首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li Yuwen  Wang Yeju 《林业研究》1995,6(3):100-104
Chemical and biochemical analysis methods were used to monitor the variations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad -leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, ammonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those ofsecondary birch forests those are in succession stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such asPinus Koraiensis, Tilia amurensis, Acer mono and alsoFraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the ammonium rather than those of the pioneer trees species in secondary birch forest, such asPopulus davidiava andBetula platyphylla. Because they have more ammonium in their leaves and roots, especiallyPinus koraiensis. Populus davidvana andBetula platyphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others. In secondary birch forest, the regeneration trees species adapt their nitrogen nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.  相似文献   

2.
INTRODUCTlONThemixcdbroad-leaved/Pinuskor`IiensiSforestwhichisoneofthemainforestsofNortheastChina,isintlleCllangbaiMountail1s(JilinProvince)a11dtheXiaoxing'anMotu1-tains(inHeilonroIangProvince).Thisistl1empicalmixcddeciduous/co11iferforestvegcta-tionofthcarca.But,duetocuttingandanunbalancebctWeenharvesti11gandanntlalin-crement,themixedbroad-leaved/PinuSko-raiensIjforestsha1,ebeenreplacedwithsec-ondaryforests(includingthelargearPaofsecondaryforestleftfrol11thepast)sinceltsclearcutti…  相似文献   

3.
Plants differ in tissue localization of nitrate reduction and assimilation. Some species reduce nitrate primarily in the leaves, whereas other species localize nitrate reduction and assimilation in the roots. We determined how nitrate assimilation is partitioned among leaves, stems and roots of poplar (Populus tremula L. x P. alba L.) by comparing tissue differences in in vivo nitrate reductase activity (NRA), nitrate reductase abundance and tissue nitrate concentration. Compared with stems or roots, NRA was greater in leaves, and the highest leaf NRA was found in young leaves. Leaf and root NRA increased with increasing nitrate supply, whereas stem NRA remained constant. Leaf NRA was at least 10-fold greater than root NRA at all external nitrate concentrations. Nitrate reductase abundance increased in all tissues with increasing nitrate availability, and nitrate reductase abundance was at least 10-fold greater in leaves than in stems or roots at all nitrate availabilities. Tissue nitrate concentration increased with increasing nitrate supply and was greater in roots than in stems and leaves. Photoperiod influenced NRA, with leaf NRA declining in nitrate-fertilized plants with short daily photoperiods (8-h). We conclude that different tissues of poplar vary in nitrate assimilation with little nitrate assimilation occurring in roots and the most nitrate assimilation taking place in leaves.  相似文献   

4.
The effects of mulching materials (black plastic and straw) and herbicide application (glyphosate) on growth and nitrogen nutrition of butternut (Juglans cinerea), white ash (Fraxinus americana) and bur oak (Quercus macrocarpa) were studied in a plantation established in an abandoned field in southern Québec (Canada) since 1987. To ascertain the efficiency of mulching materials on the performance of tree seedlings, a herbicide (glyphosate, 6 l ha−1) was applied in half of the experimental plots in June 1990 and 1991. Soil parameters (temperature, moisture) and soil nitrate and ammonium concentrations were measured during the growing season in 1991. In summer 1991, nitrogen nutrition of the seedlings was monitored using enzyme assays (nitrate reductase activity (NRA), glutamine synthetase activity (GSA)) of the leaves of the three deciduous tree species. Mulching affected soil parameters, with black plastic producing the highest soil temperature (23.4°C) and straw the highest soil moisture (183.6 g kg−1) in June. NRA varied in relation to tree species, herbicide application, mulching material and time. GSA was poorly correlated to silvicultural treatments. Butternut showed the highest NRA, especially in herbicide plots irrespective of mulching material. Bur oak NRA showed less variation between herbicide and non-herbicide plots and reacted more to the mulching treatments. White ash NRA only showed an herbicide effect in June. All species reacted positively to the addition of an herbicide around the mulching material, but not to the same degree. Height and diameter increment ratios (with/without glyphosate application) indicate that butternut growth was the most improved by herbicide applications, followed by white ash and bur oak. This indicates that the effectiveness of mulching alone decreases in the following order: bur oak > white ash > butternut. The utilization of mulching material in abandoned fields as an alternative to herbicide application is closely linked to the species chosen. Enzyme assays (NRA) were shown to be a valuable tool for monitoring physiological status of planted trees subjected to environmental changes brought on by silvicultural practices.  相似文献   

5.
We determined the effects of short-term cultivation with various amounts of available nitrate nitrogen (NO3-) on NO3- use by woody shrub species. Nitrate concentration ([NO3-]) and nitrate reductase activity (NRA) were measured in leaves and roots of seedlings of Hydrangea hirta (Thunb.) Siebold, Lindera triloba (Sieb. et Zucc.) Blume and Pieris japonica (Thunb.) D. Don. Root [NO3-] increased with increasing NO3- supply in all species, whereas leaf [NO3-] remained low. There were significant correlations between [NO3-] in roots and leaves in all species, but no correlation was found between root NRA and leaf NRA. The low proportion of leaf NO3- assimilation to total NO3- assimilation in all species can be ascribed to the lack of NO3- transport from roots to leaves. In all species, root NRA increased with increasing NO3- supply until reaching a plateau. Species ranking based on maximum root NRA was H. hirta > L. triloba > P. japonica. Root NRA in P. japonica was low, even though root [NO3-] increased with NO3- supply, indicating that NO3- was not an effective N source for this species. The ranking also suggested that H. hirta depended more on NO3- as an N source than L. triloba. The increase in root NRA with increasing NO3- supply was greater in H. hirta than in L. triloba, possibly indicating that a change in NO3- availability has a stronger influence on NO3- use in H. hirta than in L. triloba.  相似文献   

6.
以辽东山区原始红松混交林为研究对象,对比分析了不同树种组成下原始红松混交林土壤有机碳含量的差异,研究了土壤有机碳与土壤属性因子和植被覆盖因子的相关关系,并研究了土壤碳密度的分布规律。结果显示,3种原始红松混交林土壤有机碳含量均随着剖面深度的增加而降低;0~10 cm土层深度土壤有机碳含量为红松阔叶林阔叶红松林针阔混交林,表层土壤有机碳主要来源于枯落物层的分解,表层土壤有机碳的特征表明原始红松混交林树种构成不同,潜在地影响着生态系统内的碳循环。对土壤属性因子而言,碳氮比与有机碳含量呈极显著的正相关关系,而容重、pH值呈显著的负相关关系;对植被覆盖因子而言,枯落物有机碳、全氮、碳氮比与土壤有机碳含量则无相关关系;0~100 cm深度内红松阔叶林的土壤碳密度最大,为181.4 t/hm2,针阔混交林次之,为180.56 t/hm2,阔叶红松林最小,为150.78 t/hm2,且接近70%的土壤碳储存集中在40 cm以上的土层内。旨在为揭示原始红松混交林对土壤有机碳的影响因素和探索我国原始红松混交林土壤碳分布格局提供科学依据。  相似文献   

7.
主要伴生树种树叶对红松生长的影响   总被引:13,自引:0,他引:13  
徐振邦  戴洪才 《林业科学》1992,28(4):357-361
在培育森林的实践中,早在19世纪就发现有一些树种对于另一些树种具有选择性的影响,这方面大量的工作是通过叶子、树皮或凋落物等浸出液来进行,而我国则研究甚少,尤其树木间相互影响的研究更少。但是,这种现象却是常见的。如在东北的阔叶红松林中,红松(Pinus koraiensis)常与其他伴生的阔叶树混生一起,不仅生长很好,而且还可以在这些阔叶树林冠下更新成长。相反地,在红松纯林下红松幼苗一般很难维持到10年以上。为了了解这些现象,我们选取我国东北分布最广,经济价值最高的阔叶红松林的  相似文献   

8.
We investigated how patchy nitrate availability influences growth and functioning of plant roots and generates, through vascular constraints on long-distance transport, aboveground heterogeneity in plant growth and chemistry. We examined two broadleaf tree species, Acer rubrum L. and Betula papyrifera Marsh. Plants were grown either in a split-root setup where a single root received full nutrient supply and the rest of the root system received all nutrients except nitrogen (patchy treatment), or in a single pot with full nutrient supply (homogeneous treatment). In both species, fine roots proliferated in the nitrogen patch, but B. papyrifera produced twice as much fine root biomass in response to patchy nitrate availability as did A. rubrum. There was no difference between treatments in nitrogen uptake rate in either species. In general, specific water uptake was higher in A. rubrum than in B. papyrifera, especially in the nitrogen-rich side pot. When nitrate availability was patchy, nitrate reductase activity in roots and leaves was unaffected in either species. In A. rubrum, but not in B. papyrifera, patchy nitrate supply resulted in aboveground heterogeneity, with leaves above the N-fertilized roots being larger and having a higher relative chlorophyll concentration than those inserted in the opposite quater of the stem.  相似文献   

9.
Analysis of in vivo shoot nitrate reductase activity (NRA) of the grass Deschampsia flexuosa (L.) Trin. has been proposed as a method of indicating the availability of nitrate in northern temperate forest soils. We report the seasonal variation in NRA and the influence of temperature on the NRA assay. Studies were performed in the field or on natural populations on topsoil monoliths in a greenhouse.

The induced in vivo NRA as measured at 28°C was higher in plants grown at lower than at higher temperatures within the range 4–20°C, although the induction was faster at higher temperatures. When the assay was performed at various temperatures, enzyme activity was much lower at lower temperatures. The accumulation of organic nitrogen in shoots showed that reduction actually increased with temperature. Transfer of monoliths from high to low temperature led to an increase of in vivo NRA within a day, whereas the decline caused by the reverse began after six days. Variations in temperature accounted for between 0 and 80% of the seasonal variation in NRA in the field, depending on the influence of the variability in nitrate supply.

Maximally induced NRA after application of nitrate was mostly higher in a clearfelling than in a closed forest. In the forest, there was a close correlation between current and maximally induced NRA. One interpretation of this result is that low availability of nitrogen may have been a cause of the lower maximally induced NRA there. This is supported by results from other studies.

We conclude that variations in temperature and availability of nitrogen, particularly nitrate, are largely responsible for seasonal variations in NRA. The influence of temperature can be adjusted for.  相似文献   

10.
We investigated the distribution of nitrate reductase activity (NRA) among leaves, roots, culms, twigs, sprouts, culm sheaths, and new leaves of Phyllostachys pubescens Mazel in May, when many sprouts emerge above ground and new leaves of adult culms expand. We found that the NRA differed among parts, and that sprouts showed high NRA. These results indicate that different tissues of P. pubescens vary in nitrate reduction, and sprouts possess high nitrate reduction capacity. We also found that culm sheaths showed high NRA, indicating that they have a high potential for nitrate reduction, even though they are shed in the way of sprout growth.  相似文献   

11.
Fluctuations in nitrate reductase activity (NRA), nitrate, nitrite, protein and total nitrogen content of bare-root Scots pine seedlings (Pinus sylvestris L.) raised outdoors were investigated during the first growing season. Nitrate reductase activity was higher in roots than in needles, whereas NO(3) (-) content was higher in needles than in roots and increased in both from June to October. Nitrate reductase activity in roots correlated more closely with NO(3) (-) N in the soil than did NO(3) (-) in the roots. In autumn, there was a closer correlation between foliar NRA and NO(3) (-) in the needles than with NO(3) (-)-N in the soil. Nitrite was not detected in the seedlings during the growing season. Total nitrogen content decreased toward the autumn, whereas protein content initially decreased but increased again in autumn. Acrylic netting placed above the seedlings increased both air and soil temperatures and apparently accelerated the use of nitrate.  相似文献   

12.
The effect of tree harvesting on soil mineral nitrogen and microbiological activity were investigated in an agrisilvicultural system consisting of wheat cultivated along the sides of a poplar plantation in Sweden from 1993 to 1995. Sampling for mineral nitrogen was carried out in three layers down to 90 cm at two distances, near (0.5–1.5 m) and far (4.0–5.0 m) from rows of standing, ST, and harvested trees, HT. Sampling for basic respiration and substrate-induced respiration was carried out in the 0–10 cm layer in 1993 and in the 0–10 cm and 10–20 cm layers in 1994 at the same distances from trees.There was a higher concentration of ammonium and lower concentration of nitrate closer to trees, indicating an efficient uptake of nitrate by trees and enhanced N mineralization close to trees. Shortly after tree harvesting, there were higher concentrations of nitrate and ammonium in the 0–30 cm soil layer near the harvested trees than near standing trees, suggesting a derease in nitrogen uptake by tree roots. The soil microbiological activity was lower in the harvested than the standing plots of trees, which is considered as an indication of the important role of root exudates in maintaining a larger microbial biomass close to trees.  相似文献   

13.
本文利用体内法测定了喜树幼苗不同器官以及不同叶位叶片的硝酸还原酶活性(NRA),同时观察了喜树幼苗不同叶位叶片的NRA的日变化规律,并考查了NRA与叶面积及比叶重的相关性。结果表明,与根、茎及茎尖中的NRA相比,叶片中的NRA最高。不同叶位叶片的NRA有明显的差异,在所测定的10个不同叶位的叶片中,上数第4~6片叶片的NRA较高。叶片NRA有明显的日变化,呈单峰曲线,峰值出现在中午1230前后。同时,结果表明NRA与叶面积以及比叶重无明显的相关关系。研究结果为进一步研究喜树的氮代谢提供基础资料。图5参18。  相似文献   

14.
We measured fine root N concentration, root in vivo nitrate reductase activity (NRA) and root uptake capacity for (15)NH(4) (+) and (15)NO(3) (-) along an N-deposition gradient from northern Sweden to central Europe, encompassing a variation in N deposition rates of < 5 to about 40 kg N ha(-1) year(-1). The focus was on Picea abies (L.) Karst., but Fagus sylvatica L. in central Europe and Pinus sylvestris L. and Betula spp. in northern Sweden were also studied. We assumed that, with an increased supply of N, root N concentration would increase, activity of the inducible enzyme nitrate reductase (NR) in roots would increase, particularly with an increasing supply of NO(3) (-), and root uptake capacity for inorganic N would decline, reflecting a lower demand for N. As expected, fine root N concentration in P. abies increased along the gradient from 1.1% (d.w. basis) at the northern site to 2.1% at central European sites. This variation compared with an amplitude of 0.7-1.5% for foliage. Root in vivo NRA was low in northern Sweden, and higher in central Europe. Picea abies and broad-leaved species had similar root NRA. At one location in Denmark and one in France, however, root NRA in the spring was very high in F. sylvatica. Root uptake capacity for NO(3) (-), as measured in excised roots, was low throughout the transect, but in P. abies, it was high for NH(4) (+) in northern Sweden and decreased by a factor of 4 with increasing N deposition. A similar pattern was found in the broad-leaved species. Unless the higher availability of NO(3) (-) and lower specific root uptake capacity per unit root mass for inorganic N in central Europe (compared with northern Sweden) is balanced by a higher root biomass, the central European forests will be a weaker sink for N.  相似文献   

15.
Deposition of protons, nitrate and sulphate have caused a decrease in soil pH and base saturation in southern Scandinavia. Floral changes have been suggested to be due to this deposition. This study was made to test if differences in nitrate assimilation capability between plants could be one of the reasons behind reported changes in the flora. Current and maximally induced nitrate reductase activity (C‐NRA and MI‐NRA, respectively) were measured in four beech forest field‐layer species, which have been reported to behave differently with respect to acid rain. The study was conducted at four sites of different soil quality (pH). There were considerable differences between the species as regards both C‐NRA and MI‐NRA. For two of the studied species, Galium odoratum and Stellaria nemorum, the gap between C‐ and MI‐NRA was relatively small but for Mercurialis perennis and Oxalis acetosella, this gap was larger. A small difference between C‐ and MI‐NRA should indicate that a larger portion of the available resources for nitrate reduction is already used. The concentrations of soluble carbohydrates were correlated with the MI‐NRA after leafing of beech, while before leafing no such effect could be detected. It can be concluded that the light environment has a considerable effect on the nitrate nutrition of field‐layer plants. Apparently, some species receive as much nitrate as they can reduce. Fertiliser experiments are needed to test if higher addition rates are harmful to them.  相似文献   

16.
An understanding of root system capacity to acquire nitrogen (N) is critical in assessing the long-term growth impact of rising atmospheric CO2 concentration ([CO2]) on trees and forest ecosystems. We examined the effects of mycorrhizal inoculation and elevated [CO2] on root ammonium (NH4+) and nitrate (NO3-) uptake capacity in sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.). Mycorrhizal treatments included inoculation of seedlings with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith in sweetgum and the ectomycorrhizal (EM) fungus Laccaria bicolor (Maire) Orton in loblolly pine. These plants were then equally divided between ambient and elevated [CO2] treatments. After 6 months of treatment, root systems of both species exhibited a greater uptake capacity for NH4+ than for NO3-. In both species, mycorrhizal inoculation significantly increased uptake capacity for NO3-, but not for NH4+. In sweetgum, the mycorrhizal effect on NO3- and NH4+ uptake capacity depended on growth [C02]. Similarly, in loblolly pine, the mycorrhizal effect on NO3- uptake capacity depended on growth [CO2], but the effect on NH4+ uptake capacity did not. Mycorrhizal inoculation significantly enhanced root nitrate reductase activity (NRA) in both species, but elevated [CO2] increased root NRA only in sweetgum. Leaf NRA in sweetgum did not change significantly with mycorrhizal inoculation, but increased in response to [CO2]. Leaf NRA in loblolly pine was unaffected by either treatment. The results indicate that the mycorrhizal effect on specific root N uptake in these species depends on both the form of inorganic N and the mycorrhizal type. However, our data show that in addressing N status of plants under high [CO2], reliable prediction is possible only when information about other root system adjustments (e.g., biomass allocation to fine roots) is simultaneously considered.  相似文献   

17.
Kitaoka S  Koike T 《Tree physiology》2005,25(4):467-475
Several deciduous broad-leaved tree species, differing in leaf phenology, invade larch (Larix kaempferii (Lamb.) Carrière) plantations in Japan. The understory light environment of larch forests changes drastically between the leafy and leafless periods. To determine how the invading seedlings exploit the changing light environment, and if phenological differences reflect the light- and nitrogen-use traits of the seedlings, we measured leaf phenology, seasonal changes in light-saturated photosynthetic rate (P(sat)), leaf nitrogen (N) content (N(area)), chlorophyll/nitrogen ratio (Chl/N), specific leaf area (SLA) and N remobilization rate (NRMR) over 3 years. The mid-successional or gap-phase species, Magnolia hypoleuca Siebold & Zucc., had a short leafy period and high P(sat) and NRMR. In contrast, two late-successional tree species, Prunus ssiori Friedr. Schmidt, which undergoes leaf flush before larch, and Carpinus cordata Blume, which maintains green leaves until frost, both had low P(sat) and NRMR but exploited the opportunity for growth during the period when the larch canopy trees were leafless. Quercus mongolica Fisch. ex Ledeb. var. crispula (Blume) Ohashi, a mid-late-successional species that underwent leaf flush at the same time as the overstory larch, had values of photosynthetic parameters between those of the gap-phase and late-successional species. Among species, M. hypoleuca and Q. mongolica had higher photosynthetic rates and photosynthetic N-use efficiencies. In all species, the relationship between N(area) and P(sat) showed species-specific yearly fluctuations; however, there was no yearly fluctuation in the relationship between N(area) and P(sat) at CO2 saturation. Yearly fluctuations in the N(area)-P(sat) relationship appeared to be induced by changes in SLA and N-use characteristics, which in turn are affected by climatic variations.  相似文献   

18.
不同形态氮肥处理对樱桃植株生长发育影响的研究   总被引:2,自引:0,他引:2  
利用盆栽植株研究了不同形态氮肥处理对樱桃生长发育的影响。结果表明,3种形态氮肥均能促进根系生长,其中以硫酸铵效果最显著,但3种氮肥对细根中不同养分的含量影响效应不同;施用尿素对植株地上部分营养生长的促进效应好于硫酸铵和硝酸钾处理,而施用硝酸钾对植株地上部分生殖发育的促进效应好于尿素和硫酸铵处理。  相似文献   

19.
不同土地利用类型对土壤氮素的影响   总被引:1,自引:0,他引:1  
选取林地、园地和耕地3种土地利用类型,分析禹州市褐土土壤中氮素含量的研究结果表明:0~15 cm土层中,矿化氮含量为:林地>园地>耕地;土壤表层(0~5 cm)硝态氮含量林地最高,显著高于园地和耕地,而土壤表层铵态氮含量园地和林地显著高于耕地;不同土层中的,林地、园地和耕地的硝态氮和铵态氮含量差异显著(P<0.05)。在林地和园地0~5 cm土层中,硝态氮含量显著高于10~15 cm土层,而耕地中硝态氮含量无显著差异,其中林地的硝态氮含量随土壤深度的增加而降低。3种土地利用类型铵态氮含量主要集中分布在土壤0~10 cm土层中。  相似文献   

20.
小兴安岭阔叶红松林粗木质残体基础特征   总被引:5,自引:0,他引:5  
以小兴安岭典型阔叶红松林大面积固定样地(9hm2)为对象,分析粗木质残体(CWD)的物种组成及数量特征、径级结构、存在形式、腐烂等级,揭示小兴安岭阔叶红松林CWD的基础特征。结果表明:9hm2典型阔叶红松林固定样地内共计有胸径≥2cm的CWD3418株(由于高度腐烂鉴别不出种的CWD有864株,占总个体数的25.3%),CWD的密度、胸高断面积和体积分别为380株.hm-2、15.80m2.hm-2和90.1m3.hm-2;花楷槭和枫桦是阔叶CWD的主要组成树种,红松和冷杉是针叶CWD的主要组成树种;针叶树种的胸高断面积(9.12m2.hm-2)和体积(57.68m3.hm-2)分别达到总体CWD的57.7%和64%;在各存在形式下不同种的CWD数量随着径级的增加而减少,均呈反J型;除未知种以外,其他CWD都主要以枯立木、干基折断和干中折断形式存在;针叶树种根桩形式CWD的数量随着径级的增加而增加,这一规律有别于其他种;样地内各树种CWD腐烂等级都大致呈正态分布,主要集中在Ⅱ和Ⅲ腐烂等级上;除针叶树种的Ⅴ腐烂等级外,各树种不同腐烂等级CWD的数量都随着径级的增加呈减少的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号