首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Field Crops Research》1998,57(1):85-93
Nitrogen requirements to achieve rice grain yields higher than 13 t ha−1 and the associated internal N-utilization efficiency (NUE) have not been documented. The objective of this study was to compare N accumulation and NUE of irrigated rice in tropical and subtropical environments at yield-potential levels in both climates. Field experiments were conducted in 1995 and 1996 at the International Rice Research Institute, Philippines (IRRI, tropical site), and at Taoyuan Township, Yunnan, China (subtropical site). Three to five high-yielding rice cultivars were grown under optimum crop management. Plants were sampled at key growth stages to determine tissue N concentration, plant N accumulation, N harvest index (NHI), N translocation ratio and NUE. Plant N accumulation at maturity was 19 to 30% greater at Yunnan than at IRRI. Most of this difference resulted from greater N accumulation and N uptake rate during the vegetative period at Yunnan than at IRRI. During reproductive and grain-filling periods, N accumulation and N uptake rate were similar or higher at IRRI than at Yunnan. Grain N concentration at maturity was lower and N translocation ratio from straw to grains during grain filling was higher at Yunnan than at IRRI, and these traits contributed to larger NHI and NUE at Yunnan than at IRRI. Cultivars that produced grain yields over 13 t ha−1 at Yunnan required the accumulation of about 250 kg N ha−1 within the crop and had a NUE of 59 to 64 kg grain per kg plant N.  相似文献   

2.
Utilisation of nitrogen (N) has been closely related to increases in crop productivity. However, not all crops respond similarly and the objective of this study is to identify physiological processes that determine responses to N supply for maize and sunflower. Grain yield in maize (range: 210–1255 g m−2) was greater and more responsive to N supply than in sunflower (106–555 g m−2 in carbohydrate equivalents) over a wide range of total N uptake (3–>20 g N m−2). In maize, differences in grain yield among levels of N supply were associated more with variation in biomass than in harvest index. In sunflower, differences in grain yield (in carbohydrate equivalents) among levels of N supply were related similarly to variation in both biomass and harvest index. The decrease in biomass production with decreasing N supply was associated with decreases in both radiation interception and radiation use efficiency (RUE). Decreased interception was due to effects of N supply on reducing canopy leaf area, whereas the reduced RUE was associated with decreased SLN. Total biomass production in maize was more responsive to N supply than in sunflower. The major determinants of the differences in response of biomass accumulation to N supply found between maize and sunflower are: (i) sunflower tends to maintain SLN with increase in partitioning of N to leaves under N limitation whereas maize tends to maintain leaf area with increase in partitioning of biomass to leaves and (ii) the ability of maize to maintain N uptake following cessation of leaf production.  相似文献   

3.
《Field Crops Research》1988,18(1):17-30
Differences in biomass accumulation due to variable nitrogen supply in maize and sorghum grown under irrigation in the semi-arid tropics were associated with differences in both radiation interception and the efficiency with which intercepted radiation was used to produce dry matter. Radiation-use efficiency was more responsive to N supply than was radiation interception. Radiation-use efficiency increased with higher rates of applied N; maximum radiation-use efficiency was greater in maize than in sorghum; and radiation-use efficiency declined during grain filling in maize more than in sorghum. These differences were explained in terms of specific leaf N. A linear relationship, which was similar for both species, was fitted between radiation-use efficiency and specific leaf N. It is concluded that radiation-use efficiency may not be as stable across environments as was previously thought, but rather depends on the balance of leaf growth, N uptake and allocation to leaves, and N mobilization from leaves to grain.  相似文献   

4.
To improve efficiency of soil N and water use in the savanna, maize (Zea mays L.) cultivars with improved root systems are required. Two rainfed field experiments were conducted in Samaru, Nigeria in the 1993 and 1994 growing seasons with five maize cultivars under various rates of nitrogen fertilizer. The capacity of maize for rapid early root growth and to later develop a deep, dense root system was assessed. In addition, the effect of N fertilization on root growth of maize was studied in 1994. The widely cultivated cultivar TZB-SR had a poor root system in the surface soil layer and was more susceptible to early-season drought, as indicated by low plant vigor and aboveground dry matter yield during that time. It had a lower grain yield and a relatively small harvest index, but ranked among the highest in total aboveground dry matter production compared to other cultivars. The size of root system alone did not always relate well with grain yield among cultivars. Partitioning of dry matter within the plant was important in determining differences in grain yield and N stress tolerance between cultivars. A semiprolific cultivar (SPL) had high seedling vigour and a dense root system in the surface soil layer that conferred a greater tolerance to early-season drought stress and improved uptake of the early-season N flush, as indicated by a greater dry matter yield at 35 days after sowing (DAS). It also had a fine, deep, dense root system at flowering that could have improved water- and N-use efficiency in the subsoil (> 45 cm), thereby avoiding midseason drought stress in 1994. SPL had a large harvest index and the greatest yield among cultivars in 1994. Averaged across cultivars, greater root growth and distribution was observed at a moderate N rate of 0.56 g plant−1 than at zero-N or high N (2.26 g plant−1). Differences in root morphology could be valuable as selection criteria for N-efficient and drought-tolerant maize.  相似文献   

5.
Whole grain crops can be suitable for the production of solid biofuels because they have a high biomass yield and can be harvested with a low water concentration. The concentrations of water, ash, nitrogen (N), sulphur (S), chlorine (Cl) and potassium (K) in solid biofuels should be as low as possible and calcium (Ca) concentrations high to avoid technical problems and environmentally harmful emissions during the combustion process. Since N fertilization can negatively influence the combustion quality of biomass, a conflict between yield and quality aims can arise. The aim of this study is to investigate the influence of the dosage of N fertilization on the yield and quality of the whole crop biomass of triticale, rye and wheat. In 1996 and 1997, field trials with winter triticale, winter rye and winter wheat were conducted at three locations in South-West Germany. N fertilizer doses were varied from 0 to 70 and 140 kg N ha−1 a−1. All N doses were applied between March and May. The whole crop biomass was harvested. The water concentrations and concentrations of ash, N, K, Cl and Ca in straw and grain were measured. A dose of 70 kg N significantly increased the yield of all cereal species, but yield increases at 140 kg N were not always significant when compared with 70 kg N. At 70 kg N the energy yields reached 137–249 GJ ha−1, for wheat, 142–263 GJ ha−1 for rye and 182–250 GJ ha−1 for triticale. The water concentration of the biomass, mainly of the straw, was significantly increased by N fertilization when the harvest was performed early at comparatively high water concentrations. For all cereal species a significant increase of N concentrations, especially in the grain, was measured at increased N fertilizer levels. The K concentrations of the straw and the Ca concentrations of straw and grain of all cereal species were also increased by N fertilization. N fertilization had little or no effect on the ash and Cl concentrations, which slightly decreased with increased N fertilization. N fertilization can, therefore, be used as a tool to influence the concentrations of N and K in the biomass. When combining yield and quality aims, 70–100 kg ha−1 a−1 N fertilizer was the best dosage for the whole grain crops at the southwestern German locations tested here.  相似文献   

6.
Nitrogen (N) use efficiency (NUE), defined as grain produced per unit of fertilizer N applied, is difficult to predict for specific maize (Zea mays L.) genotypes and environments because of possible significant interactions between different management practices (e.g., plant density and N fertilization rate or timing). The main research objective of this study was to utilize a quantitative framework to better understand the physiological mechanisms that govern N dynamics in maize plants at varying plant densities and N rates. Paired near-isogenic hybrids [i.e., with/without transgenic corn rootworm (Diabrotica sp.) resistance] were grown at two locations to investigate the individual and interacting effects of plant density (low—54,000; medium—79,000; and high—104,000 pl ha−1) and sidedress N fertilization rate (low—0; medium—165; and high—330 kg N ha−1) on maize NUE and associated physiological responses. Total aboveground biomass (per unit area basis) was fractionated and both dry matter and N uptake were measured at four developmental stages (V14, R1, R3 and R6). Both plant density and N rate affected growth parameters and grain yield in this study, but hybrid effects were negligible. As expected, total aboveground biomass and N content were highly correlated at the V14 stage. However, biomass gain was not the only factor driving vegetative N uptake, for although N-fertilized maize exhibited higher shoot N concentrations than N-unfertilized maize, the former and latter had similar total aboveground biomass at V14. At the R1 stage, both plant density and N rate strongly impacted the ratio of total aboveground N content to green leaf area index (LAI), with the ratio declining with increases in plant density and decreases in N rate. Higher plant densities substantially increased pre-silking N uptake, but had relatively minor impact on post-silking N uptake for hybrids at both locations. Treatment differences for grain yield were more strongly associated with differences in R6 total biomass than in harvest index (HI) (for which values never exceeded 0.54). Total aboveground biomass accumulated between R1 and R6 rose with increasing plant density and N rate, a phenomenon that was positively associated with greater crop growth rate (CGR) and nitrogen uptake rate (NUR) during the critical period bracketing silking. Average NUE was similar at both locations. Higher plant densities increased NUE for both medium and high N rates, but only when plant density positively influenced both the N recovery efficiency (NRE) and N internal efficiency (NIE) of maize plants. Thus plant density-driven increases in N uptake by shoot and/or ear components were not enough, by themselves, to increase NUE.  相似文献   

7.
《Field Crops Research》1995,44(1):33-39
An experiment in a maize crop evaluated the influence of several types of commercial nitrogenous fertilizers with different action mechanisms — urea (soluble), Floranid-32 (low water solubility) and Multicote 4 (coated fertilizer) — on maize grain and biomass yields, as well as on plant N use. The fertilizers were applied as a top-dressing of 294 kg N ha−1. All treatments additionally received 64 kg N ha−1 as 8.0 (N):6.5 (P):12.5 (K) compound prior to seedbed preparation. The influence of NO3 content in the irrigation water was also assessed, using water with either 2.5 or 35 mg l−1 of NO3. Irrigation plus rainfall totalled 513 mm (1.20 potential ET). Nitrogen lost during the cultivation period was calculated from the N balance of the topsoil.Results obtained under these experimental conditions showed that the type of fertilizer did not alter maize grain and biomass yields. Yields for maize irrigated with the higher NO3 water were systematically greater than those obtained with irrigation water of low NO3 content.Nitrogen lost from the topsoil during the cultivation period varied between 240 and 280 kg N ha−1 for all treatments, and was well correlated with NO3-N leached into the aquifer during the same period.  相似文献   

8.
《Field Crops Research》2006,95(2-3):234-249
The use of Al-tolerant and P-efficient maize cultivars is an important component of a successful production system on tropical acid soils with limited lime and P inputs. Grain yield and secondary plant traits, including root and aboveground biomass, nutrient content and leaf development, were evaluated from 1996 to 2002 in field experiments on an Oxisol in order to identify maize characteristics useful in genetic improvement. Here we present the results of the 2002 trial and compare them with previous results. The aim of this experiment was to assess the effect of assimilate and nutrient partitioning on the growth and grain yield of two tropical cultivars having different Al tolerance (CMS36, tolerant, Spectral, moderately tolerant). The soil had an Al saturation of 36% in topsoil (pH 4.5) and >45% below 0.3 m depth (pH 4.2). Measurements made from emergence to grain filling included: root, stem and leaf biomass, P and N content, leaf area index (LAI), radiation use efficiency (RUE), soil available N and root profiles at anthesis. The experiments consisted of two P treatments, zero applied or 45 kg P ha−1 (−P and +P). All the treatments received N and K fertilizers. In −P, root biomass and LAI at anthesis were twice as great in CMS36 as in Spectral. In +P the differences between cultivars were negligible. Roots were deeper in CMS36 due to its higher Al tolerance. Total biomass and grain yield were not strongly related to root biomass and LAI. Other factors such as the leaf biomass and the amount of nutrients per unit leaf area were highly correlated with RUE and biomass. In −P, Spectral had the same total biomass but a higher grain yield than CMS36 (2.1 Mg ha−1 versus 1.5 Mg ha−1). This was due to a higher leaf P content (+40%), a greater RUE (+74%), and a lower number of sterile plants. In +P, CMS36 had higher total biomass and grain yield (4.1 Mg ha−1 versus 3.1 Mg ha−1). This was due to its higher leaf P (+25%) and leaf N (+43%) contents, and an increased RUE (+130%) that were associated with higher P and N uptake. Our results indicated that although root tolerance to Al toxicity is necessary for good crop performance on acid soils, assimilate and nutrient partitioning in the aboveground organs play a major role in plant adaptation and may partially compensate for a lower root tolerance.  相似文献   

9.
不同春玉米品种干物质生产和子粒灌浆对种植密度的响应   总被引:4,自引:1,他引:3  
以中单909(ZD909)、吉单209(JD209)和内单4号(ND4)为材料,设置5个种植密度,研究不同种植密度下春玉米子粒产量、干物质积累和灌浆特性的响应特征。结果表明,3个品种的子粒产量均随种植密度提高呈先增加后下降趋势,ZD909在各密度下的产量均高于JD209和ND4。ZD909在9.00万株/hm2下达到最高产量,JD209和ND4在6.75万株/hm2下达到最高产量。群体干物质积累量随密度增加而显著提高,但收获指数呈下降趋势。随密度的提高,ZD909的干物质递增幅度高于JD209和ND4,收获指数下降幅度小于后两个品种。子粒最大灌浆速率、灌浆持续时间均随种植密度的增大而减小,ZD909灌浆持续期、活跃灌浆期均显著长于JD209和ND4。ZD909的生产力受种植密度的不利影响程度低于JD209和ND4,密植增产潜力大。  相似文献   

10.
《Field Crops Research》1995,41(2):65-77
Loss of nitrogen from the leaves and a reduction in specific leaf nitrogen (SLN, g N m−2) is associated with grain filling in sunflower (Helianthus annuus L.). To explore the relationship between crop radiation-use efficiency (RUE, g MJ−1) and SLN, crop biomass accumulation and radiation interception were measured between the bud-visible and physiological-maturity stages in crops growing under combinations of two levels of applied nitrogen (0 and 5 g N m−2) and two population densities (2.4 and 4.8 plants m−2). Both nitrogen fertilization and density had significant (P = 0.05) effects on crop biomass yield, nitrogen uptake, leaf area index and SLN, but the nitrogen effects were more pronounced for these and other crop variables. Linear regressions of accumulated biomass (OCdwt, corrected for the energy costs of oil synthesis in the grain) on accumulated intercepted short-wave radiation between bud visible and early grain filling provided appropriate and significantly (P = 0.05) different estimates of RUE for the pooled 0 g N m−2 (1.01 g OCdwt MJ−1) and 5 g N m−2 (1.18 g OCdwt MJ−1) treatments. When calculated for each inter-harvest interval, crop RUE varied in a curvilinear fashion during the season, with a broad optimum from 40 to 70 days after emergence of the crops, and with lower values earlier and later in the season. The reduction in RUE toward physiological maturity was particularly marked. A plot of RUE against SLN revealed a reduction in RUE at small SLN values, but the relationship may be confounded by ontogenetic changes in other factors. A published model (Sinclair and Horie (1989), Crop Sci., 29: 90–98) was used to explore the RUE/SLN relationship. The model was unable to reproduce the decline in RUE during the second half of the grain-filling period. It is suggested that an important cause of this failure may be the partition, in the model, of a fixed, rather than a variable, fraction of crop gross photosynthesis to respiration.  相似文献   

11.
《Field Crops Research》1987,16(1):43-52
The combined effects of applied nitrogen and of legume density on the yields and efficiency of cereal/legume intercropping were examined, using maize and cowpea. The levels of applied nitrogen were 0, 30, 60 and 120 kg N ha−1, and intercrop cowpea densities were 80 000, 100 000, 120 000 and 150 000 plants ha−1. The interaction of applied N and density of companion cowpea on yield of maize was negative. In maize, the yield losses due to intercropping were alleviated to some degree by N application, but in cowpea they were accentuated, and it appeared that maize was more competitive than cowpea. Maize was more efficient than cowpea in the utilization of N to produce grain; with each increment of N, efficiency declined in maize but was almost constant in cowpea. The Land Equivalent Ratio (LER), a measure of the efficiency of intercropping, declined with increasing levels of applied N but did not change significantly when intercrop cowpea density exceeded 100 000 plants ha−1. The LER values followed trends in cowpea rather than maize yields, and this may be attributed to shading of cowpea by maize.  相似文献   

12.
施氮对不同种植密度玉米产量和子粒灌浆特性的影响   总被引:4,自引:1,他引:3  
以玉米品种先玉335为供试材料,在大田条件下设2个氮肥水平、5个种植密度,探讨施氮量与密度互作对玉米子粒灌浆特性影响,通过Logistic方程拟合子粒灌浆过程,解析灌浆特征参数与粒重的关系。在玉米子粒灌浆过程中,氮肥主要调控灌浆前期的灌浆速率来影响子粒建成,最终使百粒重增加;密度则调控快增期、缓增期持续天数来影响子粒重。要提高玉米产量,关键在于提高子粒灌浆速率和有效灌浆时间,尤其是延长快增期和缓增期持续时间以及提高渐增期平均灌浆速率。在生产中,首先要合理密植,构建适宜的群体,延长子粒灌浆持续时间;此外,通过增加开花后的氮肥供应来提高子粒灌浆前期的平均灌浆速率。  相似文献   

13.
Maize (Zea mays L.) breeding based primarily on final grain yield has been successful in improving this trait since the introduction of hybrids. Contrarily, understanding of the variation in ecophysiological processes responsible of this improvement is limited, especially between parental inbred lines and their hybrids. This limitation may hinder future progress in genetic gain, especially in environments where heritability estimation is reduced because grain yield is severely affected by abiotic stresses. The objective of this study was to analyze the genotypic variation between inbred lines and derived hybrids in the physiological determinants of maize grain yield at the crop level, and how differences among hybrids and parental inbreds may effect contrasting responses to N stress. Special emphasis was given to biomass production and partitioning during the critical period for kernel number determination. Phenotyping included the evaluation of 26 morpho-physiological attributes for 6 maize inbred lines and 12 derived hybrids, cropped in the field at contrasting N supply levels (N0: no N added; N400: 400 kg N ha−1 applied as urea) during three growing seasons. Tested genotypes differed in the response to reduce N supply for most measured traits. Grain yield was always larger for hybrids than for inbreds, but N deficiency affected the former more than the latter (average reduction in grain yield of 40% for hybrids and of 24% for inbreds). We also found (i) a common pattern across genotypes and N levels for the response of kernel number per plant to plant growth rate during the critical period, (ii) a reduced apical ear reproductive capacity (i.e., kernel set per unit of ear growth rate) of inbreds as compared to hybrids, (iii) similar RUE during the critical period and N absorption at maturity at low N levels for both groups of genotypes, but enhanced RUE and N absorption of hybrids at high N supply levels, and (iv) an improved N utilization efficiency of hybrids across all levels of N supply. Results are indicative of a more efficient use of absorbed N by hybrids than by parental inbreds. Larger grain yield of hybrids than of inbreds at N0 was associated to (i) enhanced dry matter accumulation due to improved light interception during the life cycle and (ii) enhanced biomass partitioning to the grain.  相似文献   

14.
A field experiment was conducted from 1998 to 2001 to measure the performance and environmental effects of a maize crop (Zea mais L.) in a continuous production system with and without a grass understorey (Lolium perenne L.), with varied N inputs. The experiment was located on a sandy soil in northern Germany and comprised all combinations of slurry application rate (0, 20, 40 m3 ha?1) and mineral N fertilizer (0, 50, 100, 150 kg N ha?1). Understorey treatments included maize with and without perennial ryegrass. Net energy (NEL) yield of maize increased with mineral N application rate but reached a plateau at high rates. Increase in yield of dry matter because of mineral N fertilizer was lower with increased slurry application rate. Neither slurry and mineral N application nor a grass understorey affected NEL concentration of maize, whereas crude protein (CP) concentration increased with increase in application of slurry and mineral N fertilizer. Nitrogen supply by slurry or mineral fertilizer had no effect on the amount of N in the grass understorey after the harvest of maize. The average amount of N bound annually in the understorey was 60 kg N ha?1. The reduced biomass of the understorey because of enhanced maize competition was compensated for by an increased CP concentration in the grass. The grass understorey affected the NEL yield of maize negatively only at very low levels of N input but increased the N surplus at all levels.  相似文献   

15.
This study investigated changes in accumulation and partitioning of nitrogen (N), phosphorus (P), and potassium (K) with harvest dates of early, middle, and late maturity sweet sorghum varieties in 2006 and 2007 in North China. All the varieties exhibited an obvious trend of decrease in concentrations of N, P and K in aboveground plants from elongation to 60 days after anthesis (DAA). The reduction in nutrient concentrations was found in the order of K (14.5 − 4.5 g kg−1) > N (13.3 − 7.4 g kg−1) > P (2.40 − 0.96 g kg−1). Conversely, N, P, and K accumulation significantly increased from elongation to anthesis, and continued to increase until 40 DAA. The accumulation of N, P, and K at maturity (40 DAA) was 128–339 kg ha−1, 30–75 kg ha−1 and 109–300 kg ha−1, respectively. Between elongation and anthesis, the middle and late maturity varieties had a higher ratio of N (50–82%), P (55–83%), and K (62–88%) accumulation than the early varieties (51–64% for N, 40–62% for P, and 55–75% for K). Sweet sorghum exhibited only one important K uptake stage from elongation to thesis according to the accumulation ratio (percentage of the nutrient accumulated at a given stage relative to that at physiological maturity) and rate (kilogram of nutrient accumulated per day per hectare). The stage from anthesis to grain maturity was the second important N and P uptake period. During the delay harvest period between 40 and 60 DAA, the early varieties exhibited significant increases in N accumulation; and the late varieties exhibited the reverse. P accumulation did not decrease significantly, whereas K accumulation decreased for all varieties in both years. Although of the N and P concentrations in straw were significantly lower than in grains, the N, P and K accumulation in straw was 2.2–9.3, 1.7–7.7, and 8.1–30.5 times higher than in grains, respectively. The concentrations of N and P in leaves were higher than in stems after anthesis. We found significantly higher accumulation of P and K in stems than in leaves, with a comparable N accumulation. The findings are helpful to make a fertilization regime recommendation for sweet sorghum production as a bioethanol crop in North China. It also suggests a further genetic improvement for optimizing nutrient use.  相似文献   

16.
Stay-green, an important trait for grain yield of sorghum grown under water limitation, has been associated with a high leaf nitrogen content at the start of grain filling. This study quantifies the N demand of leaves and stems and explores effects of N stress on the N balance of vegetative plant parts of three sorghum hybrids differing in potential crop height. The hybrids were grown under well-watered conditions at three levels of N supply. Vertical profiles of biomass and N% of leaves and stems, together with leaf size and number, and specific leaf nitrogen (SLN), were measured at regular intervals. The hybrids had similar minimum but different critical and maximum SLN, associated with differences in leaf size and N partitioning, the latter associated with differences in plant height. N demand of expanding new leaves was represented by critical SLN, and structural stem N demand by minimum stem N%. The fraction of N partitioned to leaf blades increased under N stress. A framework for N dynamics of leaves and stems is developed that captures effects of N stress and genotype on N partitioning and on critical and maximum SLN.  相似文献   

17.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

18.
《Field Crops Research》1986,15(2):165-179
Nitrogen requirements and utilization of mineral nitrogen (N) by sorghum and groundnut were compared. At the maximum N use level, sorghum genotypes showed greater N use efficiency (120 kg biomass/kg N harvested) than groundnut genotypes (36 kg biomass/kg N harvested). Using a non-nodulating groundnut genotype (Non-nod) or sorghum as controls for soil N uptake, the amounts of N2 fixed by the nodulated groundnut genotypes were estimated to be 183–190 kg N/ha. Nitrogen fertilization increased harvest index and percentage N translocated to seeds in sorghum genotypes, but decreased harvest index and had variable effects on percentage N translocated to seed in groundnut genotypes. Leaf nitrate reductase activity (NRA) and nitrate content in the leaves of two sorghum genotypes, one nodulating, and ‘Non-nod’ groundnut genotypes were also compared. The concentration of nitrate was lower in sorghum than in groundnut leaves, but NRA was higher in sorghum. It is suggested that either NRA in the groundnut leaves has relatively lower affinity for the substrate (higher Km, the Michaelis-Menton constant) or higher nitrate is required for the induction of nitrate reductase in groundnut than in sorghum. This implies that groundnut is a poor utilizer of fertilizer nitrogen.  相似文献   

19.
《Field Crops Research》1996,49(1):39-50
Sugarcane was grown under full irrigation in Australia, South Africa and Hawaii. N fertiliser was supplied at a high rate and was non-limiting to biomass accumulation in all but one dataset, where zero and high nitrogen (N) supply regimes were imposed. Crops were sampled for biomass, sucrose, glucose and fructose content of stalks. In one study, the biomass and sugar content of all green crop components were also determined. The objective was to compare the accumulation of reducing sugars, glucose and fructose, with sucrose, and how this responds to agronomic manipulations of crop duration, cultivar and nitrogen supply. Such knowledge can be used to assess the scope for maximising, by agronomic or genetic means, the partitioning of biomass to the economic product, sucrose and maximising the purity of juice for efficient sucrose extraction at the mill. At 12 months growth, 30–50% of reducing sugars was present in the stalk component, but at earlier stages was higher at 50–80%. Stalk yields of reducing sugars for 12 month crops were less than 100 g m−2, which was less than 5% of total sugars in the stalk. There were strong effects of N supply and cultivar on the amounts and concentration of reducing sugars in the stalk at low yields, but little effect when stalk biomass exceeded about 4000 g m−2 suggesting that, agronomic or genetic manipulation of levels of reducing sugars will only be effective early in the season. For a given level of stalk biomass, cultivar effects on partitioning to reducing sugars were due either to differences in partitioning of stalk biomass to total sugars, or differences in the partitioning between sucrose and reducing sugars. On the other hand, variation in N supply only altered the partitioning between sucrose and reducing sugars. Calculations suggested that high concentrations of reducing sugars in stalks harvested at a young age or from high N supply treatments, were not expected to lower the polarimetric estimate of sucrose concentration in the juice by more than 6%. This study provides a framework to assess the impact of cultivar, crop duration, and N supply on the accumulation of reducing sugars in different production systems.  相似文献   

20.
Estimating maize nutrient uptake requirements   总被引:6,自引:0,他引:6  
Generic, robust models are needed for estimating crop nutrient uptake requirements. We quantified and modeled grain yield–nutrient uptake relations in maize grown without significant biotic and abiotic stresses. Grain yield and plant nutrient accumulation in above-ground plant dry matter (DM) of commercial maize hybrids were measured at physiological maturity in on-station and on-farm experiments in Nebraska (USA), Indonesia, and Vietnam during 1997–2006. These data were used to model the nutrient requirements for yields up to 20 Mg ha−1 using the QUEFTS (QUantitative Evaluation of the Fertility of Tropical Soils) approach. The model required estimation of two boundary lines describing the minimum and maximum internal nutrient efficiencies of N, P and K (IE, kg grain per kg nutrient in plant DM), which were estimated at 40 and 83 kg grain kg−1 N, 225 and 726 kg grain kg−1 P and 29 and 125 kg grain kg−1 K, respectively. The model predicted a linear increase in grain yield if nutrients are taken up in balanced amounts of 16.4 kg N, 2.3 kg P and 15.9 kg K per 1000 kg of grain until yield reached about 60–70% of the yield potential. The corresponding IEs were 61 kg grain kg−1 N, 427 kg grain kg−1 P and 63 kg grain kg−1 K. The model predicted a decrease in IEs when yield targets approached the yield potential limit. A spherical model was derived from QUEFTS model outputs and found to be particularly suitable for practical applications such as estimating fertilizer needs. The proposed spherical model offers generality across environments and management practices, allowing users to estimate the optimal N, P and K uptake requirements based on two inputs: estimated yield potential and yield target. Further improvements in modeling the relationship between N uptake and grain yield can be made by taking into account differences in harvest index. Accuracy in the simulation of N uptake using the spherical model was improved from an RMSE of 35 kg N ha−1 to 25 kg N ha−1 when harvest index was accounted for, suggesting that the relationship between N uptake and actual yield is affected by both yield potential and efficiency in biomass partitioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号