemolymph and medium osmolality (DOP) was lowest at 35 g L?1 and highest at 20 g L?1. Thus, the minimum DOP coincided with the isosmotic point of the shrimp. The respiration rate was significantly lower at 30 g L?1 than at the other salinities. Ammonia excretion rates were inversely related with salinity and therefore were minimal at 35 g L?1. The results of this study suggest that the optimum salinity for adult kuruma shrimp is around 30–35 g L?1 and that even minor (e.g. 5 g L?1) deviations from this optimum cause significant physiological changes. Further, the observed increases in oxygen consumption and ammonia excretion during exposure to low salinities, which indicate higher energy expenditure and amino acid catabolism for osmoregulation, respectively, suggest that the growth efficiency of M. japonicus adults may be severely compromised by hypohaline water inflow into the rearing ponds.  相似文献   

4.
The giant freshwater prawn, Macrobrachium rosenbergii, is a species with a high commercial value in aquaculture. Two experiments were performed to determine the effects of salinities on the osmoregulation, growth and molting cycles of M. rosenbergii during growout. The first experiment was designed to determine whether these animals are capable of adapting to the changes in salinity seen in salinity intrusions in tropical deltas, with an incremental increase in salinity of 3‰ per day from 0‰ to 30‰ Haemolymph osmolality was rapidly regulated up to salinities of 15‰ , whereas animals conformed at higher salinities. The second experiment determined the growth, moulting cycle, osmolality, muscle water content and mortality during a 4‐month experiment at 0‰, 15‰ or 25‰ salinity. The weight gains in 0‰ and 15‰ were not significantly different and were comparable to the growth rates achieved in production farms with body mass increases of 2.6 and 2.3‐fold their initial body mass, respectively, after 4 months. The 25‰ group suffered from low growth, high mortality and a significantly lower moulting frequency. These data show that this species can be reared in brackish water up to 15‰, allowing for farming in the large areas impacted by salt water intrusions in tropical deltas.  相似文献   

5.
Salinity tolerance and growth of Japanese flounder Paralichthys olivaceus at different developmental stages were evaluated, including newly hatched larvae (nhl), yolk sac larvae (ysl), oil droplet larvae (odl), post oil droplet larvae (podl), premetamorphic larvae (preml) and prometamorphic larvae (proml), at 11 salinities from 5 to 55 g L?1 for 96 h. The ontogenesis during the early life of P. olivaceus was investigated under hatchery salinity 35 g L?1. The results showed that suitable salinities for nhl, ysl, odl, podl, preml and proml larvae were 10 to 25 g L?1, 10 to 30 g L?1, 20 to 30 g L?1, 30 g L?1, 10 to 30 g L?1, 15 g L?1, respectively, demonstrating an ontogenetic variation of salinity tolerance. The salinity tolerance of nhl, ysl, preml was higher than that of odl, podl and proml. The ysl and preml larvae displayed wide salinity tolerances. The present findings demonstrate that the suitable salinity for larviculture of P. olivaceus is 20–25 g L?1 before the depletion of oil droplet; after that, higher salinity (30 g L?1) should be ensured for the post‐oil droplet larvae; the premetamorphic larvae can be cultured at a wide salinity range (10–30 g L?1), and the metamorphosed larvae should be reared at salinity about 15 g L?1.  相似文献   

6.
Susceptibility of hard clams Meretrix lusoria to birnavirus (BV) infections caused by temperature variations, from a mechanistic perspective, has rarely been explored. We used a deterministic susceptible–infectious–mortality (SIM) model to derive temperature-dependent key epidemiologic parameters based on data sets of viral infections in hard clams subjected to acute temperature changes. To parameterize seasonal pattern dependence, we estimated monthly based cumulative mortality and basic reproduction numbers (R0) between 1997 and 2017 by way of statistical analysis. Two alternative disease control models were also proposed to assess status of controlled temperature-mediated BV infection by using, respectively, control reproduction number (RC)-control line criterion and removal strategy-based control measure. We showed that based on RC-control strategy, when temperatures ranged from 15 to 26.8°C, proportion of susceptible hard clams removed should be at least 0.22%. Based on removal-control strategy, we found that by limiting pond water temperature to 25–30°C, together with increased removal rates and periods to remove hard clams, it is better to remove hard clams from June and August to reduce both mortality rate and spread of BV. Our results can be used to monitor BV transmission potential in hard clams that will contribute to government control strategy to eradicate future BV epidemics.  相似文献   

7.
This paper reports on a 4 × 4 factorial design experiment conducted to examine the combined effects of temperature and salinity on embryonic development and growth and survival of black-lip pearl oyster, Pinctada margaritifera (L.) larvae. The temperatures used were 20 °C, 25 °C, 30 °C and 35 °C, and the salinities were 25°/oo, 30°/oo, 35°/oo and 40°/oo. Response surface contour diagrams were generated from the survival and growth data to estimate optimal conditions. Normal development of embryos occurred only from 25 °C to 30 °C. The optimal conditions for maximum survival and growth were 26–29 °C and 28–32°/oo. Temperatures of 35 °C or greater were lethal for larvae and, at all temperatures tested, larval growth and survival were lowest at a salinity of 40°/oo.  相似文献   

8.
The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L?1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20–29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L?1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5–35 g L?1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L?1. The optimal salinity range for the juvenile is from 23 to 25 g L?1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture.  相似文献   

9.
The physiological responses of the juvenile Crassostrea nippona in terms of filtration, oxygen consumption and ammonia excretion to changes in temperature (16–32°C), salinity (15–35 psu) and body size (small, medium and large) were investigated. In this study, the values of filtration rate (FR), oxygen consumption rate (OCR) and ammonia excretion rate (AER) increased with temperature rising from 16°C to 24°C, reaching the highest values at 24°C and 28°C; with any further increase in temperature above this limit, these values decrease drastically (p < .05). The highest Q10 coefficients were 2.75 for large, 3.54 for medium at 16–20 and 3.47 for small size at 20–24°C respectively. Moreover, the responses of FR and OCR were found to be influenced significantly by salinity, tending to increase concomitantly with salinity up to 25–30 psu, though the values of these parameters were diminished dramatically (p < .05) above this level, showing a reverse pattern from that observed in AER, which firstly decreased to the lowest level at 25 and 30 psu, and then severely (p < .05) increased to the highest level at 35 psu. In addition, the low O:N ratios of all sizes of C. nippona at 16°C and 30–35 psu were indicative of a protein‐dominated catabolism, whereas the O:N ratios of large size at 20–32°C and all sizes at 20–30 psu, indicating that the metabolic energy from protein diminished and lipid and carbohydrate were used as the energy substrates. Physiological rates of C. nippona were well correlated with its size. The average values of mass exponents (b‐values) estimated in the present study were 0.657 for OCR and 0.776 for AER at different temperatures, and 0.647 for OCR and 0.767 for AER at varying salinities, signifying that physiological process of C. nippona becomes relatively slower with increasing body size regardless of temperature or salinity. Finally, our results confirm that the optimal temperature and salinity for juvenile C. nippona lie within 24–28°C and 25–30 psu respectively. The results of physiological traits in response to environmental factors of this species are informative in site selection for the cultivation.  相似文献   

10.
Some species belonging to Ostreopsis, a benthic dinoflagellate genus, are known to produce palytoxin analogues. Around the coastal regions of Japan, the toxic Ostreopsis sp. 1 and Ostreopsis sp. 6 which are genetically divergent from other species of Ostreopsis are present from the southern to northern regions and in the southern region, respectively. The present study examined the growth responses of these strains to seven temperatures (15–35 °C) in combination with five salinities (20–40) and discusses the effects of temperature and salinity on their distribution and bloom dynamics in Japan. Tolerable temperatures and salinities ranged 15–30 °C and 25–40 for Ostreopsis sp. 1, and 17.5–30 °C and 20–40 for Ostreopsis sp. 6. The optimal temperature ranges which gave growth rates of >90 % of maximal growth rate of each strain were 22–25 °C for Ostreopsis sp. 1 and 24–30 °C for Ostreopsis sp. 6. Therefore, Ostreopsis sp. 1 is putatively tolerant to lower temperatures and thus possesses adaptability to colder waters of relatively higher latitude regions of Japan, whereas Ostreopsis sp. 6 presumably possesses adaptability to warmer waters of the southern region. We conclude that growth responses of Japanese toxic Ostreopsis sp. 1 and Ostreopsis sp. 6 to temperature-salinity affect their distribution and bloom dynamics in Japan.  相似文献   

11.
Pseudodiaptomus species are major live feeds for the early stages of economically important marine fish in hatcheries in the South China Sea. However, we know little about the combined effects of multiple environmental parameters such as salinity and temperature on copepod productivity. To address the issue, we cultured a tropical coastal copepod Pseudodiaptomus incisus in one of 24 combinations of 8 salinities (5, 10, 15, 20, 25, 30, 35 and 40 ppt) and 3 temperatures (26, 30 and 34°C). We determined development, biomass of all stages, fecundity, percentage of females with hatched eggs and 30 hr nauplii production. Overall, the biomass, fecundity and nauplii production of P. incisus were highest at the salinity of 15–20 ppt, especially at 26°C. P. incisus showed a lower performance at both lower and higher salinities. Elevated temperatures resulted in faster development, but lower biomass, fecundity and nauplii production. Especially, nauplii production was reduced by 74% at 35–40 ppt and 34°C compared to at 15–20 ppt and 26°C. Our study provides essential information for optimizing the biomass culture of P. incisus.  相似文献   

12.
The tolerance of postlarval Macrobrachium rosenbergii to gradual and rapid increases in salinity was determined. Mortalities occurred at salinities around 25‰ and increased rapidly at levels ≥30‰ in both cases. However, acclimation substantially increased survival time at 35‰.Freezing point depressions of blood were measured from laboratory-reared M. rosenbergii postlarvae and juveniles exposed to various salinities from fresh water to approximately 35‰. The blood concentration was hyperosmotic to the medium at salinities from fresh water to about 17–18‰ and hypoosmotic at higher salinities. Postlarvae maintained a nearly constant blood concentration (freezing point depression = ?0.89 ± 0.13°C) over a wide range of external salinities (fresh water to about 27–30‰). The animals' osmoregulatory mechanisms failed at salinities ≥30‰, and thereafter the blood concentration paralleled that of the medium. The blood concentrations of juvenile shrimp grown for 5 months at salinities from fresh water to about 15‰ (freezing point depression = ?0.88 ± 0.07°C) closely resembled those of postlarvae.The osmoregulatory performance of young M. rosenbergii is generally similar to that of other brackishwater animals, but in their ability to hyperosmoregulate effectively in fresh water they more closely resemble fresh water species. It is suggested that M. rosenbergii may be able to conserve salt in dilute media by producing blood-hypoosmotic urine.An interesting stress symptom often preceded death of postlarvae in high salinities. The animals changed gradually from nearly transparent to opaque white and then died, usually within a day or so.  相似文献   

13.
A nature‐simulating culture system was used to explore the influence of salinity, the diurnal cycle and daylength on ingestion rate (IR) and assimilation efficiency (AE) of Laternula marilina. The clams used in the experiments were grouped into three sizes: large, medium and small according to shell length and dry fresh weight. The clams in all size groups demonstrated a common response pattern in IR and AE under salinities ranging from 18 to 34 g L?1. The clams achieved the greatest IR within the salinity range 27–30 g L?1. There was a marked reduction in IR outside this range. Of the salinities tested 18 g L?1 was the harshest stress to the feeding of L. marilina. Between the salinities of 24 and 34 g L?1, the AE of the clam responded in an inverse way to that of IR, suggesting that L. marilina is able to compensate for the loss of IR by an increase in AE. Although the differences between clam size groups were not statistically different, those between different salinities were except those between 27 and 34 g L?1 (IR) and 23 and 34 g L?1 (AE). All sizes of clam showed a two‐phase diurnal feeding pattern, a high ingestion phase from 00:00 to 08:00 hours and a low ingestion phase from 12:00 to 20:00 hours. The response of feeding (as measured by IR) to daylength comprised high and constant feeding at daylengths from 0 to 16 h and declining and unstable feeding as daylength increased from 16 to 24 h. All sizes of clams demonstrated an inverse adaptation to AE compared with IR, indicating that the clam is able to achieve a stable feeding physiology by compensating for daylength‐induced variations in IR by changing AE.  相似文献   

14.
The combined effects of temperature and salinity on larval survival and development of the mud crab, Scylla serrata, were investigated in the laboratory. Newly hatched larvae were reared under 20 °C temperature and salinity combinations (i.e. combinations of four temperatures 25, 28, 31, 34 °C with five salinities 15, 20, 25, 30, 35 g L−1). The results showed that temperature and salinity as well as the interaction of the two parameters significantly affected the survival of zoeal larvae. Salinity at 15 g L−1 resulted in no larval survival to the first crab stage, suggesting that the lower salinity tolerance limit for mud crab larvae lies somewhere between salinity 15 and 20 g L−1. However, within the salinity range of 20–35 g L−1, no significant effects on survival of zoeal larvae were detected (P>0.05). The combined effects of temperature and salinity on larval survival were also evident as at low salinities, both high and low temperature led to mass mortality of newly hatched larvae (e.g. 34 °C/15 g L−1, 34 °C/20 g L−1 and 25 °C/15 g L−1 combinations). In contrast, the low temperature and high salinity combination of 25 °C/35 g L−1 resulted in one of the highest survival to the megalopal stage. It was also shown that at optimal 28 °C, larvae could withstand broader salinity conditions. Temperature, salinity and their interaction also significantly affected larval development. At 34 °C, the mean larval development time to megalopa under different salinity conditions ranged from 13.5 to 18.5 days. It increased to between 20.6 and 22.6 days at 25 °C. The effects of salinity on larval development were demonstrated by the fact that for all the temperatures tested, the fastest mean development to megalopa was always recorded at the salinity of 25 g L−1. However, a different trend of salinity effects was shown for megalopae as their duration consistently increased with an increase in salinity from 20 to 35 g L−1. In summary, S. serrata larvae tolerate a broad range of salinity and temperature conditions. Rearing temperature 25–30 °C and salinity 20–35 g L−1 generally result in reasonable survival. However, from an aquaculture point of view, a higher temperature range of 28–30 °C and a salinity range of 20–30 g L−1 are recommended as it shortens the culture cycle.  相似文献   

15.
Larvae of Metapenaeus monoceros (Fabricius) at protozoea 1 (PZ1) stage were stocked in 2‐L glass flasks to investigate the effects of various salinities (25, 30, 35, 40, 45, 50 and 55 ppt) on growth and survival until the post‐larval (PL) stages. The PZ larvae were not able to tolerate a sudden salinity drop of over 10 ppt. Yet, an abrupt salinity increase of over 10 or even 15 ppt did not cause mortality. The PZ larvae were successfully acclimated to different test salinities at a rate of 4 ppt h?1. The larvae displayed better tolerance to high rather than low salinities. The lowest and highest critical salinities appeared to be 22 and 55 ppt respectively. Taking into account survival, growth and development results, the optimal salinity for the larval culture of M. monoceros inhabiting the Eastern Mediterranean was 40 ppt. At this salinity, the PZ1 larvae were successfully cultured until PL1 stage within 11 days with 68% survival on a feeding regime of Tetraselmis chuii Kylin (Butcher) (20 cells μ L?1), Chaetoceros calcitrans Paulsen (50 cells μ L?1), Isochrysis galbana Parke (30 cells μL?1) and five newly hatched Artemia nauplii mL?1 from M1 onwards at 28 °C.  相似文献   

16.
Survival of marble goby larvae fed either Rhodovulum sulfidophilum, a phototrophic bacterium cultured from palm oil mill effluent (pPB), or microalgae ( Nannochloropsis sp.) was evaluated at two salinities. Larvae directly fed pPB had survival of 0–29% at 5 g L?1 salinity and 0–19% at 10 g L?1 salinity, whereas larvae directly fed microalgae suffered complete mortality after 20 days of culture at both salinities. However, larvae indirectly fed pPB or microalgae, i.e. via rotifers (Days 1–30) and Artemia nauplii (Days 21–30) cultured solely from pPB or microalgae, showed improved survival of 35–55% or 44–49% at 5 g L?1 salinity respectively. In all experiments, fish larvae reared at 5 g L?1 salinity showed significantly higher (P < 0.01) mean survival than those reared at 10 g L?1 salinity. The survival of larvae fed the bacterial‐based diet was higher compared with microalgal diet used in previous studies. The pPB had higher total polyunsaturated fatty acids and docosahexaenoic acid (DHA) than the microalgae, which had very high eicosapentaenoic acid (EPA). Larvae with very high ratios of DHA/EPA (>11) or/and ARA (arachidonic acid)/EPA (>5), attributable to their given diet, however suffered the highest mortality.  相似文献   

17.
In this study, the energy budget of the Manila clam, Ruditapes philippinarum, was evaluated after one-week acclimation periods at 5, 10, 15, 20, and 25°C. Small clams (151 ± 12 mg DW) and large clams (353 ± 16 mg DW) were fed with the microalgae, Isochrysis galbana. Filtration rate, ingestion rate, assimilation efficiency, oxygen-consumption rate, and ammonia excretion rate were measured. Both filtration rate and ingestion rate of small and large clams were found to be related to temperature. The highest Q 10 values were measured in the range 15–20°C for both small and large clams. Assimilation efficiency of both small and large clams was not significantly influenced by temperature, although the maximum mean values were detected at 20°C. Oxygen consumption rate and ammonia excretion rate of small and large clams were found to be related directly to temperature over the entire range, with a maximum being detected at 25°C. The highest Q 10 value was estimated in the range 10–15°C with regard to oxygen consumption rate, and in the range of 15–20°C with regard to ammonia excretion rate. Scope for growth (SFG) was positive at all temperatures, achieving a maximum value at 20°C in both small and large clams, primarily as a consequence of the enhanced ingestion rate which offset the concomitant elevation in the metabolic rate. In this study we have estimated the thermal optimum for this species at 20°C.  相似文献   

18.
Marine periphytic cyanobacteria and diatoms have been examined as a potential source of feed supplement for rearing aquatic larvae in the aquaculture industry. Culture of the periphytic diatom Amphora sp., Navicula sp., Cymbella sp. and the cyanobacteria Oscillatoria sp. at different salinities showed significant changes in biomass and specific growth rates. Diatoms growth was significantly higher at 35 g L−1, while for cyanobacteria growth was better at 25 g L−1. Significantly higher levels of protein and lipid were found in diatoms at low salinities (15–25 g L−1) and an increase in carbohydrate at high salinities (30–35 g L−1). Conversely, cyanobacteria showed a significantly higher lipid content at 30–35 g L−1 compared with other salinity levels but no significant changes were observed in the protein and carbohydrate contents at different salinity levels. The present findings can be taken into consideration when culturing marine periphytic Amphora sp., Navicula sp., Cymbella sp. and Oscillatoria sp. to provide appropriate levels of protein, lipid and carbohydrate as feed supplement as well as for bioremediation in aquaculture.  相似文献   

19.
The metabolic responses of different colour strains of Ruditapes philippinarum in terms of oxygen consumption and ammonia excretion to changes in temperature (15–35°C) and salinity (20–40) were investigated. In our range of temperatures (15–35°C), oxygen consumption rate (OCR) increases in cultivated strains (White and Zebra) in opposition to the effect in the wild strain which reach a maximum at 25°C. The highest Q10 coefficients were 2.741 for zebra strain, 4.326 for white strain, and 1.944 for wild at temperatures of 25–30, 30–35 and 20–25°C respectively. In our range of salinity (20–40°C), OCRs of white strain and zebra strain firstly decreased to lowest level at 25 and 30, and then increased to highest level at 35 and 40 respectively. When the salinity is beyond 35, the OCR decreased and the turning point was found in the white strain and wild, but the zebra strain OCR still increased to a highest level (1.906 mg g?1 h?1) at 40 (< 0.05). These results show that the cultivated colour strains of R. philippinarum were different from wild in terms of metabolic responses, and information on its response to different temperature and salinity have implications in the aquaculture industry.  相似文献   

20.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号