首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

2.
Inter‐row hoeing is known to control tap‐rooted and erect weed species more effectively in winter wheat than weed harrowing. However, little is known about its effectiveness for use in the spring in winter wheat grown at wide row spacing (240 mm) under the influence of different placement of fertilizer. Two field experiments, one in 1999 and one in 2000, were conducted to study the influence of fertilizer placement, timing of inter‐row hoeing, and driving speed on the weeding effect on different weed species and crop growth. Placement of fertilizer below the soil surface improved crop growth and grain yield in both years compared with placement on the surface, but the more vigorous crop did not give any better suppression of the weeds surviving hoeing. Timing was not important in one experiment, whereas hoeing twice beginning in early April was more effective in the other experiment where weed growth over the winter had been vigorous. Driving speed had no influence on either the weeding effect or the yield, except for one case where increasing speed reduced the control of well‐developed weeds. Compared with unweeded reference treatments, inter‐row hoeing reduced total weed biomass by 60–70% and tap‐rooted and erect weed species in particular by 50–90%. Sowing at 240 mm row spacing yielded less than 120 mm (Danish standard), and inter‐row hoeing for winter wheat needs to be adapted to narrower row spacing to avoid such yield decreases.  相似文献   

3.
It has been hypothesized that increased crop density and spatial uniformity can increase weed suppression and thereby play a role in weed management. Field experiments were performed over 2 years to investigate the effects of the density and spatial arrangement of spring wheat (Triticum aestivum) on weed biomass and wheat yield in weed-infested fields. We used three crop spatial patterns (normal rows, random and uniform) and three densities (204, 449 and 721 seeds m−2), plus a fourth density (1000 seeds m−2) in the random pattern. Increased crop density reduced weed biomass in all three patterns. Weed biomass was lower and crop biomass higher in wheat sown in the random and uniform patterns than in normal rows in both years. At 449 seeds m−2, weed biomass was 38% lower in the uniform and 27% lower in the random pattern than in rows. There was evidence of decreasing grain yield due to intraspecific competition only at 1000 seeds m−2. The results not only confirm that increasing density and increasing crop spatial uniformity increase the suppression of weeds, but also suggest that a very high degree of spatial uniformity may not be necessary to achieve a major increase in weed suppression by cereal crops. Rows represent a very high degree of spatial aggregation. Decreasing this aggregation increased weed suppression almost as much as sowing the crop in a highly uniform spatial pattern. While the random pattern produced as much crop biomass and suppressed weeds almost as well as the uniform pattern, the uniform pattern gave the highest yield.  相似文献   

4.
To better understand the potential for improving weed management in cereal crops with increased crop density and spatial uniformity, we conducted field experiments over two years with spring wheat ( Triticum aestivum ) and four weed species: lambsquarters ( Chenopodium album ) , Italian ryegrass ( Lolium multiflorum ), white mustard ( Sinapis alba ), and chickweed ( Stellaria media ). The crops were sown at three densities (204, 449, and 721 seeds m−2) and in two spatial patterns (normal rows and a highly uniform pattern), and the weeds were sown in a random pattern at a high density. In most cases, the sown weeds dominated the weed community but, in other cases, naturally occurring weeds were also important. There were strong and significant effects regarding the weed species sown, the crop density, and the spatial distribution on the weed biomass in both years. The weed biomass decreased with increased crop density in 29 out of 30 cases. On average, the weed biomass was lower and the grain yield was higher in the uniform compared to the row pattern in both 2001 and 2002. Despite the differences in weed biomass, the responses of L. multiflorum , S. media , and C. album populations to crop density and spatial uniformity were very similar, as were their effects on the grain yield. Sinapis alba was by far the strongest competitor and it responded somewhat differently. Our results suggest that a combination of increased crop density and a more uniform spatial pattern can contribute to a reduction in weed biomass and yield loss, but the effects are smaller if the weeds are taller than the crop when crop–weed competition becomes intense.  相似文献   

5.
Over‐winter mortality, that is, winterkill, reduces cereal crop competitive ability and yield. While management and environmental variables are known to affect winterkill, the extent to which weeds contribute to increased winterkill is largely unknown. Winter annual weeds may increase winterkill through resource competition and by increasing incidence of and damage from plant pathogens that cause winterkill. We evaluated the impact of summer annual (Avena fatua) and winter annual (Bromus tectorum) weeds on the over‐winter survival rate of winter wheat over three winters, during which plots were covered with snow. Pink snow mould (Microdochium nivale), a winterkill pathogen known to infect B. tectorum and winter wheat, was common in wheat stands. In weed‐free treatments, mortality rates were initially near zero, but increased by nearly 45% in each subsequent winter, presumably due to an increase in snow mould disease in continuously cropped winter wheat. Whereas A. fatua infestation had no impact on crop survival rates, winter wheat survival in B. tectorum‐infested plots was 50% less than the weed‐free control in the second and third years of this study. Among B. tectorum‐infested plots, winter wheat over‐winter survival declined with increasing weed seed produced in the previous summer. Overall, this study demonstrated that winter annual weed infestations can reduce crop stand densities below replanting thresholds by reducing fall‐sown cereal winter survival. The effects of winter annual weeds on winter wheat may be meditated by increased proliferation of snow mould disease.  相似文献   

6.
Predicting the growth and competitive effects of annual weeds in wheat   总被引:1,自引:0,他引:1  
The growth and competitiveness of 12 annual weed species were studied in crops of winter wheat, in which weeds were sown to give a wide range of plant densities. Weed growth patterns were identified; early species which senesced in mid-summer were less competitive than those with a growth pattern similar to that of the crop. Most species had little effect on crop yield in 1987, and this was attributed to a high crop den sity. Crop yield-weed density relationships for all species in 1988 and for Galium aparine in 1987 were well described by a rectangular hyperbola. Species were listed in the following competitive order based on the percentage yield loss per weed m?2: Avena fatua > Matricaria perforata > Galium aparine > Myosotis arvenis > Poa trivialis > Alopecurus myosuroides > Stellaria media > Papaver rhoeas > Lamiumpur-pureum > Veronica persica > Veronica hederi-folia > Viola arvensis. Prediction of yield loss is discussed. The assumptions inherent in using Crop Equivalents (based on relative weights of weed and crop plants), are challenged; with intense competition, weed biomass at harvest failed to replace lost crop biomass, and harvest index was reduced. It is concluded that a competi tive index, derived from yield density relation ships, and expressed as the percentage yield loss per weed m?2, is more likely to reflect the com petitive ability of a species than an index obtained from plant weights in the growing crop.  相似文献   

7.
Summary There is a lack of information on the combined effects of preceding crop, reduced tillage (especially no-tillage) and the time of herbicide application on the development of weed populations and the efficiency of weed control in winter wheat in humid temperate climates. An experiment was conducted with a crop rotation (winter wheat – oilseed rape – winter wheat – maize) on a sandy loam and a loamy silt soil in the Swiss midlands to investigate the impact of different preceding crops and pre- and post-emergence control of weeds in conventional tillage (CT; mouldboard plough), minimum tillage (MT; chisel plough) and no-tillage (NT; no soil disturbance systems). When winter wheat was grown after maize and winter wheat was grown after oilseed rape, the ranking order of weed density in treatments without herbicide application was NT < MT < CT and CT < MT < NT respectively. Analysis of variance and canonical discriminant analysis showed that Epilobium spp., Sonchus arvensis , Myosotis arvensis and volunteer crops were more abundant in NT than in MT and CT. The efficiency of post-emergence weed control was generally better than that of pre-emergence weed control, regardless of tillage intensity.  相似文献   

8.
The effects of crop genotype and sowing time on competition between safflower (Carthamus tinctorius L.) and weeds were investigated in a 2-year field study. Each year, safflower was grown as a pure stand and in mixture with a natural weed infestation, mostly represented by Polygonum aviculare L., Fallopia convolvulus (L.) A. Löve and Chenopodium album L., in an additive design including weed stands grown without the crop. Grain yield reduction ranged from about 50% to 80% depending on crop genotype, and was higher under spring sowing (mid-March) than under winter sowing (mid-February). In general, those genotypes incurring the least yield reduction gave the greatest suppression of weed biomass. More competitive genotypes also tended to reduce the proportion of C. album in the weed biomass at harvest, particularly in 1994 (the wetter growing season). The competitive ability of the crop was mainly correlated with its biomass at early growth stages, but was not related to its grain-yielding ability in the absence of weeds. Results showed that more competitive crops may be obtained by sowing the most competitive genotypes early. Selecting for higher competitive ability in safflower does not seem to imply a reduction in grain-yielding ability.  相似文献   

9.
To assess the potential contribution of growing highly competitive crops to control Cyperus esculentus in the Netherlands, the influence of silage maize, hemp, winter barley and silage winter rye on emergence, growth and reproduction of this weed was studied in two field experiments. Growth and reproduction of C. esculentus (determined both as tuber production per plant and density of the weed in the subseuent crop maize) was reduced by each crop, compared to plots in which no crop was grown. In hemp, hardly any tuber production was observed. By growing a green manure crop after harvest of the winter barley the tuber production of the weed was reduced to about 40% of that in winter barley followed by fallow. Decreasing the light regime in a greenhouse experiment in the same order as was observed in the crops winter barley, maize and hemp, caused a similar reduction of tuber production to that found in the field. Therefore, it is suggested that competition for light is the main factor explaining the observed crop effects on the population dynamics of the weed. It is concluded that growing competitive crops as hemp in rotation may effectively complement chemical control of C. esculentus.  相似文献   

10.
The effects of nitrogen fertilizer on the growth and density of natural weed populations in spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) were investigated in the absence of herbicide. An increased level of applied nitrogen did not enhance: weed germination, tended to decrease the total weed biomass and had a differential effect upon the biomass of individual weed species in both wheat and barky. In competition with barley, Chenopodium album L. and Lamium spp. had lower nitrogen optima than the crop, while Urtica urens L. had a higher nitrogen optimum. In competition with wheat, Stellaria media (L.) Vill., Lamium spp. and Veronica spp. had lower nitrogen optima than the crop. The systematic changes in nitrogen effect with time were analysed by fitting orthogonal polynomials to the growth and density curves. The methodology could be recommended for other studies in which time or other systematic factors are included, as it supplies information which a traditional analysis of variance cannot provide. Since seed production is positively correlated with biomass, so nitrogen level affects seed production and, hence, the seed pool and future weed population, suggesting that fertilizer usage can be exploited in an integrated programme of crop: weed management. A trend towards lower N fertilizer application owing to concerns about the environment willfavour most of the weed species investigated in these experiments and change the composition of weed populations.  相似文献   

11.
Competition between winter-sown wheat and Viola arvensis Murray or Papaver rhoeas L. was studied in two experiments in two successive years. The effects of varying crop and weed density were modelled in terms of weed biomass over time, weed seed production and crop yield. Biomass model parameters, representing maximum weed biomass and intra- and interspecific competition, were obtained for different assessment dates, enabling biomass levels to be predicted during the two growing seasons. Weed biomass declined, and its maximum level was reached earlier, with increasing crop density. Intraspecific competition was higher in the absence than in the presence of crop, increasing with time and with weed density. Halving the wheat population increased June biomass of V. arvensis by 74% and of P. rhoeas by 63%. Crop yield losses with increasing weed density were greater with low than with medium and high crop populations. P. rhoeas was significantly more competitive than V. arvensis in both years. Weed biomass in 1989 responded more to reductions in crop density following the milder winter of 1988/89 than in the previous year; however crop yields were less affected in 1989 due to summer drought, restricting late weed growth and competition. Weed seed production was related to weed biomass; the progressive lowering of crop density increased seed production, and both species were very prolific in the absence of crop. By combining models, seed production could be derived for a given competitive effect on the crop. Threshold weed populations, based on low weed levels that are not economic to control, could then be equated with the accompanying weed seed production.  相似文献   

12.
This study was conducted in the Mediterranean environment of Central Italy from 2011 to 2013 with the aim of evaluating the effects of winter cover crops and their residues on weed composition in a cover crop‐tomato sequence. Treatments consisted of five soil managements (three cover crop species ‐ hairy vetch, phacelia, white mustard, winter fallow mulched with barley straw before tomato transplanting and conventionally tilled soil), two nitrogen fertilisation levels (0 and 100 kg N ha?1) and two weed management levels (weed free and weedy) on tomato. Cover crop residues were arranged in strips on the soil surface and then used as beds for transplanting the tomato seedlings in paired rows. Rotary hoeing was performed in the bare strips between paired tomato rows. At tomato harvesting, the weed aboveground biomass and density was higher in nitrogen‐fertilised tomato than unfertilised tomato, except in hairy vetch and barley straw that showed similar values. Hairy vetch used as a cover crop and dead mulch was the most suppressive species with the highest production of residues, while phacelia and mustard were not suitable for controlling weeds. The tomato yield was high in nitrogen fertilised and weed‐free treatments, except in barley straw mulch, which showed similar values among the weed management treatments. The mulch strips caused variations in weed species composition that was mainly composed of perennial ruderal weeds, while in tilled soil, the weed flora was dominated by annual photoblastic weeds.  相似文献   

13.
Summary. Seedlings and plants derived from single-node rhizome fragments of Agropyron repens and Agrostis gigantea were grown in au unheated glasshouse, separately or together with wheat ( cv. Kolibri), in sandy loam soil in well-spaced pots, adequately watered and moderately fertilized. Samples of crop and weeds were taken for growth analysis in mid- May, late June and early August (when the wheat was ripe).
On average, wheat decreased the weight of weed shoots by 84% and of rhizomes by 77%, but the weeds decreased the weight of wheat shoots by only 7% and of grain by 13%. Without wheat, seedlings of both weed species had, by late June, grown as much as plants from rhizomes, but with wheat, the weed seedlings were throughout most of the experiment more susceptible to competition than were plants from rhizomes. There was no simple relationship between the final dry weights of the weeds and the amount they decreased wheat yield: although Agropyron seedlings in competition with wheat were much lighter than Agrostis from rhizomes, they decreased grain yield of wheat as much, suggesting that they competed more intensely for a limiting factor, possibly nitrogen.
It is concluded that the faster initial growth rate of wheat seedlings relative to the weeds from rhizomes and a larger initial seed reserve relative to the weed seedlings enabled the wheat to dominate the weeds.
Comparaison de la croissance et comportement compétitif de plantules et de plantes issues de rhizomes d'Agropyron repens ( L.) Beauv. et d' Agrostis gigantea Roth  相似文献   

14.
Summary The effectiveness of crop competition for better weed control and reducing herbicide rates was determined for Avena ludoviciana and Phalaris paradoxa . Four experiments, previously broadcast with seeds of the two weeds in separate plots, were sown with three wheat densities, and emerged weeds were treated with four herbicide doses (0–100% of recommended rate). The measured crop and weed traits were first analysed across experiments for treatment effects. Grain yield and weed seed production data were then analysed using cubic smoothing splines to model the response surfaces. Although herbicide rate for both weeds and crop density for P. paradoxa had significant linear effects on yield, there was a significant non-linearity of the response surface. Similarly, herbicide rate and crop density had significant linear effects on weed seed production, and there was significant non-linearity of the response surface that differed for the weed species. Maximum crop yield and reduction in seed production of P. paradoxa was achieved with approximately 80 wheat plants m−2 and weeds treated with 100% herbicide rate. For A. ludoviciana , this was 130 wheat plants m−2 applied with 75% herbicide rate. Alternatively, these benefits were achieved by increasing crop density to 150 plants m−2 applied with 50% herbicide rate. At high crop density, application of the 100% herbicide rate tended to reduce yield, particularly with the A. ludoviciana herbicide, and this impacted adversely on the suppression of weed seed production. Thus, more competitive wheat crops have the potential for improving weed control and reducing herbicide rates.  相似文献   

15.
The effects of a range of herbicide doses on crop:weed competition were investigated by measuring crop yield and weed seed production. Weed competitivity of wheat was greater in cv. Spark than in cv. Avalon, and decreased with increasing herbicide dose, being well described by the standard dose–response curve. A combined model was then developed by incorporating the standard dose–response curve into the rectangular hyperbola competition model to describe the effects of plant density of a model weed, Brassica napus L., and a herbicide, metsulfuron‐methyl, on crop yield and weed seed production. The model developed in this study was used to describe crop yield and weed seed production, and to estimate the herbicide dose required to restrict crop yield loss caused by weeds and weed seed production to an acceptable level. At the acceptable yield loss of 5% and the weed density of 200 B. napus plants m–2, the model recommends 0.9 g a.i. metsulfuron‐methyl ha–1 in Avalon and 2.0 g a.i. in Spark.  相似文献   

16.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

17.
The management of crop fertilization may be an important component of integrated weed management systems. A field study was conducted to determine the effect of various application methods of nitrogen (N) fertilizer on weed growth and winter wheat yield in a zero-tillage production system. Nitrogen fertilizer was applied at 50 kg ha−1 at the time of planting winter wheat over four consecutive years to determine the annual and cumulative effects. The nitrogen treatments consisted of granular ammonium nitrate applied broadcast on the soil surface, banded 10 cm deep between every crop row, banded 10 cm deep between every second crop row, and point-injected liquid ammonium nitrate placed between every second crop row at 20 cm intervals and 10 cm depth. An unfertilized control was also included. Density, shoot N concentration and the biomass of weeds was often lower with subsurface banded or point-injected N than with broadcast N. The winter wheat density was similar with all N fertilizer application methods but wheat shoot N concentration and yield were consistently higher with banded or point-injected N compared with broadcast N. In several instances, the surface broadcast N did not increase the weed-infested wheat yield above that of the unfertilized control, indicating that it was the least preferred N application method. Depending on the weed species, the weed seedbank at the conclusion of the 4 year study was reduced by 29–62% with point-injected N compared with broadcast N. Information gained from this study will be used to develop more integrated weed management programs for winter wheat.  相似文献   

18.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

19.
Phalaris minor, the most serious weed in wheat in north‐western India, has developed extensive isoproturon resistance due to continuous isoproturon use. For its control, alternative herbicides (flufenacet, metribuzin and sulfosulfuron) at different application rates and timing were evaluated in wheat. In addition, herbicide carryover risk onto rotational crops (sorghum; maize and green gram, Vigina radiata) was also assessed. Isoproturon at 1 and 2 kg a.i. ha?1 provided only 10.5% and 51.8%P. minor control respectively. Of the other herbicides, early post‐emergent [15–21 days after sowing (DAS)] flufenacet at 180–480 g a.i. ha?1 provided acceptable control of P. minor, but failed to control broad‐leaved weeds and was phytotoxic to the wheat crop. Metribuzin at 210 g a.i. ha?1 was effective in controlling both Phalaris and dicotyledonous weeds. Mixtures of both flufenacet and metribuzin at reduced rates were better than flufenacet for weed control and grain yield. The efficacy of flufenacet and metribuzin was drastically reduced with later growth stages of P. minor (four to five leaf). Whereas sulfosulfuron at 25–30 g a.i. ha?1, applied either early post‐emergence (19 DAS) or post‐emergence (30–42 DAS), was quite effective. Overall, sulfosulfuron was the most effective treatment with regard to weed control and crop yield. However, maize and sorghum grown in rotation after harvest of sulfosulfuron‐treated wheat plots showed 65–73% crop biomass inhibition. The residual effect of sulfosulfuron was also noticed on Trianthema portulacastrum (Horse purslane), causing 73.5% dry matter reduction. By contrast, no carryover damage with flufenacet was observed on maize, sorghum and green gram. Glasshouse pot experiments and field trials investigating crop sensitivity to pre‐plant applications of sulfosulfuron found the decreasing order: sorghum > maize > green gram. The risk of carryover onto rotational crops should be considered when choosing alternative herbicides for P. minor control in wheat.  相似文献   

20.
Crop residue retention could affect the emergence and biomass of weeds in different ways. A summer and winter pot study was conducted to evaluate the effect of different amounts of sorghum and wheat residue on the emergence and biomass of 12 summer and winter Australian weeds. The equivalent amount of sorghum residue to 0, 1, 2, 4 and 6 t/ha was used in the summer study and winter weed seeds were covered with wheat residue equivalent to the amount of 0, 1, 2, 4 and 8 t/ha in the winter study. The emergence and biomass of Amaranthus retroflexus and Echinochloa colona was not affected by sorghum residue treatment. For other summer weeds, the use of the 6 t/ha sorghum residue treatment resulted in 59–94% reductions in biomass compared to no‐sorghum residue retention. Similarly, the application of 8 t/ha wheat residue in the winter study resulted in a reduced biomass of 15–100% compared to no‐crop residue treatment. The results demonstrated the high potential of using crop residues in eco‐friendly weed management strategies, such as harvest weed seed control tactics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号