首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Abstract

Municipal waste compost can improve the fertility status of tropical soils. The redistribution of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in tropical soils after amendment with solid municipal waste compost was investigated. Four tropical agricultural soils from Mali characterized by poor trace‐element status were amended with compost and incubated for 32 weeks at 35°C. The soil were analyzed at the beginning and the end of the incubation experiment for readily available fractions, organic fractions, and residual fractions as operationally defined by sequential extraction. Readily available Fe increased significantly with compost application in most soils. Readily available Mn was mostly unaffected by compost application. After 32 weeks, readily available Zn had increased, and readily available Cu had decreased. Readily available levels of the elements remained greater than deficiency levels in the compost‐amended soils. Organic fractions of the elements increased after compost addition. The organic fractions and residual forms, depending on the element and the soil, remained constant or increased within the duration of the experiment.  相似文献   

2.
In an intensely cultivated soil in southern Italy, the effects of municipal waste compost on soil activities (basal respiration, β-glucosidase, and fluorescein diacetate (FDA) hydrolysis), Biolog functional diversity, pH, and electrical conductivity (EC) were estimated in a short period following amendment. Treatment with compost at 30 t ha?1 (dry matter) was compared to mineral fertilization and untreated soil. In these poor soils, organic amendment allowed the rapid recovery of an active and biodiverse soil community. While the addition of compost increased all microbial activities and EC, the pH did not change. Conversely, metabolic activity that was positively correlated to FDA hydrolysis rate initially was enhanced by compost but decreased with time and disappeared at the end of the incubation. Results indicated that waste compost amendments affected microbial activities, both at global and functional levels, favoring a rapid return of biological factors of fertility.  相似文献   

3.
A pot experiment was conducted in sandy clay loam saline-sodic soil to assess the effects of farm yard manure (FYM), municipal solid waste (MSW) composts and gypsum application on nitrate leaching, soil chemical properties and crop productivity under rice-wheat cropping system. It also aims at establishing the correlation between soil phsico-chemical properties and yield response using principle component analysis and Pearson correlation analysis. The MSW was decomposed aerobically, an-aerobically and co-composted. Maximum nitrate leaching was observed during rice (75.9 mg L?1) and wheat (37.2 mg L?1) with an-aerobically decomposed MSW as compared with control treatment. Results revealed a decrease in soil pH (?6.95% and ?8.77%), electrical conductivity (EC) (?48.13% and ?51.04%), calcium carbonate (CaCO3) (?40.30% and ?48.96%), and sodium adsorption ratio (SAR) (?40.27% and ?45.98%) with an-aerobically decomposed MSW compost during rice and wheat, respectively. In this treatment, organic matter (OM) (93.55% and 121.51%) and cation exchange capacity (CEC) (19.31% and 31.79%) were the highest as compared with control treatment during rice and wheat, respectively. Rice and wheat growth were significantly (p≤ 0.05) increased by an-aerobically decomposed MSW followed by co-compost, aerobically decomposed MSW, FYM, gypsum and control. Furthermore, Pearson correlation coefficients predicted significant positive correlation of yield with soil OM, and CEC while inverse relationship was observed with EC, pH, CaCO3, and nitrogen use efficiency. Soil amelioration with organic and gypsum amendments was further confirmed with principal component analysis. This study has proved an-aerobically decomposed MSW as an effective solution for MSW disposal, thereby improving soil chemical properties and crop productivity from sandy clay loam saline-sodic soil.  相似文献   

4.
Inappropriate utilization of biosolids may adversely impact agrosystem productivity. This article addresses the response of H. vulgare and P. monspeliensis to different doses (0, 100, and 150 t ha?1) of municipal solid waste (MSW) compost in a greenhouse pot experiment. Plant growth, heavy-metal uptake, gas exchange, and photosynthetic pigment concentrations and photosynthesis parameters were considered. Results showed that compost supply significantly increased shoot and root dry weights of both species, and this was positively correlated with nutrient uptake. Chlorophyll and carotenoid contents were positively influenced, especially in H. vulgare at rate of 100 t ha?1. Furthermore, MSW compost application increased net photosynthetic rate (A), stomatal conductance (Gs), and water-use efficiency (WUE) in both species. Alternatively, MSW compost amendment increased plant heavy-metal contents but levels remained lower than phytotoxic thresholds. This preliminary study suggests that a MSW supply at moderate doses (100 t ha?1) could be highly beneficial for plant productivity on saline soils.  相似文献   

5.
为了满足日益增长的垃圾处理发展的需要,解决城市生活垃圾产生与消纳、处理之间的矛盾,以北京市南宫堆肥厂垃圾堆肥工艺和密闭隧道发酵仓为研究对象,以马家楼转运站筛分出的15-80mm粒径垃圾作为堆肥原料,以14d高温隧道发酵(不倒仓不破碎)→21d后熟化发酵→21d最终熟化发酵工艺为对照,以8d高温隧道发酵(不倒仓不破碎)→12d后熟化发酵→12d最终熟化发酵工艺为处理1,8d高温隧道发酵(第3d倒仓破碎1次)→12d后熟化发酵→12d最终熟化发酵工艺为处理2。通过不同发酵阶段采样和各类指标的测定,探求缩短堆肥发酵周期后倒仓破碎工艺对于生活垃圾堆肥腐熟度的影响。结果表明,处理1产品的腐熟度较差,处理2与对照处理的堆肥产品腐熟度差异不明显。将高温隧道发酵时间由14d缩短为8d,并且第3d倒仓破碎1次,后熟化与最终熟化时间分别由21d缩短为12d,可以在保证堆肥产品品质的基础上显著提高堆肥效率,使南宫堆肥厂的垃圾处理能力得到大幅提高,该成果为南宫堆肥工艺优化的实施和改进及其推广应用提供了技术支持。  相似文献   

6.
Evaluation of fertility sources for certified organic greenhouse vegetable production is necessary for further industry growth. Two experiments tested the effects of municipal solid waste compost (MSWC) and water extract tea made from it on potted greenhouse tomatoes. The first used MSWC alone (two levels) and soil tea drench alone (three application frequencies). The second used MSWC and tea in factorial combination at three levels (0, 1×, and 2×). The greatest yield and leaf tissue potassium (K) were obtained using the greatest level combinations of compost and foliar tea spray, and this was significantly greater than conventional nitrogen-phosphorus-potassium (NPK) fertilizer yield. Tissue magnesium (Mg) was affected by compost because of the antagonism from compost K. Tea increased tissue sodium (Na). No significant differences in heavy-metal tissue concentrations were found between treatments. While MSWC is an effective soil fertility amendment, the benefits of using tea may be increased with more frequent application.  相似文献   

7.
ABSTRACT

This research was conducted within Uyo metropolis, Nigeria. Three designated dumpsites of municipal solid waste (MSW) were randomly selected for the collection of samples for analysis of the physical and macronutrient contents of their organic fraction. After the waste was sorted, its physical components were determined to be: organic materials (73.7%), plastics/polythene (12.9%), cans/metals (4.3%), bottles/glasses (4.2%), clothes/shoes (4.3%), and ceramics (0.6%). Laboratory analysis of the organic components of the waste indicated that the mean nitrogen (N), phosphorus (P), and potassium (K) contents were 11.0, 3.2, and 10.7 g kg?1, respectively. The mean contents of other elements were calcium (Ca) (87.7 g kg?1), sodium (Na) (18.4 g kg?1), and sulfur (S) (2.3 g kg?1). The mean organic-matter content of the organic components of the waste was 223.7 g kg?1. Both the physical and macronutrient contents of the waste differed from one location to another within the municipality. The high content of organic matter and some essential macronutrients in the waste suggest its high value for use in the production of organic and organo-mineral fertilizers for sustainable agricultural development.  相似文献   

8.
Hoagland's nutrient solution of 0, 25, 50, or 75% strength with or without soil-applied nitrogen, phosphorus, and potassium (NPK) fertilizers were sprayed at 7, 14, and 21 days after emergence on two cultivars (AZRI-2006 and NIAB-2011) of mung bean (Vigna radiata (L.) Wilczek). Hoagland's nutrient solution of 75% strength with soil-applied NPK fertilizers markedly increased the growth and yield of mung bean cultivars if applied at 21 days after crop emergence. However, 75% strength Hoagland's nutrient solution without soil-applied NPK fertilizers was comparable to 0, 25, and 50% strengths without NPK fertilizers. Foliar application of 75% strength of Hoagland's nutrient solution with soil-applied NPK fertilizers might enhance the yield of mung bean in low fertile areas. Performance of NIAB-2011 was superior to the other cultivar. It is concluded that Hoagland's nutrient solution of 75% strength can be sprayed at 21 days after emergence to get better yield of mung bean.  相似文献   

9.
[目的]为解决滨海地区土壤盐分高和生态环境恶劣的问题,研究发酵园林废弃物与膨润土不同比例配合施用对滨海盐渍土的改良效果。[方法]通过滨海地区田间试验,采用单独施用68 kg/m~3发酵园林废弃物(T_1)、单独施用15 kg/m~3膨润土(T_2)和二者混合施用(T_3)的方法,分析不同处理组土壤酶活性、微生物量碳、氮的变化及其与土壤理化性质的相关关系。[结果]有机无机改良剂混施(T_3)在提高土壤酶活性和微生物量碳、氮方面具有更显著的效果。脲酶、蔗糖酶和脱氢酶分别为对照的10.1,9.0和4.5倍;土壤微生物量碳、氮分别比对照提高了24.8%和78.1%。此外,混施也可以显著改善土壤理化性质,使土壤盐分降低了62.7%,养分各项指标增幅为57.2%~101.4%。同有机改良剂处理相比,无机改良剂对土壤酶活和土壤微生物量的影响较小。速效钾与速效氮是影响土壤酶活性与微生物量的主要因子,而含盐量、容重则与土壤酶和微生物量呈负相关,具有抑制作用。[结论]发酵园林废弃物的加入对土壤酶活性和微生物量的增加起到了决定性的作用。最佳施用处理组为原土混合掺拌68 kg/m~3发酵园林废弃物和15 kg/m~3膨润土。  相似文献   

10.
The application of compost to calcareous soils by farmers is a well-established practice and has been shown to improve yields. However, incorporation of biochar and mixture of biochar and compost into calcareous soils is a relatively novel concept for improving soil quality and yield since calcareous soils comprise a large scale of soils worldwide. The objective of this study was to determine the effects of the co-application of biochar and compost on the soil properties, nutrient status and grain yield of rice in calcareous sandy soil. The experiment was conducted in a factorial arrangement based on randomized complete block design with three replications. The compost application rates were 1% and 3% (w/w; compost/soil) and the applied rates of biochars (rice straw biochar, RSB; sugarcane bagasse biochar, SBB) were 0.3% and 0.9% (w/w; biochar/soil). The results showed that soil pH decreased with increasing application rates of either compost or biochars. However, soil EC was enhanced through increasing the application rates of compost and biochars. The co-application of biochar and compost improved soil total N and available P concentrations. The soil available K increased with increasing the rate of incorporated biochars and compost. An increase of soil available K was more predominate with the application of RSB than SBB. The RSB, also, added a considerable amount of silicon (Si) to the soil. The co-incorporation of biochars and compost enhanced soil available concentrations of Fe, Zn, Cu, and Mn as well. The RSB was more effective than the SBB in grain yield enhancement almost certainly due to a higher Si content in RSB. Furthermore, the concurrent application of biochars and compost increased grain yield more than applying them individually. A higher application rate of biochar and compost induced a higher grain yield. The co-application of highest rates of RSB (0.9%) and compost (3%) induced the highest grain yield (26.1 g/pot) among the treatments. The increase in yield compare to the control were 321% and 260% for 0.9% RSB + 3% compost and 0.9% SBB + 3% compost, respectively. The increase in the grain yield was due to an improvement in the soil chemical properties and nutrients enhancement. Finally, the co-application of the highest rate of RSB (0.9%) and compost (3%) is recommended to obtain the appropriate rate of rice grain yield in calcareous sandy soil.  相似文献   

11.
《Journal of plant nutrition》2013,36(9):1635-1651
Abstract

Most agricultural soils in Iran are usually low in organic matter (OM). Therefore, increasing OM in these soils is of great concern. Environmental pollution caused by chemical fertilizers has created an interest in the integrated use of organic wastes with inorganic fertilizers. The main purpose of this greenhouse study was to evaluate the impact of two organic wastes and phosphorus (P) on the growth, and elemental composition of spinach (Spinacia oleracea L.) and soil chemical properties. Treatments consisted of four levels of municipal waste compost, MWC (0, 1, 2, and 4%), five rates of poultry manure, PM (0, 1, 2, 3, and 4%), and three P levels (0, 25, and 50 mg kg?1 as KH2PO4). Application of P and MWC alone or in combination significantly increased the top dry weight of spinach. However, spinach growth was markedly increased up to 3% PM and suppressed with the higher rate, probably due to an excess of soluble salts in the soil. Moreover, the enhancing influence of P on spinach seedling growth was more pronounced at lower levels of MWC and PM. Plant P concentration tended to increase with increasing P, MWC, and PM application rates, whereas nitrogen (N) concentration was only affected by the two organic wastes treatment. Manganese (Mn) concentrations decreased, and copper (Cu), lead (Pb), and cadmium (Cd) increased by soil P application. However, P addition significantly decreased zinc (Zn) concentration only in MWC-treated spinach. Spinach plants enriched with either of the two biosolids accumulated more Mn, Zn, Pb, Cd, chloride (Cl), and sodium (Na) than control plants. Furthermore, spinach grown on MWC-amended soil contained higher Mn, Zn, Cu, and Pb and lower N, Cl, and Na than those raised on PM-treated soil. Postharvest soil sampling indicated that application of the two biosolids significantly increased concentration of soluble salts, (ECe), OM, TN, NaHCO3-extractable P, and DTPA-extractable iron (Fe), Mn, Zn, Cu, Pb, and Cd.  相似文献   

12.
农业废弃物静态高温堆腐过程中微生物变化的研究   总被引:2,自引:0,他引:2  
在静态通气条件下,研究了农业废弃物堆腐过程中微生物的动态变化。结果表明,以猪粪和小麦秸秆为原料,加入微生物菌剂堆腐,细菌数在堆腐3 d达到高峰值3.85×1012CFU/g,放线菌在第5 d达到高峰值6.25×108CFU/g,真菌数在堆肥第3 d就达到高峰值8.29×106CFU/g;未加菌剂的堆腐处理细菌数在第8 d达到高峰值7.54×1010CFU/g,放线菌数在第5 d达到高峰值4.22×108CFU/g,真菌数随着温度上升而下降,在堆腐后期上升。在以牛粪和小麦秸秆为原料,加入微生物菌剂堆腐,细菌数在第2 d达到高峰值5.62×1012CFU/g,放线菌数在堆腐第3 d达到高峰值1.46×1010CFU/g,真菌数在堆腐第1 d达到高峰值1.13×109CFU/g;未加菌剂的堆腐处理,细菌数在第4 d达到高峰值2.01×1011CFU/g,放线菌数在第3 d达到高峰值1.46×1010CFU/g,真菌数在堆腐第1 d达到高峰值8.51×108CFU/g。在整个堆腐过程中,真菌数一直较低,细菌和放线菌相对较高。  相似文献   

13.
14.
The effects of different fertilization techniques—mineral [21% nitrogen (N)], organomineral (10% N), mycorrhiza inoculumns, wine-producing residues (three different formulas: distiller's residue, 2.2% N; anaerobic digestate, 2.8% N; and the same plus mycorrhizas inoculum), and compost by farm residues (2.0% N)—on adsorption of boron (B) were investigated. The soils, collected after a triennial lettuce (Lactuca sativa L. cv. ‘Bacio’) cultivation, were equilibrated using six B concentrations [0, 1, 5, 20, 50, and 100 mg B L?1, as boric acid (H3BO3)]. The B adsorption was studied at two soil mass (ms) to solution volume (vs) ratios, ms/vs = 0.5 and 1, and the Langmuir, Eadie–Hofstee, Freundlich, and Temkin adsorption equations were fitted to the B adsorption data. The proportion of adsorbed B was gradually less in the more concentrated solutions, with differences in ms/vs ratio and in treatments: the percentage of B adsorbed was greater for ms/vs = 0.5 and for distiller's residue and mineral fertilizer. The Freundlich isotherm represented the measured B adsorption data well; at ms/vs = 0.5, the values of Freundlich adsorption maxima Xm varied from 93.14 to 111.88 mg kg?1 (organomineral fertilizer and distiller's residue, respectively; at ms/vs = 0.5) and from 32.14 to 40.32 mg kg?1 (mineral fertilizer and control, respectively; at ms/vs = 1). In our study, generally the B adsorption was greater with mineral fertilizers and distiller's residue, whereas the organomineral fertilizer led to a decrease in B adsorption. The parameters of adsorption isotherms were significantly correlated, at various degrees, with the exchangeable cation sodium. The adsorption isotherms were well explained by the lower soil mass to volume solution ratio in the order Freundlich > Temkin ≌ Langmuir > Headie–Hofstee.  相似文献   

15.
在河西走廊的制种玉米田,采用田间小区试验方法,将几种农业固体废弃物按比例混合,经发酵处理后,施入土壤,研究了固体废弃物对制种玉米田理化性质和玉米产量及经济效益的影响,结果表明:固体废弃物糠醛渣、牛粪、玉米秸秆、羊粪,各物料容积比为0.500:.20:0.20:0.10,施用量为45.00 t hm-2,改土培肥效应最佳,与ck(对照)比较,土壤总孔隙度、团粒结构、有机质、速效N、速效P、速效K、CEC分别增加了8.31%、8.73%、3.86 g kg-1、21.42 mg kg-1、7.47 mg kg-1、42.67 mg kg-1、13.07 cmol kg-1;自然含水量、贮水量分别增加了84.71 gkg-18、9.54 m3 hm-2;玉米增产量、增产值、利润分别增加了2.03万元hm-20、.51万元hm-2、和0.32万元hm-2;而土壤容重降低了0.22 g cm-3。土壤长期施用粉煤灰和生活垃圾将会导致土壤中重金属离子的富集;而长期施用锯末和糠醛渣不会引起土壤重金属离子的富集。处理间的差异显著性经LSR检验达到显著和极显著水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号