首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT

Grain yield increases (responses) of canola (oilseed rape, Brassica napus L.) and spring wheat (Triticum aestivum L.) to application of nitrogen (N) and potassium (K) fertilizers were compared in the same experiment at eight field sites over three years (2000–2002) in southwestern Australia. Four rates of N (0–138 kg N/ha as urea) and four rates of K (0–60 kg K ha?1 as potassium chloride) were applied. Significant grain yield responses to applied N and K occurred for both crop species at all sites of the experiment, and the NxK interaction was significant. Canola required an average of 26% more applied N and 32% more applied K than wheat to produce 90% of the maximum grain yield. Applying increasing rates of K increased the rate of N required for 90% of maximum grain yield. Likewise, applying increasing rates of N increased the rate of K required for 90% of the maximum grain yield. Fertilizer K had no significant affect on the concentration of oil in canola grain or concentration of protein in both canola and wheat grain. Application of increasing rates of N decreased the concentration of oil while increasing the concentration of protein in canola grain, and increased concentration of protein in wheat grain. The NxK interaction was not significant for concentration of oil or protein in grain.  相似文献   

2.
Spring wheat (Triticum aestivumL.) is the major crop species grown in south-western Australia and no responses of wheat to applied calcium (Ca) have been obtained in field experiments though responses have been obtained in glasshouse pot studies for wheat grown on the predominantly sandy acidic soils of the region. Since the mid 1990s canola (oilseed rape, Brassica napus L.) has been grown in rotation with wheat and has often developed symptoms of Ca deficiency when grown on sandy acidic soils in the field. The Ca requirement of canola in these soils is not known and was measured and compared with Ca requirements of wheat in the glasshouse study reported here when 5 amounts of Ca (0–630 mg Ca/pot), as calcium sulfate, were applied.

Application of Ca did not affect shoot production of wheat but increased grain yields by about 25% and 50 mg Ca/pot was required to produce 90% of the maximum grain yield. Two canola cultivars were grown, and both showed no shoot yield responses to applied Ca at early growth (GS1.5). However, at flower bud visible (GS3.5) shoots of triazine tolerant canola cv. ‘Karoo’ showed about 17% increase to applied Ca and required ~47 mg Ca/pot to produce 90% of the maximum yield, while corresponding values for cv. ‘Outback’ were 42% and 185 mg Ca/pot. Both canola cultivars showed large seed (grain) yield responses to applied Ca. Canola cv. ‘Outback’ produced no grain when no Ca was applied and showed ~ 97% increase to applied Ca and required about 462 mg Ca/pot to produce 90% of the maximum grain yield. The triazine tolerant cv. ‘Karoo’ produced about 22% of the maximum grain yield when no Ca was applied, showed approximately 78% grain yield response to applied Ca and required about 475 mg Ca/pot to produce 90% of the maximum grain yield. However, to produce 50% of the maximum grain yield, cv. ‘Outback’ required 250 mg Ca/pot while cv. ‘Karoo’ required about 100 mg Ca/pot. The grain yield response curve for cv. ‘Karoo’ was exponential and that for cv. ‘Outback’ was sigmoid so differences in the response curves were largest when small amounts of Ca were applied and decreased as more Ca was applied. Evidently canola cultivars differ in their ability to access soil and applied Ca providing opportunity to breed and select cultivars efficient at accessing soil and applied Ca. For both wheat and canola the concentration of Ca in dried shoots increased as more Ca was applied and, for each amount of Ca applied, the concentration of Ca in shoots decreased as plants matured. Both canola cultivars consistently had larger concentrations of Ca in shoots than wheat, either when no Ca was applied and for each amount of Ca applied, suggesting canola roots were better able to access soil and applied Ca than wheat roots. The Ca concentration in young wheat (GS15) and canola (GS1.5) shoots that was related to 90% of the maximum grain yield (critical Ca concentration) was 0.33% for wheat and 2.5% for both canola cultivars.  相似文献   

3.
A glasshouse study, using soil collected from two sites, was undertaken to compare how 30‐day‐old seedlings of canola (Brassica napus) and wheat (Triticum aestivum) utilized phosphorus (P) from freshly‐applied (current) triple superphosphate (TSP), and TSP and rock phosphate [North Carolina and Queensland (Duchess) apatites] (RP) applied in field experiments 11 years previously (previous P). The P was applied to the soil surface and incorporated into the top 10 cm of soil with a rotary hoe. After application of the current P in the field, samples of the <2‐mm fraction of the top 10 cm of soil were collected for the glasshouse study. Both canola and wheat produced poor yields without P but responded strongly to applied P. Regardless of the source of P (current and previous TSP, previous RP), canola required less P than wheat to produce the same percentage of the maximum yield of dried tops. For each amount of applied P, the concentration of P in dried tops was from about 30 to 120% higher for canola than wheat, indicating that canola roots were better able than wheat roots at accessing P from the soil, regardless of the source of P.  相似文献   

4.
Canola (oil seed rape, Brassica napus L.) is now a major crop grown on the predominantly sandy soils in southwestern Australia and knowledge about the phosphorus (P) requirements of the crop in the region is limited. The results of 22 experiments done in the region are reported to determine the relationships between absolute seed (grain) yield response to applied P and (1) soil test P (Colwell sodium bicarbonate procedure) and (2) concentration of P measured in dried shoots at the rosette growth stage. Large grain yield responses to applied P occurred when Colwell soil test P values for the top 10 cm of soil were < 20 mg/kg soil and when concentrations of P in dried shoots were < 3.6 g/kg. The fertilizer P requirements for optimal economic return for canola grain production in the region varied from 10–35 kg P/ha. The 9 different canola cultivars used in the experiments from 1987–2005 had no major effect on the relationship between absolute grain yield response to applied P and soil test P. Application of fertilizer P mostly had no significant effects on either oil or protein concentrations in grain.  相似文献   

5.
Yellow lupin (Lupinus luteus L.), which is grown as a grain legume in rotation with spring wheat (Triticum aestivum L.) on acidic, sandy soils of south-western Australia, accumulates cadmium (Cd) in grain. Application of fertilizer is required to combat zinc (Zn) and phosphorus (P) deficiency for yellow lupin production on these soils, which may affect Cd concentration in grain. In the same field experiment conducted at two sites on acidified sand over clay duplex soils, five Zn levels (0, 0.8, 1.6, 3.2, 6.4 kg Zn ha-1), as Zn oxide, and three P levels (0, 10, and 20 kg P ha-1), as triple superphosphate, were applied. At both sites, applying increasing Zn levels decreased Cd concentration in grain, whereas applying increasing P levels increased Cd concentration in grain. The ZnxP interaction was not significant for either grain yield or Cd concentration in grain. At the 8–10 leaf stage, Zn and P concentration was measured in whole shoots (WS), and Zn concentration was also measured in the youngest mature growth (YMG). The concentrations of the elements that were related to 90% of the maximum grain yield (critical prognostic plant test Zn and P) was i) for WS, 29 mg kg-1for Zn and 3.5 g kg-1for P; and ii) for YMG, was 23 mg kg-1for Zn.  相似文献   

6.
《Journal of plant nutrition》2013,36(12):1885-1900
Increases in yield due to applications of phosphorus (P) (0, 5, 10, 15, 20, and 40 kg P/ha) applied as single (ordinary) superphosphate were measured for canola (Brassica napus), lupin (Lupinus angustifolius) and wheat (Triticum aestivum) in a field experiment on a deep sandy soil near Esperance, south-western Australia (WA). There are no data comparing the P requirements of these species grown at the same time, which was done by determining the amount of P required to produce 90% of the maximum yield for each species. The amount of P required was about 50% less for canola than wheat and about 10% more for lupin than wheat (60% more than canola). For each amount of P applied, the concentration of P in shoots and grain was greater for canola, followed by lupin and then wheat, suggesting that canola and lupin roots were better at accessing soil P than wheat. The critical concentration of P (diagnostic) required for 90% maximum yield of dried shoots measured in September was about 2.3 g/kg P for wheat, 2.8 g/kg P for lupin, and 3 g/kg P for canola. Similar critical values were obtained when P concentration in the shoots was related to grain yield (prognostic).  相似文献   

7.
Durum wheat (Triticum turgidum L. var durum) is a species that accumulates cadmium (Cd). Durum wheat cultivars differ in their absorption ability of Cd; therefore, identifying and selecting genetic material with low Cd accumulation reduces human exposure to this toxic element. In the present study, Cd concentration was evaluated in three Chilean durum wheat cultivars (Llareta-INIA, Corcolén-INIA, and Lleuque-INIA) grown in four Chilean locations with varying concentrations of Cd in soils. The objective of this study was to evaluate the response of these durum wheat cultivars to different doses of cadmium in terms of grain yield; Cd concentration in different plant tissues (grain, straw, roots); soil Cd concentration was also evaluated. Results show that grain yield was not affected by soil Cd; differences in Cd concentration in plant tissues were generally associated with location, cultivar, and soil Cd concentration. Grain Cd concentration in all three cultivars was classified in the low accumulation category for this metal; ‘Lleuque-INIA’ noted as having a very low accumulation.  相似文献   

8.
Applying lime to ameliorate soil acidity has been observed to induce manganese (Mn) deficiency in canola (Brassica napus L.) crops grown on acid sandy soils near Albany and gravelly acid sands of the Great Southern Districts of southwestern Australia. These soils were often Mn-deficient in patches for wheat (Triticum aestivum L.) production when they were newly cleared for agriculture requiring application of Mn fertilizer to ensure grain yields were not reduced by the deficiency. Since then, these soils have acidified and in the 1990s, canola started to be grown on these soils in rotation with wheat and lupins (Lupinus angustifolius L.). These limed soils may now have become marginal to deficient in Mn for canola production. The effect of liming may change the effectiveness of fertilizer Mn. In addition, the effect of liming on the residual value of Mn fertilizer applied to these soils for canola production is unknown. Therefore, a glasshouse experiment was conducted using Mn deficient sand. Three levels of finely-powdered calcium carbonate were added and incubated in moist soil for 42 days at 22±2°C to produce 3 soils with different pH values [1:5 soil:0.01 M calcium chloride (CaCl2)]: 4.9 (original soil), 6.3, and 7.5. Five Mn levels, as solutions of Mn sulfate, were then added and incubated in moist soil for 0, 50, and 100 days before sowing canola. To estimate the residual value (RV) of incubated Mn for canola production, the effectiveness of the incubated Mn was calculated relative to the effectiveness of Mn applied just before sowing canola (freshly-applied Mn). The RV of the incubated Mn was determined using yield of dried canola shoots, the Mn application level required to produce 90% of the maximum shoot yield, and Mn content in dried shoots (Mn concentration in shoots multiplied by yield of dried shoots). As measured using both yield of dried shoots and Mn content of dried shoots, the residual value of Mn decreased with increasing soil pH and with increasing period of incubation of Mn with moist soil. The critical Mn concentration, for 90% of the total yield of dried canola shoots, was (mg Mn kg?1) ~17 in youngest mature growth (apex and youngest emerged leaf, YMG), and ~22 for the rest of dried shoots. These values were similar to current critical values for un-limed soils suggesting critical Mn concentrations remain the same for limed soils. Plant testing of canola is recommended if soils are to be limed to ameliorate soil acidity. When plant tests indicate a high likelihood of Mn deficiency, foliar Mn sprays need to be applied to that crop to ensure Mn deficiency does not reduce grain production that year, and fertilizer Mn needs to be re-applied to the soil when sowing the next crop to reduce the likelihood of Mn deficiency for subsequent crops.  相似文献   

9.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

10.
ABSTRACT

The incorporation of previous crop residues in agricultural management benefits soil fertility, crop production, and environment. However, there is no enough information about maximum residue application level without negative effect over next crop yield. To evaluate maize (Zea mays L.) yield under short-time conservation management with incorporation and/or importation of different residue levels, a biannual rotation experiment was conducted in ash volcanic soil in south-central Chile. The experiment consisted of two previous crops, canola (Brassica napus L.) and bean (Phaseolus vulgaris L.), and four levels of residue incorporation (0%, 50%, 100%, and 200% of generated residue; from 0 to 21.4?Mg?ha?1 for canola and from 0 to 19.0?Mg?ha?1 for bean). Previous crop species and residue level affected some nutrients concentrations in grain and plant and some soil chemical properties, without effect in maize yield, which averaged 16.6?Mg?ha?1. Bean residue increased Ca and reduced S in maize plant, increasing soil P, Ca, Mg and K (P?<?0.05). Maize grain Ca content was positively and proportionally affected by canola residue level and negatively and proportionally affected by bean residue level. All canola residue levels increased soil pH and Mg, but the highest level reduced soil S; soil P concentration increased proportionally with bean residue level. The highest bean residue level increased soil S. Different crop and levels of residue did not affect maize yield but did some plant nutrient concentration, and also affected some soil chemical properties.  相似文献   

11.
Abstract

Coker 7473 wheat (Triticum aestivum L.) was grown on Keo silt loam (coarse‐silty, mixed, thermic Dystric Fluventic Entrochrepts) with four S sources applied at various rates for two years. The innate S level of this soil was not adequate for optimum grain yield; therefore, additional S significantly increased grain yield and S concentration and decreased N/S ratios in wheat tissue. Minimum S concentration and N/S ratios in plant tissue for maximum yield ranged from 1.3 to 2.73 g S/kg and 9.5 to 19.2, respectively.  相似文献   

12.
Abstract

Little information was available on the yield response of canola species to application of sulphur (S) fertilizer at various times after seeding. Split plot experiments having two cultivars, ‘Candle’ (Brassica campestris L.) and ‘Regent’ (Brassica napus L.) as main plots and four times of applying S fertilizer as subplots after seeding (0, 14, 28 and 42 days) were set out on six sulphur deficient soil sites of northern Saskatchewan. Sodium sulphate fertilizer was applied at 25 kg S/ha and all plots received 100, 20 and 50 kg/ha of N, P and K, respectively. The cultivar ‘Regent’ yielded 1.24 t/ha which was significantly higher than ‘Candle’ yielding 0.98 t/ha (average over sites). An estimated linear reduction in yield of canola grain of 0.11 t/ha for ‘Candle’ and 0.40 t/ha for ‘Regent’ was obtained with S applied at 42 days after seeding date. This difference in response to time of S application resulted in a cultivar x time of S interaction. On two other sites testing high in S (above 40 kg S/ha) there was an apparent increase in grain yield with S application at the rosette stage and at the second application time (12 days before reseeding because of frost damage). Sulphur uptake in grain and straw was highly correlated with yield of grain and straw. Average uptake of S in straw (15.1 kg S/ha) was higher than in grain (4.4 kg S/ha). With few exceptions, yield and S uptake in grain and straw was less with S fertilizer applied at late stages of growth than at seeding.  相似文献   

13.
Soil testing was conducted during 1985–2005 in 11 paddocks on sandy duplex soils on Newdegate Research Station, average annual rainfall of 377 mm, with about 70% falling in the May–October growing season, in the Mediterranean-type climate of southwestern Australia. The study was undertaken to determine lime and fertilizer requirements of eight crop species grown in rotation with one another (one crop each year in the typical May–October growing season, comprising wheat, Triticum aestivum L.; barley, Hordeum vulgare L.; oats, Avena sativa L.; lupin, Lupinus angustifolius L.; canola, Brassica napus L.; chickpea, Cicer arietinum L.; field pea, Pisum sativum L.; and subterranean clover-based pasture, Trifolium subterraneum L. All crops were sown using no-till. The study demonstrated that plant testing was required in conjunction with soil testing to confirm decisions based on soil testing and to assess management decisions for elements not covered by soil testing. Pasture dry-matter production seldom exceeds 2 t ha?1 during the growing season in the region, but clover pasture is valued as a break crop for diseases and pests of grain crops and to facilitate control of herbicide-resistant weeds for cropping. Pastures had negligible impact on soil-test values. By contrast, grain crops typically produce more dry matter than pasture (4–8 t ha?1) and consistently significantly resulted in soil pH, soil-test potassium (K), and organic carbon (C) of soil decreasing through time. Fertilizer phosphorus (P) was not applied to pasture but was applied while sowing most grain crops from 1985 to 1996, a common practice at the time, and soil-test P significantly increased through time in these years. Thereafter fertilizer P was only applied when soil-test P was less than the critical value for that soil and grain crop species resulting, in little P being applied in these years, and soil-test P significantly declined through time. Plant testing indicated P was adequate when soil testing indicated no fertilizer P was required. The soils only started to become K deficient in the mid-1990s because of the removal of indigenous soil K in grain, and fertilizer K was applied when soil-test K was less than the 50 mg kg?1 critical value determined for wheat and canola. Plant testing indicated K was adequate when soil testing indicated no fertilizer K was required, and it indicated K was adequate after fertilizer K was applied, showing K levels applied were adequate for grain production. Plant testing indicated nitrogen (N), sulfur (S), calcium (Ca), magnesium (Mg), copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), and boron (B) were adequate for grain production. Electrical conductivity (EC) of soil was very variable but EC values indicated soil salinity was unlikely to reduce grain yields of all the crop species grown. We conclude soil testing for pH is reliable for indicating paddocks requiring lime to ameliorate soil acidity and to monitor progress of liming. Soil testing proved reliable for determining when fertilizer P and K needed to be applied. Research has shown that for the low rainfall cropping areas of southwestern Australia laboratories need to measure and report soil pH, soil-test P, and soil-test K every 1–3 years and the P-buffering index (estimating P sorption of soil), organic C, and electrical conductivity every 3–5 years.  相似文献   

14.
Abstract

We studied the effects of liming on dry matter production, nutrient composition, and grain yields of wheat in field experiments conducted on two soil types at three locations during the 1976–77 and 1977–78 growing seasons. Lime sources were commercial agricultural lime, finely divided stack dust, and dolomitic limestone (which contained 10.6% Mg). Lime applied at 2,800 kg/ha in the 1976–77 and 10,750 kg/ha in the 1977–78 experiments provided Mg from the dolomite at rates of 300 and 1,140 kg/ha, respectively.

Soil pH was significantly increased by liming, but Mg saturation percentages were significantly greater only at the 1,140 kg/ha rate. Forage dry matter and grain yields were not increased by lime applied at the lower rate, but significant increases were found in dry‐matter production in the late fall and spring samplings of the 1977–78 experiment. Those increases in plant growth and dry matter production were probably due to reductions in the soluble Mn and Al concentrations in the soil. Forage N and P concentrations were generally not influenced by liming. Potassium concentrations in forage from the limed plots were usually equal to or greater than those in forage from unlimed plots. Calcitic limestone sources generally increased forage Ca concentrations, but liming with dolomite more often than not depressed Ca concentrations below levels found in the check plots. Dolomite, when applied at the 1,140 kg/ha rate, effectively increased the forage Mg concentration, although the concentration exceeded 0.2% only during the early growth stages. Liming generally showed no significant reduction in the tetany potential of the wheat forage as predicted by the equivalent ratio K/(Ca + Mg).  相似文献   

15.
Abstract

A solution culture study was conducted to determine the effects of cadmium (Cd) application on Cd accumulation and growth of two durum wheat (Triticum turgidum L. var durum) cultivars. Arcola and DT618 were grown in nutrient solution for 13 days. Cadmium application to nutrient solution significantly (P 0.05) decreased root and shoot biomass, leaf area, leaf mass, total root length, and chlorophyll a and b concentration of the first leaf. The deleterious effects of Cd on plant growth were explained by a modified version of Weibull distribution function of the form, y = a.exp(b.√Cd), where ‘y’ is the growth parameter, ‘a’ is plant growth in the absence of Cd, and ‘b’ is reduction in growth with per unit increase in solution Cd. Total root length was decreased the most (80%) and chlorophyll b concentration of the first leaf decreased the least (9%) with per unit increase in solution Cd. Although the two cultivars were significantly different in some growth characteristics, both responded similarly to increase of Cd concentration in solution. Cadmium concentration in roots and shoots increased significantly (P ≤ 0.05) with Cd application, but due to concomitant decrease in growth the Cd content of plants remained constant at solution Cd concentrations of 5 μm or above. We concluded that seedlings of durum cultivars with different growth potential responded similarly to Cd application in nutrient solution.  相似文献   

16.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

17.
Moringa leaf extracts (MLE) from two varieties of Moringa oleifera Lam. were applied to leaves of wheat (Triticum aestivum L.) in two glasshouse experiments. MLE was extracted from the leaves of using three different solvents (hexane, butanol; ethyl-acetate). The extracts were applied as foliar sprays at different growth stages of wheat (T. aestivum L.) grown on two soil types with either adequate or low phosphorus (P) nutrient additions at Albany, Western Australia. Sprays were applied at the 4–5 leaf (tillering) and the 7-leaf (Boot) stage either as a single spray or a combination of sprays at tillering and boot stage. The application of MLE either at tillering or boot stage increased the dry weight of shoots (biomass) and grain yield of wheat. A foliar spray of MLE applied at tillering increased biomass at the boot stage by ~37% and grain yield increased by ~34% compared to nil MLE spray. A single spray of MLE increased grain yield by ~30% when applied at boot stage. A single application at tillering gave a better yield response than a single spray at the 7-leaf or boot or than a double spray applied at tillering and boot stage. A 50% dilution of the extractant concentration gave the same grain yield response as the original concentration applied at tillering stage. The hexane extracts gave the significantly higher grain yield responses. Plant tissue and grain analysis showed no significant difference in protein and nutrient concentration of wheat grain from plants sprayed with and without MLE. A MLE spray at boot also increased grain yield by 44% on the red sandy-loam soil where P application was at sub-optimum levels, ~80% of P requirement for maximum yield. The partial factor productivity (PFP) index indicated that the P and potassium (K) use improved where MLE was applied as a foliar spray. For example, the PFP of P and K for grain yield increased by about 30%, where MLE was sprayed to foliage. The results of this study indicate that MLE extracted can potentially be a viable option to increase wheat grain yield and fertilizer efficiency use, particularly P and K, in Mediterranean wheat production system.  相似文献   

18.
Abstract

Throughout the Great Plains, wheat (Triticurn aestivum L.) is utilized for grain and forage production. Triticale (Triticum aestivum L. x Secale cereale L.) is known for its ability to produce large quantities of high quality forage. With recent improvement in winter hardiness, interest in and acreage of triticale is spreading north in the central Great Plains. The forage production potential of wheat and triticale is essential to many livestock producers. Very few data are available concerning the effects of sulfur (S) fertilization on production and quality of wheat or triticale forage. Greenhouse research was conducted to evaluate the addition of S as either ammonium thiosulfate (ATS) or ammonium sulfate (AS) on production and quality of wheat and triticale forage on four different soils. Sulfur fertilization increased forage yields and S concentrations of both crops on all soils, and in many cases, resulted in higher N concentrations in the forage. Sulfur fertilization also increased in vitro digestibility of wheat, but had little effect on triticale digestibility. Both S sources performed similarly. Application of S after the first clipping was effective in increasing second clipping forage production on three of the four soils, and forage S concentrations were dramatically increased for both crops on all soils. Although the magnitude of response varied, S fertilization was effective in increasing production and quality of wheat and triticale forage grown in the greenhouse.  相似文献   

19.
The yield response of canola (also known as rape, Brassica napus) and wheat (Triticum aestivum) to applications of phosphorus (P) as single superphosphate was measured in three field experiments in south‐western Australia. The P was banded with the seed while sowing at 4 cm depth. The P requirements of the species was determined from the amount of P required to produce 90% of the maximum yield. Canola consistently required less P than wheat, from 50 to 55% less P for dried tops, and 30 to 58% less P for seed. The P concentration and P content (P concentration multiplied by yield) in dried tops or seed was consistently larger for canola than wheat.  相似文献   

20.
Adverse effects on crop yield or quality have been reported in sewage‐sludge treated soils at soil total metal concentrations below those of the current EU directives. A field trial was set up in Belgium (2002–2004) to assess crop response to the application of sewage sludge below these soil thresholds but with sludge metal concentrations either above (high‐metal) or below (low‐metal) sludge metal limits. Two lime‐stabilized and two raw, dewatered sludges were applied annually at rates of 10, 25 and 50 t dry matter (dm) ha?1 for 3 years with four rates of N‐fertilizer as a reference. Final soil metal concentrations increased to maximums of 1.6 mg Cd kg?1 and 225 mg Zn kg?1 through sludge applications. Maize yield was marginally affected by treatments in year 1, whereas wheat and barley grain yields in subsequent years increased up to threefold with increasing sludge or fertilizer rates and were mainly explained by grain‐N. However, the grain yield of winter wheat in year 2 was reduced by about 14% in lime‐stabilized high‐metal sludge treatments compared with wheat receiving N‐fertilizer at equivalent grain‐N. Wheat grain and straw analysis showed no nutrient deficiencies but Zn concentrations in grain and straw were greater than in N‐fertilizer and lime‐stabilized, low‐metal sludge treatments, suggesting Zn toxicity. Sludge properties other than Cd concentration (e.g. electrical conductivity) affected crop Cd in the first year (maize), whereas significant correlations between Cd application and wheat grain Cd were found in the second year. Wheat grain Cd concentrations reached the international trade guideline of 0.1 mg Cd kg?1 fresh weight in the plots amended with lime‐treated, high‐metal sludge even though soil Cd remained below EU limits. In the third year, barley grain Cd remained largely below EU limits. We discuss the possibility that sludge properties rather than soil total metal concentrations are related to effects on crops in the initial years after sludge applications. In none of the 3 years were any adverse effects on crops found for sludge meeting current EU regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号