首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: The aims of this study were (a) to evaluate the effect of xylazine and tolazoline, with and without lignocaine, on the cortisol response of calves following amputation dehorning and (b) to assess the effect of a non-steroidal anti-inflammatory drug (ketoprofen) and local anaesthesia on the cortisol response of calves to amputation dehorning. METHODS: Plasma cortisol concentrations were measured in 100 dehorned or non-dehorned 3-month-old calves over an 8-h period following five different sedative/analgesic or control treatments. Sedative/analgesic treatments were: control (no anaesthesia); local anaesthesia and ketoprofen; local anaesthesia and xylazine; local anaesthesia, xylazine and tolazoline; and xylazine only. Within each sedative/analgesic treatment group, half the calves (n=10 per group) were amputation dehorned and half were not dehorned. RESULTS: The change in plasma cortisol concentrations in calves dehorned after being given ketoprofen and local anaesthesia did not differ significantly from that of non-dehorned control calves for at least 8 h. In contrast, the cortisol response of dehorned calves not given analgesic drugs peaked 30 min after dehorning and lasted >4 h. Xylazine injected before dehorning significantly reduced but did not eliminate the peak of the cortisol response. When both xylazine and local anaesthesia were administered before dehorning the peak in the cortisol response was virtually eliminated. In the dehorned calves that received xylazine with or without local anaesthesia, cortisol concentration increased significantly 3 h after dehorning and did not return to baseline until at least 5 h later. When tolazoline was administered shortly after xylazine, it caused a marked cortisol response, higher than the response to any other treatment. CONCLUSIONS: Combining ketoprofen and local anaesthesia minimised the cortisol response, and by inference the pain-induced distress, following amputation dehorning in calves. Xylazine reduced the initial cortisol response to dehorning but not as much as when local anaesthesia was also given. The increase in cortisol concentration from 3-8 h after dehorning in calves given xylazine alone or in combination with local anaesthesia suggests that calves experienced pain-induced distress during this time and that xylazine had no long-term analgesic effect. Tolazoline, used to reverse the sedative effects of xylazine, caused a marked cortisol response in calves via a mechanism which remains unclear.  相似文献   

2.
To determine the effects of yohimbine and tolazoline on the cardiovascular, respiratory and sedative effects of xylazine, four horses were sedated with xylazine and treated with either yohimbine, tolazoline or saline. Xylazine was administered as an intravenous (i.v.) bolus (1.0 nig/kg) followed by a continuous infusion at the rate of 12 μg/kg/min. Heart rate, respiratory rate, mean arterial pressure, arterial blood gases, and the chin-to-floor distance were recorded throughout the experiment. After 60 min, either yohimbine or tolazoline was administered i.v. in incremental doses until reversal of sedation (defined as the return of the chin-to-floor distance to baseline values) was achieved. A control group in which a saline bolus was administered instead of an antagonist drug was included for comparison.
The average dose of yohimbine administered was 0.12 ± 0.02 (SEM) mg/kg. While the average dose of tolazoline was 7.5 ± 1.1 mg/kg. Both tolazoline and yohimbine antagonized the ventricular bradycardia and A-V conduction disturbances observed with xylazine administration. No change in mean arterial pressure was observed with xylazine or yohimbine administration, but tolazoline caused persistent mild systemic hypertension. There were no clinically significant changes in respiratory rate or arterial blood gas values with administration of either xylazine, yohimbine or tolazoline. The chin-to-floor distance decreased significantly with xylazine administration and increased significantly with administration of either yohimbine or tolazoline. In conclusion, both yohimbine and tolazoline successfully antagonized the cardiovascular and CNS depression associated with xylazine administration.  相似文献   

3.
Detomidine is a sedative-analgesic which has a pharmacological profile similar to xylazine. There is evidence that the sedative effects are mediated through alpha-2 adrenoceptors.Cardiopulmonary responses were determined using detomidine as the principal agent and as a preanesthetic prior to the induction of general anesthesia. Compatibility with guaifenesin, sodium thia-mylal and halothane were determined.As in the case of xylazine, detomidine produces a slowing of heart rates. This was found to be either sinus bradycardia or heart block. There may be a corresponding increase in systolic blood pressures. The respiratory pattern is altered through the arterial blood gases and pH data supported evidence of adequate ventilation. The heart rate response to detomidine without anticholinergic treatment was transient and related to he duration of drug action.Atropine sulfate, 0.02 mg/kg i.v. was effective in preventing or treating bradycardia or heart block from detomidine. Heart rates also increased during the administration of guaifenesin and sodium thia-mylal when given 50 min poisit-detomidine.  相似文献   

4.
AIMS: The aims of this study were (a) to evaluate the effect of xylazine and tolazoline, with and without lignocaine, on the cortisol response of calves following amputation dehorning and (b) to assess the effect of a non-steroidal anti-inflammatory drug (ketoprofen) and local anaesthesia on the cortisol response of calves to amputation dehorning.

METHODS: Plasma cortisol concentrations were measured in 100 dehorned or non-dehorned 3-month-old calves over an 8-h period following five different sedative/analgesic or control treatments. Sedative/analgesic treatments were: control (no anaesthesia); local anaesthesia and ketoprofen; local anaesthesia and xylazine; local anaesthesia, xylazine and tolazoline; and xylazine only. Within each sedative/analgesic treatment group, half the calves (n=10 per group) were amputation dehorned and half were not dehorned.

RESULTS: The change in plasma cortisol concentrations in calves dehorned after being given ketoprofen and local anaesthesia did not differ significantly from that of non-dehorned control calves for at least 8 h. In contrast, the cortisol response of dehorned calves not given analgesic drugs peaked 30 min after dehorning and lasted >4 h. Xylazine injected before dehorning significantly reduced but did not eliminate the peak of the cortisol response. When both xylazine and local anaesthesia were administered before dehorning the peak in the cortisol response was virtually eliminated. In the dehorned calves that received xylazine with or without local anaesthesia, cortisol concentration increased significantly 3 h after dehorning and did not return to baseline until at least 5 h later. When tolazoline was administered shortly after xylazine, it caused a marked cortisol response, higher than the response to any other treatment.

CONCLUSIONS: Combining ketoprofen and local anaesthesia minimised the cortisol response, and by inference the pain- induced distress, following amputation dehorning in calves. Xylazine reduced the initial cortisol response to dehorning but not as much as when local anaesthesia was also given. The increase in cortisol concentration from 3–8 h after dehorning in calves given xylazine alone or in combination with local anaesthesia suggests that calves experienced pain-induced distress during this time and that xylazine had no long-term analgesic effect. Tolazoline, used to reverse the sedative effects of xylazine, caused a marked cortisol response in calves via a mechanism which remains unclear.  相似文献   

5.
OBJECTIVE: To determine the cardiopulmonary and sedative effects of medetomidine hydrochloride in adult horses and to compare those effects with effects of an equipotent dose of xylazine hydrochloride. ANIMALS: 10 healthy adult female horses. PROCEDURE: 5 horses were given medetomidine (4 microg/kg of body weight, i.v.), and the other 5 were given xylazine (0.4 mg/kg, i.v.). Heart rate, respiratory rate, arterial blood pressures, pulmonary arterial blood pressures, and cardiac output were recorded, and sedation and ataxia scores were assigned before and every 5 minutes after drug administration for 60 minutes. Rectal temperature and blood gas partial pressures were measured every 15 minutes after drug administration. RESULTS: Arterial blood pressure was significantly decreased throughout the study among horses given medetomidine and was significantly decreased for 40 minutes among horses given xylazine. Compared with baseline values, cardiac output was significantly decreased 10, 20, and 40 minutes after administration of medetomidine and significantly increased 40 and 60 minutes after administration of xylazine. Despite the significant decrease in respiratory rate in both groups, results of blood gas analyses were not significantly changed over time. Ataxia and sedation scores were of similar magnitude for the 2 groups, but ataxia persisted slightly longer among horses given medetomidine. Horses resumed eating hay 10 to 55 minutes after drug administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that equipotent low doses of medetomidine and xylazine induce comparable levels of ataxia and sedation and similar cardiopulmonary changes in adult horses.  相似文献   

6.
Hemodynamic effects of xylazine in the calf   总被引:3,自引:0,他引:3  
The hemodynamic effects of sedative level doses of xylazine in five chronically instrumented calves were studied. These effects included immediate and prolonged reductions in heart rate, cardiac output, arterial blood pressure, and left ventricular dp/dt max. Stroke volume showed an initial decrease in value with a return in 15 minutes to base-line values. Total peripheral resistance, end-diastolic left ventricular pressure, end-diastolic left ventricular volume, and left ventricular residual fraction were increased after drug administration. The results indicate that a depressed myocardium results from xylazine administration. With one exception (the absence of a hypertensive response), these effects largely parallel, both quantitatively and qualitatively, those seen with this drug in other species. Sedation by xylazine is produced in cattle at doses which are small compared to those which is required for sedation in other species. These same small doses in cattle also cause hemodynamic changes.  相似文献   

7.
Cardiovascular and pulmonary effects of a new sedative/analgesic (medetomidine) as a preanaesthetic drug in the dog. A study was carried out to investigate the possible usefulness of medetomidine (Farmos Group, Turku, Finland) for premedication prior to general anaesthesia with thiopental sodium and halothane. The main emphasis was laid on the circulatory and respiratory effects of medetomidine. Dogs treated with xylazine (2 mg/kg) or placebo (physiological saline solution) served as controls. Medetomidine caused a decrease in blood pressure, heart rate and respiratory rate at all dose levels tested. These decreases were essentially dose -dependent, but there were great individual variations.It is concluded that the drug can be useful for premedication at the lowest dose level tested (10 μ/kg). The sedative effect, however, is so strong that an even lower dose might be sufficient for the present purpose.  相似文献   

8.
OBJECTIVE: To determine the effects of ketamine hydrochloride, xylazine hydrochloride, and lidocaine hydrochloride after subarachnoid administration in goats. ANIMALS: 6 healthy goats. PROCEDURE: In each goat, ketamine (3 mg/kg), xylazine (0.1 mg/kg), lidocaine (2.5 mg/kg), and saline (0.9% NaCI) solution were injected into the subarachnoid space between the last lumbar vertebra and first sacral vertebra (time 0). Analgesic, ataxic, sedative, cardiovascular, and respiratory effects and rectal temperature were evaluated before (baseline) and 2, 5, 10, 15, and 30 minutes after administration and at 30-minute intervals thereafter as needed. RESULTS: Administration of anesthetics induced varying degrees of analgesia. Onset of the analgesic effect was more delayed for xylazine (mean +/- SD, 9.5 +/- 2.6 minutes) than for ketamine (6.7 +/- 2.6 minutes) or lidocaine (3.5 +/- 1.2 minutes). Duration of analgesia induced by xylazine (88.3 +/- 15 minutes) was twice as long as the duration of analgesia induced by ketamine (48.8 +/- 13.5 minutes) but similar to that induced by lidocaine (66.5 +/- 31 minutes). Xylazine induced bradycardia, whereas ketamine caused a nonsignificant increase in heart rate. Xylazine induced a reduction in arterial pressure, whereas ketamine or lidocaine did not affect arterial pressure. CONCLUSIONS AND CLINICAL RELEVANCE: Subarachnoid administration of xylazine in goats resulted in longer duration of analgesia of the tail, perineum, hind limbs, flanks, and caudodorsal rib areas than administration of ketamine or lidocaine. However, xylazine caused bradycardia and respiratory depression. Additional studies are needed to determine whether the analgesia would be sufficient to allow clinicians to perform surgical procedures.  相似文献   

9.
Xylazine is an effective sedative analgesic that induces vomiting in the cat. A consistently effective intramuscular emetic dose of xylazine was established in normal cats in this laboratory. Animals in which the area postrema of the medulla oblongata had been chronically destroyed did not exhibit emesis in response to the standard test dose of xylazine but continued to show sedation. By contrast, sham-operated cats responded normally. Refractoriness to deslanoside, a known specific emetic drug, was used as functional proof for successful ablation of area postrema, and the lesions were also validated histologically. We conclude that xylazine exerts its emetic action on the chemoreceptor trigger zone of the area postrema. It is suggested that this action may be mediated by an opiate type of molecular receptors.  相似文献   

10.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

11.
OBJECTIVE: To evaluate sedative effects of IM administration of a low dose of romifidine in dogs. ANIMALS: 13 healthy adult Beagles. PROCEDURE: Physiologic saline solution (0.2 ml), 0.1 % romifidine (10, 20, or 40 microg/kg), or 10% xylazine (1 mg/kg) was given IM in a crossover study design. Heart rate, respiratory rate, rectal temperature, hemoglobin saturation, and scores for sedation, muscle relaxation, posture, auditory response, and positioning response were recorded before and at regular intervals for up to 240 minutes after drug administration. RESULTS: Scores for sedation, muscle relaxation, posture, auditory response, and positioning response increased in a dose-dependent manner after romifidine administration. Sedation induced by the highest dose of romifidine (40 microg/kg) was comparable to that induced by xylazine (1 mg/kg). Heart rate, respiratory rate, and rectal temperature decreased in a dose-dependent manner after romifidine administration, but hemoglobin saturation did not change. CONCLUSIONS AND CLINICAL IMPLICATIONS: Romifidine (10, 20, or 40 microg/kg, IM) is an effective sedative in dogs, but causes a decrease in heart rate, respiratory rate, and rectal temperature.  相似文献   

12.
The objective of the study was to determine the analgesic and systemic effects of subarachnoid administration of xylazine hydrochloride (XY), lidocaine hydrochloride (LI) and their combination (XYLI) in goats. Six healthy goats were used in a prospective randomised study. Three treatments were administered to each goat, with 1-week intervals between each treatment. Treatments consisted of 0.1 mg/kg xylazine, 2.5 mg/kg lidocaine and a combination of xylazine 0.05 (mg/kg) and lidocaine (1.25 mg/kg). Analgesia, ataxic, sedative, cardiovascular and respiratory effects, and rectal temperature were evaluated before (baseline) and at 5, 10, 15, and 30 min after subarachnoid injection, and then at 30-min intervals until loss of analgesia occurred. Lidocaine induced analgesia in 3.1 +/- 1 min (mean +/- SD), which lasted for 66 +/- 31 min. Heart and respiratory rates and blood pressure remained unchanged after lidocaine-induced analgesia. Xylazine induced analgesia in 9.5 +/- 2.6 min and xylazine-lidocaine in 3.2 +/- 1.2 min. Xylazine-lidocaine-induced analgesia lasted longer (178.3 +/- 37 min) than that induced by xylazine (88.3 +/- 15 min). The XYLI treatment induced prolonged motor blocking (115 min), more than the XY (80 min) and LI (90 min) treatments. Both xylazine and xylazine-lidocaine caused significant decreases in the heart and respiratory rates, but not in blood pressure. The combination of xylazine (0.05 mg/kg) and lidocaine (1.25 mg/kg) can be administered subarachnoidally (between last lumbar vertebra and 1st sacral vertebra) to produce prolonged (> 2.5 h) analgesia of the tail, perineum, hind limbs, flanks and caudodorsal rib areas in goats. Despite the prolonged analgesia, using this combination is desirable for relieving postoperative pain, but it may be a disadvantage due to a motor block when dealing with goats.  相似文献   

13.
α2-adrenoceptor agonist drugs can cause respiratory changes leading to a short period of hypoxaemia in sheep. It has been suggested that this is due to transient platelet aggregation and pulmonary microembolism. If platelet aggregation were to follow platelet activation in response to the administration of α2 agonists, plasma thromboxane levels would be expected to rise. This study was carried out to measure plasma thromboxane B2 concentrations before and after the intravenous administration of the α2-agonist drug xylazine at a dose of 0.1 mg/kg. It was found that the plasma thromboxane concentration rose by 320% and, furthermore, the rise was prevented by the prior administration of atipamezole hydrochloride (0.125 mg/kg), an α2-adrenoceptor antagonist.  相似文献   

14.
Amitraz, an acaricide used to control ectoparasites in animals has a complex pharmacological activity, including α2-adrenergic agonist action. The purpose of this research was to investigate the possible antinociceptive and/or sedative effect of amitraz in horses. The sedative effect of the intravenous (i.v.) injection of dimethylformamide (DMF, 5 mL, control) or amitraz (0.05, 0.10, 0.15 mg/kg), was investigated on the head ptosis test. The participation of α2-adrenergic receptors in the sedative effect provoked by amitraz was studied by dosing yohimbine (0.12 mg/kg, i.v.). To measure the antinociception, xylazine hydrochloride (1 mg/kg, i.v., positive control) and the same doses of amitraz and DMF were used. A focused radiant light/heat directed onto the fetlock and withers of a horse were used as a noxious stimulus to measure the hoof withdrawal reflex latency (HWRL) and the skin twitch reflex latency (STRL). The three doses of amitraz used (0.05, 0.10 and 0.15 mg/kg) provoked a dose-dependent relaxation of the cervical muscles. The experiments with amitraz and xylazine on the HWRL showed that after i.v. administration of all doses of amitraz there was a significant increase of HWRL up to 150 min after the injections. Additionally, there was a significant difference between control (DMF) and positive control (xylazine) values up to 30 min after drug injection. On the other hand, the experiments on the STRL show that after administration of amitraz at the dose of 0.15 mg/kg, a significant increase in STRL was observed when compared with the control group. This effect lasted up to 120 min after injection. However, no significant antinociceptive effect was observed with the 0.05 and 0.10 mg/kg doses of amitraz or at the 1.0 mg/kg dose of xylazine.  相似文献   

15.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

16.
Xylazine administered intramuscularly (IM) to horses at the dose level of 2 mg/kg was an effective sedative and preanesthetic for thiamylal sodium narcosis or thiamylal sodium and halothane anesthesia. Evaluation of response of cardiovascular, respiratory, and hepatic function did not indicate serious untoward effects, although cardiac and respiratory rate decreased, calculated vigor of left ventricular contraction decreased, calculated peripheral vascular resistance increased, and transient innocuous cardiac arrhythmias occurred. Effects of the anesthetics used on respiratory function (blood gases and pH), using xylazine as a preanesthetic, were comparable with those observed when promazine was used. The onset of action of xylazine given IM was at least as rapid as that occurring when promazine was given intravenously; e.g., 5 minutes for first observable effects, and 15 to 20 minutes for maximal effect. Recovery, times from anesthesia when using xylazine administered IM as a preanesthetic agent were comparable with those reported after promazine was given intravenously; moreover, horses given xylazine were more calm during recovery and seldom tried to stand before they were able.  相似文献   

17.
Cardiorespiratory and sedative effects of a combination of acepromazine, xylazine and methadone were studied in the horse. Acepromazine and xylazine produced cardiovascular effects whereas methadone mainly affected respiratory rate. Decreases in heart rate, arterial blood pressure and respiratory rate were seen. Sedation was superior to that of acepromazine, xylazine or a combination of these. No serious side effects were seen.  相似文献   

18.
Sedative effects of medetomidine, a potent selective and specific alpha 2-adrenoceptor agonist, were evaluated in pigs using 5 different doses (30, 50, 80, 100 and 150 micrograms/kg of body weight) and compared with those of xylazine (2 mg/kg). Atropine (25 micrograms/kg) was mixed with both drugs to prevent severe bradycardia. All drugs were administered intramuscularly. Medetomidine at a dosage of 30 micrograms/kg produced more potent sedation than xylazine. The depth of sedation induced by medetomidine was dose dependent within the range from 30 to 80 micrograms/kg. At 100 or 150 micrograms/kg, the depth of sedation was mostly the similar level to that at 80 micrograms/kg but the duration was prolonged. The degree of muscle relaxation produced by medetomidine also seemed to be dose dependent from 30 to 80 micrograms/kg and was stronger than that produced by xylazine. An increase in the duration of muscle relaxation was dose dependent up to 150 micrograms/kg. No analgesic effect was produced by xylazine, however moderate analgesia was obtained by medetomidine. There were no marked changes in heart rate and respiratory rate during the observation period in pigs of any groups, however mild hypothermia after the administration of both drugs was observed. From these results, medetomidine has a significant and dose-dependent sedative effects which are much more potent than that of xylazine, and a combination of 80 micrograms/kg of medetomidine and 25 micrograms/kg of atropine is suitable for sedation with lateral recumbency and moderate muscle relaxation without notable side effects in pigs.  相似文献   

19.
Six 1-year-old farmed red deer were used to compare physiological and behavioural responses to a range of doses of 5% xylazine with or without the addition of 0.4 mg of fentanyl citrate and 3.2 mg of azaperone per ml. Each deer was randomly assigned to one of six treatments: xylazine alone at 0.4 and 0.6 mg/kg, the xylazinelfentanyl citrate/azaperone combination containing 0.2, 0.4 and 0.6 mg/kg of xylazine, or a sterile water control. Injections were given intramuscularly in the anterior neck, operator blind, on each of 6 sampling days between October and January, such that each deer received all treatments with 9-28 days between each treatment. Measurements included heart rate and respiration rate. A 0-3 scoring system (normal to nil response, respectively) was devised to record sedative responses (body stance, head position, degree of eye closure, palpebral reflex, resistance to movement of the head, response to noise) and analgesic responses to touch and pinching of the ear, and response to a needle prick in the gluteal region. Scores were added to produce a sedation score and analgesia score, respectively, for each treatment. Records were taken immediately prior to injection and thereafter at 5, 14, 25, 35, 60, 90, 120, 150, 180, 210, 240 and 300 minutes. All deer given each dose rate of the xylazine and the xylazine/fentanyl citrate/azaperone combination became recumbent. There was a tendency for the time to recumbency and variation of time to recumbency to be shorter at higher dose rates and with the addition of fentanyl citrate and azaperone to xylazine, particularly with xylazine at 0.4 mg/kg. These trends were not statistically significant (p>0.05). The duration of recumbency was shorter with the low dose of the xylazine/fentanyl trateiazaperone combination (0.2 mg/kg of xylazine) than for the higher doses of xylazine alone or the combination of drugs (p<0.05). There were no significant differences in heart rates or respiration rates between treatments, although all treatments significantly reduced both heart and respiration rates (p<0.01). The sedation scores showed similar peak responses and timing to peak responses (14-25 min) to both drug treatments and all dose rates, but the responses were less persistent for lower doses. The analgesia scores showed a similar pattern, with peak responses 14-35 minutes after administration and more persistence at higher dose rates of both xylazine alone and the xylazine/fentanyl citrate/azaperone combination. This study has shown that most physiological and behavioural responses to a range of doses of xylazine or the xylazine/fentanyl citrate/azaperone combination were statistically similar. However, there was a tendency for recumbency to occur more rapidly and with less variation in timing when the mid-range dose of the drug combination was used, supporting the observation by practitioners that the drug combination results in a more rapid and reliable state of recumbency at a lower dose rate of xylazine.  相似文献   

20.
OBJECTIVE: To evaluate the sedative, analgesic, and cardiorespiratory effects of intramascular (IM) romifidine in cats. STUDY DESIGN: Prospective, randomized experimental trial. ANIMALS: Ten healthy adult cats. METHODS: Romifidine (100, 200, and 400 microg kg(-1)) or xylazine (1 mg kg(-1)) was given IM in a cross-over study design. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), hemoglobin saturation, oscillometric arterial pressure, and scores for sedation, muscle relaxation, position, auditory response, and analgesia were determined before and after drug administration. Time to recumbency, duration of recumbency, and time to recover from sedation were determined. Subjective evaluation and cardiorespiratory variables were recorded before and at regular intervals for 60 minutes after drug administration. RESULTS: Bradycardia developed in all cats that were given romifidine or xylazine. No other significant differences in physiologic parameters were observed from baseline values or between treatments. Increasing the dose of romifidine did not result in increased sedation or muscle relaxation. Cats given xylazine showed higher sedation and muscle relaxation scores over time. Analgesia scores were significantly higher after administration of romifidine (400 microg kg(-1)) and xylazine (1 mg kg(-1)) than after romifidine at 100 or 200 microg kg(-1). Duration of lateral recumbency was not significantly different between treatments; however, cats took longer to recover after administration of 400 micro g kg(-1) romifidine. CONCLUSIONS AND CLINICAL RELEVANCE: Bradycardia is the most important adverse effect after IM administration of romifidine at doses ranging from 100 to 400 microg kg(-1) or 1 mg kg(-1) of xylazine in cats. The sedative effects of romifidine at 200 microg kg(-1) are comparable to those of 1 mg kg(-1) of xylazine, although muscle relaxation and analgesia were significantly less with romifidine than with xylazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号