首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The composition of organic matter was studied in clay (< 2 μm), fine silt (2-6.3 μm), medium silt (6.3-20 μm), coarse silt (20-63 μm) and sand (63-2000 μm) fractions of the Ap-horizon of a clay loam (Orthic Humic Gleysol) from Bainsville (Ottawa, Canada) by organic C and total N analyses and pyrolysis-field ionization mass spectrometry (Py-FIMS). The C and N contents were largest in fine silt and medium silt and smaller in coarse silt and sand. Differences in the contents of organic matter and absorbed water were significantly (r= 0.945***) reflected by the amounts of volatilized matter during Py-FIMS. The Py-FI therniograms and mass spectra showed clear differences in thermal stability and molecular composition of organic matter between the organo-mineral size-fractions. Abundances of carbohydrates, phenols and lignin monomers, alkylaromatics and N-containing compounds decreased, whereas abundances of lignin dimers and lipids increased with increasing equivalent diameters. An exception was the sand fraction which was dominated by the characteristic features of plant residues. The six compound classes, calculated using signals of biomarkers, accounted for 35% to 60% of the recorded total ion intensity. The thermal evolution of the selected compound classes, which are important constituents of soil organic matter (SOM), indicated the stability of humic and organo-mineral bonds in particle-size fractions, Moreover, the influence of mineral matrix on organic matter composition was shown by significant correlations between relative abundances of carbohydrates, N-containing compounds, lipids, lignin dimers, and proportions of phyllosilicates.  相似文献   

2.
Soil organic matter can be divided into different organic carbon (C) pools with different turnover rates. The organic pollutants in soils associated with these organic C pools may have different bioavailability and environmental risks during the decomposition of soil organic matter. We studied the distribution patterns of 15 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in different particle‐size separates (clay, fine silt, coarse silt, fine sand and coarse sand) and density fractions (light and heavy fractions) of nine agricultural topsoils (0–20 cm depth) from a contaminated area in the Yangtze River Delta region of east China. There was a decreasing trend in PAH concentration in particle‐size separates with decreasing particle size. However, the different particle‐size separates had similar PAH composition. The concentration of PAHs in the light fraction ranged from 13 037 to 107 299 μg kg?1, far higher than in the heavy fraction, which ranged from 222 to 298 μg kg?1. Although the light fraction accounted for only 0.4–2.3% of the soils, it was associated with 31.5–69.5% of soil PAHs. The organic matter in coarse silt had the strongest capacity for enrichment with PAHs. Combining the distributions of PAHs and the turnover rates of organic matter in different soil fractions, the environmental risks of PAH‐polluted soils may be due mainly to the PAHs associated with sand and the light fraction.  相似文献   

3.
Soil samples were fractionated by sedimentation in water and by flotation in heavy liquids to separate complexed and uncomplexed organic and inorganic components. Flocculation of clays in heavy organic liquids was delayed by addition of a surfactant. Heavy liquids and surfactants sorbed by soil components were removed by washing with acetone-water mixtures.In a sample of a red-brown earth, the organic carbon and nitrogen contents were highest in the finest separates. In samples of a ground-water rendzina and a chernozemic soil, the coarse clay and silt separates had the highest organic carbon and nitrogen contents. Organic matter was concentrated in low density fractions in all separates. Carbon/nitrogen ratios were lowest in the finer and heavier separates. Calcium, and to a lesser extent manganese, iron and phosphorus, were concentrated in low density fractions: thus these elements appear to be associated with organic matter and may be important in organo-mineral complex formation. Carbonates, titanium, iron, silicon and potassium were concentrated at the highest densities.Organic fractions < 2.06 g cm?3 from sand size separates were insoluble in alkali and had wide carbon/nitrogen ratios characteristic of plant debris. The light fractions from fine silt and coarse clay separates were more soluble in alkali but showed high ratios of humic to fulvic materials and high absorption at 280 nm. Such materials were considered to be microbial cell debris and were associated with high contents of disordered aluminium and iron oxides and expanding lattice silicates in 1 to 5 μm aggregates.Heavier fractions, particularly of finer clay separates, contained more fulvic and humic materials of a more aliphatic nature than those in < 2.06 g cm?3 fractions. It is suggested that physical sorption on clay surfaces may be more important in these fractions. Ellite and kaolinite were concentrated in medium density fractions, and contents of some iron oxides and titanium minerals were highest in fractions > 2.06 g cm?3. Such minerals plus quartz and feldspars were associated with minor amounts of organic matter or possibly were not involved in organo-mineral associations.  相似文献   

4.
It is generally accepted that particulate organic matter derives from plants. In contrast, the enriched labile fraction is thought by many to derive from microbes, especially fungi. However, no detailed chemical characterization of these fractions has been done. In this study, we wanted to assess the sources (plants or microbes; fungi or bacteria) and degree of microbial alteration of (i) three particulate organic matter fractions – namely the free light fraction (1.85 g cm?3), the coarse (250–2000 μm) and the fine (53–250 μm) intra‐aggregate particulate organic matter fractions – and of (ii) three density fractions of fine‐silt associated carbon – namely < 2.0, 2.0–2.2 (i.e. enriched labile fraction) and > 2.2 g cm?3– by analysing the amino sugars, by CuO oxidation analyses, and by 13C‐, 1H‐ and 31P‐NMR analyses. Macroaggregates (250–2000 μm) were separated by wet‐sieving from a former grassland soil now under a no‐tillage arable regime. The three particulate organic matter fractions and the three density fractions were isolated from the macroaggregates by a combination of density flotation, sonication and sieving techniques. Proton NMR spectroscopy on alkaline extracts showed that the enriched labile fraction is not of microbial origin but is strongly degraded plant material that is enriched in aliphatic moieties partly bound to aromatics. In addition, the enriched labile fraction had a glucosamine content less than the whole soil, indicating that it is not enriched in carbon derived from fungi. Decreasing yields of phenolic CuO oxidation products and increasing side‐chain oxidation in the order coarse intra‐aggregate particulate organic matter < fine inter‐aggregate particulate organic matter < fine‐silt fractions indicate progressive alteration of lignin as particle size decreases. The light fraction was more decomposed than the coarse inter‐aggregate particulate organic matter, as indicated by (i) its larger ratio of acid‐to‐aldehyde of the vanillyl units released by CuO oxidation, (ii) the smaller contribution of H in carbohydrates to total extractable H as estimated by 1H‐NMR spectroscopy, and (iii) a larger contribution of monoester P to total extractable P in the 31P‐NMR spectra. In conclusion, the four fractions are derived predominantly from plants, but microbial alteration increased as follows: coarse inter‐aggregate particulate organic matter < light fraction ≈ fine inter‐aggregate particulate organic matter < enriched labile fraction.  相似文献   

5.
Size‐density fractionation, which was originally developed to examine short‐term decomposition of added material in sandy soil, was highly sensitive to medium‐ to long‐term changes in loam and clay soils. Materials from different size classes (>1 mm, 0.1–1 mm, 0.05–0.1 mm and <0.05 mm) were separated by density into light (ρ < 1.0 g cm−3), medium (1.0 < ρ < 1.85 g cm−3) and heavy (ρ > 1.85 g cm−3) fractions. In 16–18‐year cropping experiments the 0.1–1‐mm heavy fraction contained 17–19% of total carbon in ley soils compared with 7% in continuously cropped soils. Greater N‐mineralization rates after sieving of ley cropped soils could not be related to differences in C:N ratios of fractions, but this was assumed to be related to exposure of aggregate‐binding agents. In a 50‐year trial 40% of total soil carbon was contained in the 0.1–1‐mm heavy fraction in soil treated with sewage sludge compared with 7–9% in the fallow and ‘zero N’ treatments. Thus, the soils studied expressed an aggregate hierarchy dependent on organic carbon dynamics. The relative abundance of carbon in heavy organo‐mineral fractions >0.1 mm was inversely related to the relative abundance of C in black‐brown medium density material <0.1 mm, defined as uncomplexed particulate organic matter that was presumably released during ultrasonic disruption deterioration of finer (<0.1 mm) aggregated organo‐mineral particles. The size density fractionation allowed identification of materials of contrasting visual appearance, chemical qualities and, by inference, biological turnover times. However, they were found to be predominantly composite fractions and may be too complex to be represented by unique model pools.  相似文献   

6.
  【目的】  探讨丘陵山区乡村不同土壤景观表土有机质积累的团聚体分布及其化学组成的变化,为认识自然条件和人为利用下土壤有机质的空间变化特点提供新视角。  【方法】  选取江苏省南京市溧水区芳山小流域内保护林地、园地、旱地和稻田等景观样地,采集0—20 cm土壤样品,分析有机碳(SOC)总量。将土壤样品通过湿筛法分出宏团聚体(2000~250 μm)、微团聚体(250~53μm)和粉黏粒(<53 μm) 3个粒径组,测定其中有机碳含量,计算土壤中各团聚体结合态碳的比例。再者,对土壤样品依次进行总溶剂(TSE)提取,碱水解(BHY) 提取和氧化铜氧化(CUO)提取,分别主要得到游离脂、结合态脂和木质素酚,采用气相色谱–质谱联用仪(GC-MS)测定各组分中生物标志物有机分子丰度,计算分子多样性指数。  【结果】  与林地相比,园地、旱地和稻田表土本体有机碳含量分别降低70%、57%和51%,其中宏团聚体结合有机碳的含量分别降低了85%、81%和71%,微团聚体结合有机碳分别降低了74%、79%和67%,粉黏粒结合有机碳则分别降低了48%、18%和3%。表土中提取得到游离态脂类、结合态脂类和木质素酚类的有机分子丰度分别介于2.24~6.74、4.81~14.87和3.51~6.16 mg/g SOC;不同土壤景观间,这些提取态生物标志物分子丰度的变化趋势均表现为林地>稻田>园地>旱地。而木质素酚类丰度表现为林地和稻田相近。相对于林地,园地、旱地和稻田的脂肪酸丰度、烷醇、甾类及萜类等生物标志物分子丰度显著降低,但烷烃分子丰度明显增加,同时微生物来源有机质对土壤有机质的贡献提高;林地及园地土壤中结合态脂类组分以羟基酸丰度较高,而旱地和稻田则以烷酸为主。通过计算的生物标志物分子多样性指数的变化,发现游离态脂类和结合态脂类是林地和稻田高于旱地和园地,而木质素酚是稻田高于旱地,旱地又高于园地和林地。  【结论】  自然林地和农用地土壤的有机碳含量和团聚体结构具有较大差异,在提取态有机分子的组成上也具有不同的组成特征。林地土壤有机碳含量高,宏团聚体、微团聚体和粉黏粒比例均衡,有机碳的团聚体分配也均衡,而且有机质主要以植物源有机碳为主,具有碳链长、分子多样性高等特点。因之,稳定性也高。相反,园地、旱地的有机碳总量低,宏团聚体和微团聚体趋于分解,团聚体结合态有机碳显著减少,而且结合态和游离态脂类有机分子的多样性均显著降低,微生物来源有机碳对土壤有机碳的贡献更高。而稻田土壤有机碳和分子多样性均高于旱地及园地。因此,合理的土壤管理特别是有机物料的投入是提高农地土壤健康程度的重要途径。  相似文献   

7.
Density fractionation is frequently applied to separate soil organic matter according to the degree and the mode of interaction with minerals. Density fractions are operationally defined by density cut-off and sonication intensity, which determine the nature of the separated material. However, no tests or general agreements exist on the most appropriate density cut-off as well as on method and intensity of dispersion. Numerous variants have been proposed and applied, with results often contrasting each other and being hard to interpret. Here, we aimed at separating two light fractions (free and occluded into aggregates) composed of almost pure organic material, and one heavy fraction comprising the organic–mineral associations. We tested effects of different density cut-offs and sonication intensities, in combination and separately, on fraction yields, as well as on the fractions' organic carbon, total nitrogen and lignin-derived phenols. We tried to find optimum density cut-offs and sonication intensities, providing light fractions with maximum organic material and minimum contamination by mineral material. Under the test conditions, a density of 1.6 g cm?3 gave best results for all test soils, allowing for separation of maximums amounts of almost pure organic material. The density cut-off at 1.6 g cm?3 is well in line with previous studies and theoretical considerations, therefore we recommend the use of this density as most suitable for separation of organic debris. Sonication levels for aggregate disruption to achieve complete separation of occluded light organic matter varied amongst soils. The necessary intensity of dispersion relates to the type of soil, depending on the stability of contained aggregates. The application of one single dispersion energy level to different soils may result either in mineral contamination or in incomplete separation of light and heavy fractions as well as in redistribution of organic material amongst fractions. This means there is no single sonication level that can be applied to all soils. Thus, obtaining a meaningful light fraction residing within aggregates (occluded light fraction) requires assessment of the dispersion energy necessary to disrupt the aggregate system of a given soil without dispersion of organic–mineral associations. This can be done in pre-experiments where the soil is fractionated at different sonication levels. The appropriate dispersion is determined by mass yields and OC content of the obtained occluded fractions.  相似文献   

8.
The formation of soil organic matter (SOM) very much depends on microbial activity. Even more, latest studies identified microbial necromass itself being a significant source of SOM and found microbial products to initiate and enhance the formation of long-term stabilized SOM. The objectives of this study were to investigate the microbial contribution to SOM in pools of different stability and its impact on SOM quality. Hence, four arable soils of widely differing properties were density-fractionated into free and occluded particulate organic matter (fPOM, oPOM < 1.6 g cm−3 and oPOM < 2.0 g cm−3) and mineral associated organic matter (MOM > 2.0 g cm−3) by using sodium polytungstate. These fractions were characterized by in-source pyrolysis-field ionization mass spectrometry (Py-FIMS). Main SOM compound classes of the fractions were determined and further SOM properties were derived (polydispersity, thermostability). The contribution of microbial derived input to arable soil OM was estimated from the hexose to pentose ratio of the carbohydrates and the ratio of C4–C26 to C26–C36 fatty acids. Additionally, selected samples were investigated by scanning electron microscopy (SEM) for visualizing structures as indicators for the origin of OM. Results showed that, although the samples differed significantly regarding soil properties, SOM composition was comparable and almost 50% of identifiable SOM compounds of all soils types and all density fractions were assigned to phenols, lignin monomers and alkylaromatics. Most distinguishing were the high contents of carbohydrates for the MOM and of lipids for the POM fractions. Qualitative features such as polydispersity or thermostability were not in general assignable to specific compounds, density fractions or different mean residence times. Only the microbial derived part of the soil carbohydrates could be shown to be correlated with high SOM thermostability (r2 = 0.63**, n = 39). Microbial derived carbohydrates and fatty acids were both enriched in the MOM, showing that the relative contribution of microbial versus plant-derived input to arable SOM increased with density and therefore especially increased MOM thermostability. Nevertheless, the general microbial contribution to arable SOM is suggested to be high for all density fractions; a mean proportion of about 1:1 was estimated for carbohydrates. Despite biomolecules released from living microorganisms, SEM revealed that microbial mass (biomass and necromass) is a considerable source for stable SOM which is also increasing with density.  相似文献   

9.
Changes in the molecular composition of soil organic matter (SOM) resulting from compost application are not sufficiently known at the molecular scale even though this is a major issue for soil fertility and soil carbon sequestration. Therefore, the present study investigated effects of long-term compost application in comparison to mineral fertilizer on the molecular composition of SOM in a 34-year-old experiment. Soil samples were taken after 19 and 34 years of constant management and analyzed by Curie point Pyrolysis-Gas Chromatography/Mass Spectrometry (Cp Py-GC/MS) and Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS). In general, compost application increased the organic carbon (C) content. The Cp PyGC/MS revealed larger relative intensities of alkylphenols/lignin monomers at the expense of carbohydrates in the compost treatments. Py-FIMS indicated higher proportions of labile n-fatty acids, lipids and sterols in the compost than in the mineral fertilizer treatment. Permanent cropping of grass between years 19 and 34 revealed similar signal patterns, which is also maintained after conversion of soil from permanent grass to arable use. Thermograms of volatilization indicated enrichments of stable (compounds volatilized in between 370°C and 570°C) phenols/lignin monomers, lipids and alkylaromatics between years 19 and 34 in compost fertilized soils. This was a result of enhanced losses of compounds that are considered easily metabolized by microorganisms (e.g. carbohydrates) after compost addition as derived from Py-GC/MS and Py-FIMS. In summary, long-term application of mature compost was shown to have a positive, long lasting effect on the organic carbon sequestration in agricultural soils.  相似文献   

10.
Environmental pollution by agro‐industrial byproducts in developing countries can be alleviated by recycling into soils. However, little is known about their chemical composition and impact on soil fertility. Therefore, the objectives of the present study were (1) to characterize the molecular‐chemical composition of dry (COD) and wet (COW) coffee, sisal (SIS), barley malt of brewery (BEB), and sugarcane processing (FIC) byproducts, and filter cakes of linseed (LIC) and niger seed (NIC) and (2) to evaluate their effects on respiration, pH, enzyme activities, and P fractions of a tropical soil. The agro‐industrial byproducts significantly differed in their concentrations of plant nutrients and organic‐matter compositions. The highest proportions of lipids, phenols + lignin monomers, and alkylaromatics were observed in COD, N‐containing compounds in COW, sterols in FIC, peptides in LIC, suberin in SIS, and fatty acid in COW and FIC. The application of the byproducts at the rate of 40 kg P ha–1 (1.1 to 13.2 g C [kg soil]–1) significantly (p < 0.05) increased the rate and cumulative soil respiration, soil pH, acid phosphatase and urease activities, and labile inorganic P over the control treatment. Ranking the qualities of the agro‐industrial byproducts for soil amendment based on their composition and effects on soil properties revealed the order NIC > LIC > BEB > COW > SIS > FIC > COD.  相似文献   

11.
《Geoderma》2006,130(1-2):141-156
Sixteen Orthic Chernozemic surface soil samples, one half from virgin prairie and one half from adjacent cultivated prairie (cultivated for 31 to 94 years), were collected from eight sites throughout Southern Saskatchewan, Canada. Samples were analyzed for total organic C and a number of other chemical and physical properties. The virgin and cultivated soils at site No. 4 were selected for more detailed analysis by CP-MAS 13C NMR, Curie-point-pyrolysis-gas chromatography/mass spectrometry (Cp-Py-GC/MS), and by pyrolysis-field ionization mass spectrometry (Py-FIMS). Long-term cultivation resulted in large significant decreases in total SOM (soil organic matter), as represented by total soil organic C. There were significant increases in aromaticity of the SOM as a result of long-term cultivation as indicated by CP-MAS 13C NMR spectroscopy. This was mainly attributable to the result of cultivation-enhanced degradation of aliphatic C relative to aromatic C. Organic compounds identified in the Cp-Py-GC/MS spectra of the virgin and cultivated soils at site No. 4 consisted of n-alkanes (ranging from C11 to C22) and alkenes (ranging from C7:1 to C21:1), with the virgin soil being richer in alkenes than the cultivated soil. Other components identified were cyclic aromatics, carbocyclics, N-containing aromatics, N-heterocyclics, benzene and substituted benzenes, phenols and substituted phenols and substituted furans. The compounds identified appeared to originate from long-chain aliphatics, lignins, polyphenols, aromatics, polysaccharides, and N-containing compounds in the two soils. While qualitatively similar compounds were identified by Py-FIMS in the two soils, the total ion intensity (TII) of the virgin soil was almost 2.5 times as high as that of the cultivated soil. This suggests that cultivation made the organic matter less volatile, either by favouring the formation of higher molecular weight organic matter or by promoting the formation of non-volatile metal-organic matter complexes. The Py-FIMS spectra showed that the virgin soil contained relatively more lignin dimers, lipids, sterols, and n-C16 to n-C34 fatty acids than the cultivated soil. Thus, conversely, the cultivated soil was richer in carbohydrates, phenols and lignin monomers, alkyl aromatics and N-containing compounds, including peptides, than the virgin soil.  相似文献   

12.
Aggregate-occluded black carbon in soil   总被引:10,自引:0,他引:10  
The great stability of black carbon (BC) in soils may not be solely attributable to its refractory structure but also to poor accessibility when physically enveloped by soil particles. Our aim was to elucidate the intensity of physical entrapment of BC within soil aggregates. For this purpose, the A horizon of a forest, and of a grassland soil, and of three soils under tillage, were sampled at the experimental station Rotthalmünster, Germany. Black carbon was assessed in water‐stable aggregates and aggregate‐density fractions using benzene polycarboxylic acids as specific markers. The greatest BC concentrations made up 7.2% of organic carbon and were found in the < 53 μm fraction. The smallest BC concentrations occurred in the large macroaggregate fractions (> 2 mm). This pattern has been sustained even after tillage. The C‐normalized BC concentrations were significantly greater (P < 0.05) in the occluded particulate organic matter (OPOM) fractions than in the free particulate organic matter (FPOM) and the mineral fractions. This enrichment of BC compared with organic carbon in the OPOM fractions amounted to factors of 1.5–2.7. Hence, BC was embedded within microaggregates in preference to other organic carbon compounds. Only 2.5–3.5% of BC was located in the OPOM fraction < 1.6 g cm?3, but 22–24% in the OPOM fraction with a density of 1.6–2.0 g cm?3. This suggests that BC possibly acted as a binding agent or was selectively enriched during decomposition of protected SOM, or both. Physical inclusion, particularly within microaggregates, could therefore contribute to the long mean‐residence times of soil‐inherent BC.  相似文献   

13.
The importance of soil aggregation in determining the dynamics of soil organic carbon (SOC) during erosion, transportation and deposition is poorly understood. Particularly, we do not know how aggregation contributes to the often-observed accumulation of SOC at depositional sites. Our objective was to assess how aggregation affects SOC stabilization in comparison to interactions of SOC with minerals. We determined and compared aggregate size distributions, SOC distribution in density fractions, and lignin-derived phenols from aggregated soil samples at both eroding and depositional sites. The stabilization effect of aggregation was quantified by comparing mineralization from intact and crushed macro-aggregates. Deposition of eroded soil material resulted in carbon (C) enrichment throughout the soil profile. Both macro-aggregate associated SOC and C associated with minerals (heavy fraction) increased in their importance from the eroding to the depositional site. In the uppermost topsoil (0–5 cm), SOC mineralization from intact aggregates was larger at the depositional site than at the eroding site, reflecting the large input of labile organic matter (plant residues) promoting aggregation. Contrastingly, in the subsoil, mineralization rates were lower at the depositional site because of effective stabilization by interactions with soil minerals. Aggregate crushing increased SOC mineralization by 10–80% at the eroding site, but not at the depositional site. The content of lignin-derived phenols did not differ between eroding and depositional sites in the topsoil (24.6–30.9 mg per g C) but was larger in the subsoil of the eroding site, which was accompanied by higher lignin oxidation. Lignin data indicated minor effects of soil erosion and deposition on the composition of SOC. We conclude that SOC is better protected in aggregates at the eroding than at the depositional site. During transport disaggregation and consequently SOC mineralization took place, while at the depositional site re-aggregation occurred mainly in the form of macro-aggregates. However, this macro-aggregation did not result in a direct stabilization of SOC. We propose that the occlusion of C inside aggregates serves as a pathway for the eroded C to be later stabilized by organo-mineral interaction.  相似文献   

14.
We investigated the polysaccharide composition of bulk and mineral-bound (density fractions >2 g cm−3) organic matter in topsoil and subsoil horizons of a Podzol and a Cambisol. Total sugar contents were generally higher in the Cambisol than in the Podzol. For most horizons of both soils, the sugars were enriched in the mineral-bound organic matter fraction. This fraction showed a monosaccharide distribution typical for microbial sugars, whereas in bulk soil horizons higher contributions of plant-derived sugars were observed. A strong relationship with the 14C activity of the dense fraction suggests that microbial-derived polysaccharides are most likely stabilised preferentially by mineral interactions compared to plant-derived polysaccharides.  相似文献   

15.
Global warming leads to the melting of ice caps and glaciers and, consequently, the exposure of new areas of land to the atmosphere and weathering. These areas usually have a high reactivity to both biotic and abiotic changes. Proglacial areas in the Alps usually have a deglaciation time span of around 150 years (time since the end of the “Little Ice Age” in the 1850's). We investigated a chronosequence of very young soils in the proglacial area Morteratsch (Swiss Alps) to derive time-trends of soil organic matter accumulation and evolution. Total organic C and N contents, C and N contents of the various organic matter (OM) density fractions and of the labile (oxidised by H2O2) and stable (H2O2-resistant) fractions were measured. Further characterisation of OM and the various fractions was performed using Diffuse Reflection Infrared Fourier Transform (DRIFT). Soil organic matter has been accumulated over 150 years at very high rates, values lay between 7 and 36 g C/m2/year. This led to a soil organic matter abundance of about 1–5.5 kg C/m2 after 140 years. Even at the start of soil formation, a very stable fraction of soil organic matter was detectable. Stable organic matter (resistant to the H2O2 treatment) comprised about 6% of the total soil organic carbon and 10% of the total nitrogen. At the start of soil formation, a very high proportion of soil organic matter was present in the density fractions < 1.6 g/cm3. After about 140 years, 15% of soil organic carbon and 35–40% of the nitrogen was already present in the highest density fraction (> 2 g/cm3). With time, the quality of soil organic matter changed: a decrease of hydrophobicity, an increase in aromatic compounds in the bulk soil and a decrease in phenolic functional groups in the heaviest density fraction were detectable with increasing age. In general, stable organic matter as well as the density fraction > 2 g/cm3 had a low C/N ratio and were enriched in proteinaceous materials. The adsorption of proteinaceous materials points to a strong organo-mineral association. This process has existed since the very beginning of soil formation.  相似文献   

16.
The granule-densimetric fractionation method was used to identify the characteristic features of the composition of different functional pools of labile organic matter (OM) from the automorphic soils of a zonal range from the center of the Russian Plain. Labile OM included free organic matter (FM) represented by a light fraction (LFR) of a density lower than 1.8 g/cm3 and a size larger than 53 μm, and aggregated discrete organic matter (LFAGR1) represented by an organic matter LF of a density lower than 1.8 g/cm3 and a size smaller than 53 μm and a phytolith LF (LFAGR2) (density 1.8–2.0 g/cm3). The composition of the fractions isolated was studied using electron microscopy, microanalysis, and chemical analysis.  相似文献   

17.
 In topsoils under forest and 7-, 12- and 17-year-old pastures, organic matter was characterized by analysing C and N distribution in particle-size fractions, the C decomposition rates of soil and particle-size fractions and by employing density-fractionation of macro-organic matter (>150 μm). The C and N associated with clay fractions increased with increasing age of pasture. The weight (%) of macro-organic matter and its heavy fractions (>1.37 g cm–3) also increased with increasing age of pasture. However, in a long-term incubation (100 days), these changes seemed to involve an increase in the C decomposition rate in the topsoil of the oldest pasture. Using the C decomposition rates of particle-size fractions, it appeared that silt and clay contributed differently to C decomposition in the whole soil. C associated with silt contributed to the C decomposition rate during the first 40 days of incubation, while C associated with clay contributed to C decomposition in the long-term incubation (after 40 days), especially when the clay fraction appeared to reach saturation point with respect to its ability to bind organic compounds and thus protect the soil from C loss. Received: 13 March 1998  相似文献   

18.
Recent concerns about climate change and atmospheric greenhousegas concentrations have demonstrated the importance ofunderstanding ecosystem C source/sink relationships. Soilorganic matter fractionation was carried out in three paired,forested watershed sites where one of each watershed pairrepresented a different ecosystem perturbation. Theperturbations were 8 years of experimental N amendments at theBear Brook Watershed in Maine (BBWM), a 50 year old intensewildfire and subsequent regeneration at Acadia National Park(ANP), and a 17 year old whole-tree harvest at the Weymouth PointWatershed (WPW). At each site, mineral soils were sampled byuniform depth increments. Mineral soil (< 2 mm) was separatedinto light, occluded light, and heavy density fractions byfloatation in NaI solution (1.7 g cm-3). Mineral soil (< 2mm) was also separated into particle-size fractions of sand (2.0to 0.05 mm), silt (0.05 to 0.002 mm), and clay (< 0.002 mm) bywet sieving and centrifugation. Whole soils, and density andparticle-size fractions were analyzed for total C and N. Bothfractionation schemes showed that all soil organic matterfractions had lower C/N ratios as a result of N enrichment atBBWM. At ANP, soil organic matter fractions generally had lowerC/N associated with the wildfire and subsequent shift fromsoftwood to hardwood regeneration. Few significant whole soiland soil organic matter fraction differences were associated withthe whole-tree harvest. Within watershed pairs, both density andparticle-size fractionation techniques usually indicated similarresponses. Soil organic matter fractionation results indicatedthat there were no consistent shifts in fraction distributions inresponse to perturbation that were consistent across all pairedwatershed study sites.  相似文献   

19.
There is a well-recognized need for improved fractionation methods to partition soil organic matter into functional pools. Physical separation based on particle size is widely used, yielding particulate organic matter(POM, i.e., free or "uncomplexed" organic matter 50 μm) as the most labile fraction. To evaluate whether POM meets criteria for an ideal model pool, we examined whether it is:1) unique, i.e., found only in the 50 μm fraction and 2) homogeneous, rather than a composite of different subfractions. Following ultrasonic dispersion, sand( 50 μm) along with coarse(20–50 μm) and fine(5–20 μm) silt fractions were isolated from a silt loam soil under long-term pasture at Lincoln, New Zealand. The sand and silt fractions contained 20% and 21% of total soil C, respectively.We adopted a sequential density separation procedure using sodium polytungstate with density increasing step-wise from 1.7 to 2.4 g cm~(-3) to recover organic matter(light fractions) from the sand and silt fractions. Almost all(ca. 90%) the organic matter in the sand fraction and a large proportion(ca. 60%–70%) in the silt fractions was recovered by sequential density separation. The results suggested that POM is a composite of organo-mineral complexes with varying proportions of organic and mineral materials. Part of the organic matter associated with the silt fractions shared features in common with POM. In a laboratory bio-assay, biodegradability of POM varied depending on land use(pasture arable cropping). We concluded that POM is neither homogeneous nor unique.  相似文献   

20.
Dolomite (CaMg(CO3)2) constitutes half of the global carbonates. Thus, many calcareous soils have been developing rather from dolomitic rocks than from calcite (CaCO3)‐dominated limestone. We developed a physical fractionation procedure based on three fractionation steps, using sonication with subsequent density fractionation to separate soil organic matter (SOM) from dolomite‐derived soil constituents. The method avoids acidic pretreatment for destruction of carbonates but aims at separating out carbonate minerals according to density. The fractionation was tested on three soils developed on dolostone parent material (alluvial gravel and solid rock), differing in organic‐C (OC) and inorganic‐C (IC) concentrations and degree of carbonate weathering. Soil samples were suspended and centrifuged in Na‐polytungstate (SPT) solutions of increasing density, resulting in five different fractions: two light fractions < 1.8 g cm–3 (> 20 μm and < 20 μm), rich in OC and free of carbonate, and two organomineral fractions (1.8–2.4 g cm–3 and 2.4–2.6 g cm–3), containing 66–145 mg g–1 and 16–29 mg g–1 OC. The organomineral fractions consist of residual clay from carbonate weathering such as clay minerals and iron oxides associated with SOM. The fifth fraction (> 2.6 g cm–3) was dominated by dolomite (85%–95%). The density separation yielded fractions differing in mineral compositions, as well as in SOM, indicated by soil‐type‐specific OC distributions and decreasing OC : N ratios with increasing density of fractions. The presented method is applicable to a wide range of dolomitic and most likely to all other calcareous soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号