首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We developed some wheat-Th. intermedium translocation lines,Yw642, Yw443 and Yw243, etc., showing good BYDV resistance from L1by induced homoeologous pairing using CS ph mutant. Characterization ofthese wheat lines was carried out by GISH and RFLP analysis. The resultsof GISH showed that the lines, YWw42, Yw443 and Yw243, etc., arehomozygous wheat-Th. intermedium translocation lines, in which thechromosome segments of Th. intermedium were transferred to thedistal end of a pair of wheat chromosomes. RFLP analysis indicated that thetranslocation chromosome of the wheat lines is T7DS · 7DL-7XL. Thebreakpoint of the translocation is located on the distal end of 7DL, betweenXpsr965 and Xpsr680 about 90–99 cm from the centromere. The BYDVgene is located on the distal end of 7XL around Xpsr680, Xpsr687 andXwg380. The RFLP markers of psr680, psr687 and wg380 werecosegregated with the BYDV resistance respectively and could be used formolecular assisted selection (MAS) in wheat breeding program for BYDVresistance.  相似文献   

2.
Summary The tolerance of aluminum (Al) of disomic substitution lines having the chromosomes of the D genome of Triticum aestivum L. cv. Chinese Spring individually substituted for their homoeologues in T. turgidum L. cv. Langdon was investigated by the hematoxylin method. The disomic substitution lines involving chromosome 4D were more Al tolerant than Langdon. The tolerance was found to be controlled by a single dominant gene, designated Alt2, that is in the proximal region of the long arm of chromosome 4D. The locus was mapped relative to molecular markers utilizing a population of recombinant chromosomes from homoeologous recombination between Chinese Spring chromosome 4D and T. turgidum chromosome 4B. Comparison of the location of Alt2 in this map with a consensus map of chromosomes 4B and 4D based on homologous recombination indicated that Alt2 is in a vicinity of a 4 cM interval delineated by markers Xpsr914 and Xpsr1051. The Alt2 locus is distal to marker Xpsr39 and proximal to XksuC2. The Altw locus is also proximal to the Knal locus on chromosome 4D that controls K+/Na+ selectivity and salt tolerance. In two lines, Alt 2 and Knal were transferred on a single 4D segment into the long arm of T. turgidum chromosome 4B.  相似文献   

3.
Yellow dwarf (YD) disease is one of the most destructive diseases of cereals worldwide. Wheat (Triticum aestivum L.)–Thinopyrum intermedium 7E(7D) substitution line P29 carries resistance to YD, known as Bdv3, that originates on the long arm of chromosome 7E of Th. intermedium, and the resistance was introgressed into wheat chromosome 7D as T7DS.7DL–7EL in the translocation lines P961341 and P98134. Until now, quantification of YD viruses in cereal crops was usually done by enzyme‐linked immunosorbent assay (ELISA), which is time consuming and laborious. To facilitate this analysis, SSR‐Bdv3, a diagnostic molecular marker, was developed in this study. The transmission of the Th. intermedium segment with Bdv3 was investigated using the SSR‐Bdv3 marker and ELISA in F2 and testcross progeny derived by crossing two wheat–Th. intermedium translocation lines to four common wheat cultivars. A Th. intermedium chromosome 7E segment in the translocation line P98134 was preferentially transmitted through male gametes in all of its crosses with the four wheat cultivars. However, the transmission frequency of the Th. intermedium 7E segment in another wheat–Th. intermedium translocation line, P961341, varied in different genetic backgrounds. The F2 populations from reciprocal crosses of Chinese Spring and P961341 showed good fits to the expected ratio of 1 : 2 : 1. In this study, male preferential transmission for either chromosome 7E or chromosome 7D was observed in the progeny derived by crossing P961341 to other wheat cultivars.  相似文献   

4.
Leaf rust caused by the fungus Puccinia triticina is one of the most important diseases of wheat (Triticum aestivum) worldwide. The use of resistant wheat cultivars is considered the most economical and environment-friendly approach in controlling the disease. The Lr38 gene, introgressed from Agropyron intermedium, confers a stable seedling and adult plant resistance against multiple isolates tested in Europe. In the present study, 94 F2 plants resulting from a cross made between the resistant Thatcher-derived near-isogenic line (NIL) RL6097, and the susceptible Ethiopian wheat cultivar Kubsa were used to map the Thatcher Lr38 locus in wheat using simple sequence repeat (SSR) markers. Out of 54 markers tested, 15 SSRs were polymorphic between the two parents and subsequently genotyped in the population. The P. triticina isolate DZ7-24 (race FGJTJ), discriminating Lr38 resistant and susceptible plants, was used to inoculate seedlings of the two parents and the segregating population. The SSR markers Xwmc773 and Xbarc273 flanked the Lr38 locus at a distance of 6.1 and 7.9 cM, respectively, to the proximal end of wheat chromosome arm 6DL. The SSR markers Xcfd5 and Xcfd60 both flanked the locus at a distance of 22.1 cM to the distal end of 6DL. In future, these SSR markers can be used by wheat breeders and pathologists for marker assisted selection (MAS) of Lr38-mediated leaf rust resistance in wheat.  相似文献   

5.
Aegilops triuncialis (UUCC) is an excellent source of resistance to various wheat diseases, including leaf rust. Leaf rust‐resistant derivatives from a cross of a highly susceptible Triticum aestivum cv.‘WL711’ as the recurrent parent and Ae. triuncialis Ace.3549 as the donor and with and without a pair of acrocentric chromosomes were used for molecular tagging. The use of a set of sequence tagged microsatellite (STMS) markers already mapped to different wheat chromosomes unequivocally indicated that STMS marker gwm368 of chromosome 4BS was tightly linked to the Ae. triuncialis leaf rust resistance gene transferred to wheat. The presence of the Ae. Triuncialis‐specific STMS gwm368 homoeoallele along with the non‐polymorphic 4BS allele in the rust‐resistant derivatives with and without the acrocentric chromosome indicates that the resistance has been transferred from the acrocentric chromosome to either the A or the D genome of wheat. This alien leaf rust resistance gene has been temporarily named as LrTr.  相似文献   

6.
Z. S. Lin    D. H. Huang    L. P. Du    X. G. Ye    Z. Y. Xin 《Plant Breeding》2006,125(2):114-119
Among the regenerated plants derived from immature hybrid embryos of wheat–Thinopyrum intermedium disomic addition line Z6 × common wheat variety ‘Zhong8601’, a plant with a telocentric chromosome and barley yellow dwarf virus (BYDV) resistance was obtained. The telocentric chromosome paired with an entire Thinopyrum chromosome to form a heteromorphic bivalent at meiotic metaphase I. Genomic in situ hybridization showed that the telosome originated from Th. intermedium. Two ditelosomic additions and one disomic substitution were identified among the offspring of the plant. Two random amplified polymorphic DNA molecular markers were identified among 150 random primers used to detect the different arms of the alien chromosome. These might be useful for developing translocation lines with BYDV resistance.  相似文献   

7.
Summary Wild relatives of common wheat, Triticum aestivum, and related species are an important source of disease and pest resistance and several useful traits have been transferred from these species to wheat. C-banding and in situ hybridization analyses are powerful cytological techniques allowing the detection of alien chromatin in wheat. C-banding permits identification of the wheat and alien chromosomes involved in wheat-alien translocations, whereas genomic in situ hybridization analysis allows determination of their size and breakpoint positions. The present review summarizes the available data on wheat-alien transfers conferring resistance to diseases and pests. Ten of the 57 spontaneous and induced wheat-alien translocations were identified as whole arm translocations with the breakpoints within the centromeric regions. The majority of transfers (45) were identified as terminal translocations with distal alien segments translocated to wheat chromosome arms. Only two intercalary wheat-alien transloctions were identified, one induced by radiation treatment with a small segment of rye chromosome 6RL (H25) inserted into the long arm of wheat chromosome 4A, and the other probably induced by homoeologous recombination with a segment derived from the long arm of a group 7 Agropyron elongatum chromosome with Lr19 inserted into the long arm of 7D. The presented information should be useful for further directed chromosome engineering aimed at producing superior germplasm.Contribution No. 96-55-J from the Kansas Experimental Station, Kansas State University, Manhattan, KS 66506-5502, USA.  相似文献   

8.
N. Watanabe  S.F. Koval 《Euphytica》2003,129(3):259-265
The chlorophyll a:b ratio of chlorina mutants is much higher than that of wild type plants. Physical mapping of the chlorina mutant loci (cn-A1, cn-B1 and cn-D1) of common wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.) was carried out with partial deletion lines of Chinese Spring(CS) of the long arms of homoeologous group7 chromosomes. F1 plants of partial deletion lines with near-isogenic lines (ANK-32A and ANK-32B) of the spring bread wheat Novosibirskaya 67 and a near-isogenicline of durum wheat LD222, ANW-7B were evaluated for chlorophyll a:b ratio of the leaves. Hemizygous and heterozygous plants were more easily distinguished by chlorophyll a:b ratio than by visual observation. The dose effects of the chlorina loci on chlorophyll a:b ratio were also confirmed. The position of the allele on the chromosome was localized by fraction length, the comparative values between whole chromosome and partially deleted chromosome. The locus cn-A1 was localized on the region of 83% distal from the centromere on the long arm of chromosome 7A, cn-B1 locus was localized on the region between 69% and 78% distal from the centromere on the long arm of chromosome 7B, and cn-D1 locus was localized on the region between 76% and 77% distal from the centromere on the long arm of chromosome 7D. We consider the map derived by deletion mapping is more accurate than the map calculated from recombination frequency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Resistance to viruses such as wheat streak mosaic virus (WSMV) and barley yellow dwarf virus(BYDV) is lacking in the primary gene pool of wheat, and therefore resistance is being introgressed from wild relatives such as Thinopyrum species. Resistance to BYDV was found in partial amphiploids (2n = 8x = 56, consisting of 42 wheat and14 alien chromosomes) obtained in hybrids between wheat and both Th. intermedium and Th.ponticum. GISH analysis revealed that the alien genomes of all but one resistant partial amphiploid were heterogeneous consisting of different ratios of St, Js and J genome chromosomes obtained from theThinopyrum parent. Translocated chromosomes consisting of Robertsonian, interstitial and terminal translocations between the different genomes were also detected. The tissue blot immunoassay showed that partial amphiploids having resistance could be inoculated with the virus but both virus multiplication and spread were completely blocked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Genes for frost resistance in wheat   总被引:4,自引:0,他引:4  
J. Sutka 《Euphytica》2001,119(1-2):169-177
Wheat varieties differ in their responses to low temperatures. Geneticstudies on frost resistance in wheat are difficult because the effects arequantitative in nature and thus require precise genetic material andreproducible experimental conditions. The detailed diallel analyses indicatedthat the inheritance of frost resistance is polygenic and mostly additive.Nevertheless, studies using monosomic, ditelosomic and substitution lineshave identified specific chromosomes that carry genes responsible for frostresistance. In particular, the chromosomes 5A and 5D appear to carrymajor genes. Using molecular markers (RFLP, AFLP) and recombinantsubstitution lines it was shown that the Vrn-A1 (vernalization) and Fr1 (frost resistance) loci were located closely linked on the distal portionof the long arm of 5A, but recombination between them was found (cM = 2). The RFLP markers Xpsr426 and Xwg644 were tightlylinked to the Vrn-A1 locus. Loci Vrn-D1 and Fr2are located on the long arm of 5D. Fr2 and Vrn-D1 arehomoeologous to Fr1 and Vrn-A1. A physical map of theVrn-A1 and Fr1 genes was constructed on chromosome 5Ausing deletion lines. This cytogenetically based physical map could be usefulin further work on genome mapping and gene cloning.  相似文献   

11.
A. M. Castro    A. Vasicek    C. Ellerbrook    D. O. Giménez    E. Tocho    M. S. Tacaliti    A. Clúa    J. W. Snape 《Plant Breeding》2004,123(4):361-365
Breeding for genetic resistance against greenbug and Russian wheat aphid (RWA) is the most effective way of controlling these widespread pests in wheat. Earlier work had shown that chromosome 7D of a synthetic hexaploid wheat, ‘Synthetic’ (T. dicoccoides × Ae. squarrosa) (AABB × DD) gave resistance when transferred into the genetic background of an aphid‐susceptible cultivar, ‘Chinese Spring’, as the recipient. To map the genes involved, a set of 103 doubled haploid recombinant substitution lines was obtained from crossing the 7D substitution line with the recipient, and used to determine the number and chromosomal location of quantitative trait loci (QTL) controlling antixenosis and antibiosis types of resistance. Antixenosis to RWA was significantly associated with marker loci Xpsr687 on 7DS, and Xgwm437 on 7DL. Antibiosis to greenbug was associated with marker loci Xpsr490, Rc3 (on 7DS), Xgwm44, Xgwm111, Xgwm437, Xgwm121 and D67 (on 7DL). Similarly, antibiosis to RWA was linked to loci Xpsr490, Rc3, Xgwm44, Xgwm437 and Xgwm121. At least two QTL in repulsion phase, one close to the centromere either on the 7DS or 7DL arms, and a second distal on 7DL could explain antibiosis to RWA and, partially, this mechanism against greenbug.  相似文献   

12.
In an attempt to transfer the Lr56/Yr38 resistance loci from Aegilops sharonensis to wheat, a 6A‐6Ssh chromosome translocation was produced. It involves essentially the entire chromosome 6Ssh with a small terminal segment of 6AL. Induced homoeologous recombination of the translocated chromosome with 6A produced numerous recombinants including three recombined chromosomes carrying Lr56 that could not be precisely mapped for lack of suitable markers. This study aimed to determine the chromosomal locations of the translocation breakpoints in these three recombinants using various DNA markers as well as physical and genetic mapping. The three recombinants Lr56‐39, ‐157 and ‐175 carry small segments of Ae. sharonensis chromatin distally to the Xgpw4329 and IWA5416 loci near the 6AS telomere. The Ae. sharonensis chromatin that remains in each line includes a homoeolocus of the wheat marker locus Xdupw217 (on 6BS) and its characteristic amplification product can be used as a dominant marker for the presence of Lr56. Of the three recombined chromosomes, Lr56‐157 retained the least alien chromatin and appears to be the best candidate for use in wheat breeding.  相似文献   

13.
Chromosome 5A of wheat carries several major genes of agronomic importance, including Vrn1 controlling spring/winter wheat difference, Q determining spike morphology and B1 inhibiting awn development. A population of single-chromosome recombinant lines from the cross between two chromosome substitution lines, 'Chinese Spring' (Cappelle-Desprez 5A) and 'Chinese Spring' (Triticum spelta 5A) was developed to map these genes on the long arm of chromosome 5A relative to RFLP markers. Using 120 recombinant lines, a map of approximately 230 cM in length was constructed. The gene order was centromere– Vrn1– Q– B1. The Vrn1 locus was tightly linked to two RFLP markers, Xbcd450 and Xrz395 with 0.8 cM, and to Xpsr426 with 5.0 cM. The Vrn1-adjacent region was located in the central of the long arm, approximately 90 cM from the centromere. The chromosome region around Q and the 5A/4A translocation break-point were mapped by three RFLP markers, and their order was found to be Q– Xpsr370– Xcdo457–4A/5A break-point– Xpsr164. The B1 locus was located on the most distal portion of the long arm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The tendency of unpaired meiotic chromosomes to undergo centric misdivision was exploited to translocate leaf rust and stripe rust resistance genes from an Aegilops kotschyi addition chromosome to a group 2 chromosome of wheat. Monosomic and telosomic analyses showed that the translocation occurred to wheat chromosome arm 2DL. The introgressed region did not pair with the corresponding wheat 2DL telosome during meiosis suggesting that a whole arm may have been transferred. Female transmission of the resistance was about 55% whereas male transmission was strongly preferential (96%). The symbols Lr54 and Yr37 are proposed to designate the new resistance genes.  相似文献   

15.
An interspecific cross was made to transfer leaf rust and stripe rust resistance from an accession of Aegilops ovata (UUMM) to susceptible Triticum aestivum (AABBDD) cv. WL711. The F1was backcrossed to the recurrent wheat parent, and after two to three backcrosses and selfing, rust resistant progenies were selected. The C-banding study in a uniformly leaf rust and stripe rust resistant derivative showed a substitution of the 5M chromosome of Ae. ovata for 5D of wheat. Analysis of rust resistant derivatives with mapped wheat microsatellite makers confirmed the substitution of 5M for 5D. Some of these derivatives also possessed one or more of the three alien translocations involving 1BL, 2AL and 5BS wheat chromosomes which could not be detected through C-banding. A translocation involving 5DSof wheat and the substituted chromosome 5M of Ae. ovata was also observed in one of the derivatives. Susceptibility of this derivative to leaf rust showed that the leaf rust resistance gene(s) is/are located on short arm of 5M chromosome of Ae. ovata. Though the Ae. ovatasegment translocated to 1BL and 2AL did not seem to possess any rust resistance gene, the alien segment translocated to 5BS may also possess gene(s) for rust resistance. The study demonstrated the usefulness of microsatellite markers in characterisation of interspecific derivatives. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A new wheat-Thinopyrum substitution line AS1677, developed from a cross between wheat line ML-13 and wheat-Thinopyrum intermedium ssp. trichophorum partial amphiploid TE-3, was characterized by fluorescence in situ hybridization (FISH), sequential Giemsa-C banding, genomic in situ hybridization (GISH), seed storage protein electrophoresis, molecular marker analysis and disease resistance screening. Sequential Giemsa-C banding and GISH using Pseudoroegneria spicata genomic DNA as probe indicated that a pair of St-chromosomes with strong terminal bands were introduced into AS1677. FISH using pTa71 as a probe gave strong hybridization signals at the nuclear organization region and in the distal region of the short arms of the St chromosome. Moreover, FISH using the repetitive sequence pAs1 revealed that a pair of wheat 1D chromosomes was absent in accession AS1677. Seed storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed that AS1677 lacked the gliadin and glutenin bands encoded by Gli-D1 and Glu-D1, further confirming the absence of chromosome 1D. The introduced St chromosome pair belonging to homoeologous group 1 was identified by newly produced genome specific markers. AS1677 is a new 1St (1D) substitution line. When inoculated with stripe rust and powdery mildew isolates, AS1677 expressed stripe rust resistance possibly derived from its Thinopyrum parent. AS1677 can be used as a donor source for introducing novel disease resistance genes to wheat in breeding programs aided by molecular and cytogenetic markers.  相似文献   

17.
A partial amphiploid, TE-3, between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium ssp. trichophorum was characterized by cytological observation, genomic in situ hybridization (GISH), seed storage protein electrophoresis and disease resistance screening. The TE-3 plants were deeply covered with pubescence, which is characteristic of the Th. intermedium ssp. trichophorum parent. Feulgen staining of the somatic metaphases revealed that the chromosome number varied from 52 to 56. TE-3 pollen mother cells (PMCs) regularly showed two to four univalents and 25 to 27 bivalents, indicating a degree of cytological instability. Giemsa-C banding showed that the Thinopyrum chromosomes in TE-3 produced strong heterochromatin bands. GISH analysis suggested that the alien chromosomes in TE-3 consisted of eight St chromosomes, four Js chromosomes, and two J genome chromosomes, as well as two St-J translocation chromosomes. Seeds storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) showed that TE-3 expressed some of Th. intermedium ssp. trichophorum specific gliadin and glutenin bands. When inoculated with stripe rust and powdery mildew isolates, TE-3 expressed resistance derived from its Thinopyrum parent. It appears that TE-3 can be used as a donor source in wheat breeding programs to introduce novel variation for quality and disease resistance.  相似文献   

18.
Powdery mildew caused by Blumeria graminis (DC) Speer f. sp. tritici Em. Marchal is a serious disease of wheat (Triticum aestivum L.) in Southwestern China. A line of common wheat designated 08-723 isolated from the progeny of a hybrid between common wheat and Thinopyrum intermedium (Host) Barkworth & Dewey, was highly resistant to the existing powdery mildew races in the region. This line had a similar phenotype to its wheat parent, and it showed normal bivalent pairing at metaphase I of meiosis. It was analyzed by genomic in situ hybridization, fluorescence in situ hybridization and sequential C-banding-GISH to determine the amount, location and origin of the alien chromatin present. The results revealed that line 08-723 is homozygous for a two-point translocation replacing chromosome 6A of wheat. The translocation chromosome appears to have a normal 6AL arm; its short arm has a short terminal segment of ca. 10 % in length originating from an unidentified B-genome chromosome of wheat and a long proximal segment of ca. 90 % of the arms’ length originating from one of the St-genome chromosomes of Th. intermedium. Genetic analysis of powdery mildew resistance in F1, F2 and F2:3 populations from a cross of 08-723 with a susceptible wheat line indicated that the resistance was controlled by a single dominant gene and in a sample of F2 plants it always associated with the translocated chromosome. The gene responsible for resistance on the translocated chromosome may provide an alternate source of resistance in wheat breeding programs.  相似文献   

19.
The Lr56/Yr38 translocation consists primarily of alien-derived chromatin with only the 6AL telomeric region being of wheat origin. To improve its utility in wheat breeding, an attempt was made to exchange excess Ae. sharonensis chromatin for wheat chromatin through homoeologous crossover in the absence of Ph1. Translocation heterozygotes that lacked Ph1 were test-crossed with Chinese Spring nullisomic 6A tetrasomic 6B and nullisomic 6A-tetrasomic 6D plants and the resistant (hemizygous 6A) progeny were analyzed with four microsatellite markers. Genetic mapping suggested general homoeology between wheat chromosome 6A and the translocation chromosomes, and showed that Lr56 was located near the long arm telomere. Thirty of the 53 recombinants had breakpoints between Lr56 and the most distal marker Xgwm427. These were characterized with additional markers. The data suggested that recombinants #39, 157 and 175 were wheat chromosomes 6A with small intercalary inserts of foreign chromatin containing Lr56 and Yr38, located distally on the long arms. These three recombinants are being incorporated into adapted germplasm. Attempts to identify the single shortest translocation and to develop appropriate markers are being continued.  相似文献   

20.
The aim of the present study was to produce backcross progenies in a new winter wheat (‘Asakaze komugi’) × winter barley (‘Manas’) hybrid produced in Martonvasar. As no backcross seeds were obtained from the initial hybrids, young inflorescences of the hybrids were used for in vitro multiplication in three consecutive cycles until a backcross progeny was developed. The chromosome constitution of the regenerated hybrids was analysed using genomic in situ hybridization (GISH) after each in vitro multiplication cycle. The seven barley chromosomes were present even after the third in vitro multiplication cycle but abnormalities were observed. Sixteen BC; plants containing, according to GfSH analysis, one to three complete barley chromosomes, two deletion barley chromosomes and a dicentric wheat‐barley translocation were grown to maturity from the single backcross progeny. The barley chromatin was identified using 20 chromosome‐specific barley SSR markers. All seven barley chromosomes were represented in the BC: plants. A deletion breakpoint at FL ±0,3 on the 5HL chromosome arm facilitated the physical localization of microsatellite markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号