首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess the role of salicylic acid (SA) supplied with 5 approaches in alleviating chlorosis induced by iron (Fe) deficiency in peanut plants growing on calcareous soil, SA was supplied as soil incorporation, making slow-release particles, seed soaking, irrigation and foliar application. SA application, particularly, SA supplied by slow release particles, dramatically increased growth parameters, yield and quality of peanut, and increased Fe concentration in peanut grain. Meanwhile, SA application increased the H+-ATPase activity, reduced pH of soil, increased Fe3+-Chelate Reductase (FCR) activity in roots, and increased Fe concentration in roots. Furthermore, SA increased active Fe content and increased chlorophyll content. In addition, SA improved enzymes activities containing superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and protected Fe deficiency induced oxidative stress. Therefore, SA has a good effect on alleviating chlorosis induced by Fe deficiency on calcareous soil. However, in the 5 SA supplied approaches, foliar application and making slow release particles were more effective.  相似文献   

2.
《Journal of plant nutrition》2013,36(10-11):1997-2007
Abstract

Two tomato (Lycopersicon esculentum Mill., cvs. Pakmor and Target) genotypes differing in resistance to iron (Fe) deficiency were grown in nutrient solution under controlled environmental conditions over 50 days to study the relationships between severity of leaf chlorosis, total concentration of Fe, and activities of Fe‐containing enzymes in leaves. The activities of Fe‐containing enzymes ascorbate peroxidase, catalase, and guaiacol peroxidase, and additionaly the activity of glutathione reductase, an enzyme that does not contain Fe, were measured. Plants were supplied with 2 × 10?7 M (Fe deficient) and 10?4 M (Fe sufficient) FeEDTA, respectively. Leaf chlorosis appeared more rapidly and severely in Target (Fe deficiency senstive genotype) than Pakmor (Fe deficiency resistant genotype). On day 50, Pakmor had 2‐fold more chlorophyll than Target under Fe deficiency, while at adequate supply of Fe the two genotypes were very similar in chlorophyll concentration. Despite distinct differences in development of leaf chlorosis and chlorophyll concentrations, Pakmor and Target were very similar in concentrations of total Fe under Fe deficiency. In contrast to Fe concentration, activities of Fe‐containing enzymes were closely related to the severity of leaf chlorosis. The Fe‐containing enzymes studied, especially catalase, showed a close relationship with the concentration of chlorophyll and thus differential sensitivity of tomato genotypes to Fe deficiency. Glutathione reductase did not show relationship between Fe deficiency chlorosis and enzyme activity. The results confirm that measurement of Fe‐containing enzymes in leaves is more reliable than the total concentration of Fe for characterization of Fe nutritional status of plants and for assessing genotypical differences in resistance to Fe deficiency. It appears that Fe deficiency‐resistant genotype contains more physiologically available Fe in tissues than the genotype with high sensitivity to Fe deficiency.  相似文献   

3.
Influence of bicarbonate on the subcellular distribution of iron applied to roots or leaves of sunflower (Helianthus annuus L.) 18 days old sunflower seedlings were transferred and cultivated for 9 days ( untill chlorosis appeared) in nutrient solutions. After that Fe concentration of roots and shoots and the subcellular distribution of Fe in the cytoplasm of the young leaves was determined. Bicarbonate in the nutrient solution with Fe reduced the concentration of Fe and chlorophyll in the young leaves of the plants, also the concentration of Fe and protein in the chloroplast fraction of the cytoplasm, but the subcellular distribution for Fe remained unchanged compared with the control. Leaf spray with Fe-EDTA to plants in nutrient solution without Fe + bicarbonate resulted in higher Fe but unchanged chlorophyll concentrations in the young leaves, while the cytoplasm fractions of these leaves had higher concentrations of iron and protein compared with the control. An inactivation of leaf iron by bicarbonate in the nutrient medium could not be demonstrated. There was no significant lowering of the concentration of disolved Fe in the nutrient solution by bicarbonate, indicating a disturbance of Fe-up-take rather than an insufficient Fe-supply as a factor for iron chlorosis. The physiological activity of leaf applied Fe was not diminished by bicarbonate in the nutrient solution. This observation too points to a primary effect of bicarbonate in the root area. The pH of the cytoplasm from young leaves remained unchanged after leaf spraying with Fe-EDTA. In spite of this there might be a local effect of sprayed solution (with pH 5,1) on the pH of solutes in the apoplast, influencing the mobility of leaf applied Fe.  相似文献   

4.
《Journal of plant nutrition》2013,36(10-11):2277-2294
Abstract

Several deciduous fruit tree species are affected by iron chlorosis when grown in calcareous soils and worldwide research on rootstock breeding and screening in relation to iron deficiency is carried out. For many years the goal of our department has been to investigate morphological and physiological aspects related to lime‐induced chlorosis, and to identify markers usable as tools for tolerance screening of clonal rootstocks. Experimental strategies using pot, hydroponic and in vitro culture have been used to understand if they are able to originate suitable indicators on developmental and biochemical changes resulting from iron deficiency. Results risen up from in vitro trials suggest that iron deficiency sensitive system should work in a divergent way from that of bicarbonate system. Physiological and morphological data highlight diverse syndromes and behaviors among the genotypes, probably reflecting properly perception, regulation, and activation of biological answer system to iron deficiency and bicarbonate. Recently, quince (Cydonia oblonga Mill.) minus‐ and plus‐variants have been obtained by in vitro somaclonal variation to clarify the agonistic relationship between bicarbonate and iron deficiency sensitive systems, that in turn can induce the activation of two specific gene expression pathways.  相似文献   

5.
The effects of salicylic acid (SA) on iron (Fe) deficiency in peanut (Arachis hypogaea L.) were studied by adopting the hydroponic experiment. Iron deficiency caused serious chlorosis, inhibited plant growth and dramatically decreased the concentration of Fe in the roots. Furthermore, it decreased the active Fe content and chlorophyll content, and disturbed ionic homeostasis. In addition, Fe deficiency significantly increased the content of malondialdehyde (MDA) and the superoxide anion (O2??) generation rate. Addition of SA increased Fe concentration in the shoots and roots, active Fe content, chlorophyll content, the net photosynthetic rate, and transpiration rate. Moreover, SA supplementation alleviated the excess absorption of manganese (Mn), copper (Cu) and zinc (Zn) induced by Fe deficiency. In addition, the chlorosis symptom was alleviated and the plant growth was improved. Meanwhile, addition of SA increased the activities of catalase (CAT) and peroxidase (POD), and decreased the content of MDA and the O2?? generation rate. These results suggest that exogenous SA can alleviate Fe-deficiency induced chlorosis by promoting the plant growth, improving the efficiency of Fe uptake, translocation and utilization, protecting antioxidant enzymes system, and stimulating mineral element maintenance.  相似文献   

6.
Differential response of groundnut genotypes to iron‐deficiency stress was studied in soils containing high calcium carbonate. Genotypes differed significantly for some traits that appeared to be important in determining adaptation to low iron. The genotypes TCGS 273, TCGS 2, TCGS 37, and Kadiri 3 had higher total chlorophyll, total dry matter, and active iron (Fe2+) contents under iron‐deficiency stress conditions. Total chlorophyll followed by active iron were found to be sensitive parameters to Fe deficiency. Based on the visual deficiency symptoms (chlorosis score), the genotypes were classified into three groups. Efficient (no genotype was found efficient), moderately efficient (TCGS 273, TCGS 2, TCGS 3, and Kadiri 3), and inefficient (TCGS 1, TCGS 7, TCGS 11, TCGS 26, TCGS 28, TCGS 29, TCGS 30, TCGS 1518, TPT 1, TPT 2, ICGS 11, ICGS 44, Girnar, JL 24, ICGS(E) 21, and TMV 2).  相似文献   

7.
The photosynthetic pigment composition of chlorotic leaves of Citrus limon L. cv. Verna, grown in the field under iron deficiency conditions was determined. A Fe‐polyflavonoid was used as fertilizer to control iron chloro‐ sis. The photosynthetic pigment content and the chlorophyllase activity were determined at 20 day intervals during the deficiency recovery period and compared to untreated similar material. The corresponding differences among treated and untreated control material were analyzed. Iron application increased the levels of all pigments, but the extent of the increase depended on the pigment affected. The chlorophylls/carotenoids and ß‐carotene/xantophylls ratios were increased as chlorosis diminished. A multivariance analysis was performed with the data obtained which revealed that chlorophyll a and ß‐carotene had the highest correlation coefficient. The chlorophyllase activity did not show significant changes, but it was lower in the treated leaves than in the untreated control leaves during all the sampling cycle.  相似文献   

8.
Comparative physiological studies on iron (Fe) chlorosis of Vicia faba L. and Helianthus annuus L. were carried out. High internal Fe contents in Vicia cotyledons (16–37 μg) were completely used for plant growth and Fe chlorosis was not inducible by the application of nitrate (with or without bicarbonate). In Helianthus, low quantities of Fe in the seeds (4 μg) were insufficient for normal growth and without Fe in the nutrient solution, Fe chlorosis was obtained in all treatments. This chlorosis was an absolute Fe deficiency. Also, the treatment with 1 μM Fe in the nutrient solution and nitrate (with or without bicarbonate) led to severe chlorotic symptoms associated with low leaf Fe concentrations and high Fe concentrations in the roots. In contrast, Helianthus grown with NH4NO3 and 1 μM Fe had green leaves and high leaf Fe concentrations. However, with NO3 supply (with or without bicarbonate), Fe translocation from the roots to the upper plant parts was restricted and leaves were chlorotic. Chlorotic and green sunflower leaves may have the same Fe concentrations, leaf Fe concentration being dependent on Fe translocation into the leaf at the various pH levels in the nutrient solution. At low external pH levels (controlled conditions) more Fe was translocated into the leaf leading to similar leaf Fe concentrations with higher chlorophyll concentrations (NH4NO3) and with lower chlorophyll concentrations (NO3). This indicates a lower utilization of leaf Fe of NO3 grown sunflower plants. Utilization of Fe in faba bean leaves is presumably higher than in sunflower leaves. In Vicia xylem sap pH was not affected by nitrate. In contrast, the xylem sap pH in Helianthus was permanently increased by about 0.4 pH units when fed with nitrate (with or without bicarbonate) compared with NH4NO3 nutrition. The xylem sap pH is indicative of leaf apoplast pH. From our earlier work (Mengel et al., 1994; Kosegarten und Englisch, 1994) we therefore suppose that in Helianthus, Fe immobilization occurs in the leaf apoplast due to high pH levels when grown with nitrate (with or without bicarbonate).  相似文献   

9.
ABSTRACT

Hydroponic culture solutions containing bicarbonate (HCO3 ?) may be used to screen crops such as soybeans (Glycine max) for resistance to iron (Fe) deficiency or chlorosis. Some successful methods use sodium bicarbonate (NaHCO3) in combination with elevated partial pressures of carbon dioxide (CO2) to buffer pH and elevate bicarbonate. Replacing NaHCO3 with magnesium bicarbonate [Mg(HCO3)2] as the form of bicarbonate alkalinity has the potential to produce culture solutions that simulate soil solutions more closely and eliminate any potential for specific sodium (Na) toxicities in sensitive plants. A modified screening solution based on Mg(HCO3)2-CO2 was tested against the successful NaHCO3-CO2 method, using three soybean varieties of known resistance to Fe-deficiency chlorosis. Alkalinity was 10 mM [added as NaHCO3 or Mg(HCO3)2], solutions were aerated with 3% CO2, and Fe was provided as FeDTPA (diethylenetriamine-pentaacetic acid) at 15 μM (low Fe) or 60 μM (adequate Fe). Leaf chlorophyll, visual chlorosis index, and leaf Fe concentration were closely related. Solutions based on NaHCO3 or Mg(HCO3)2 provided identical chlorosis-susceptibility rankings for the three cultivars.  相似文献   

10.
Ca deficiency disorders are common in micropropagated plantlets but little is known regarding the uptake of Ca in vitro. Ca uptake by in vitra-grown potato (Solanum tuberosum L. cvs. Bintje and Norland) plantlets was investigated when Ca levels were maintained but the total macroelement salts or just NH4, the major competing cation, were reduced in Murashige and Skoog (MS) medium. This increased the ratio of Ca:cations or Ca:NH4 as well as the osmotic potential of the medium. The increased Ca-cations improved Ca uptake of shoot tips, leaves, and stems while increased Ca:NH4 had no effect. MS medium macroelement dilution may improve Ca uptake by micropropagated plantlets and prevent Ca deficiency disorders.  相似文献   

11.
To investigate effects of manganese (Mn) deficiency (0 μM L–1) on concentrations of chlorophyll, superoxide dismutase (SOD) activity, biomass, and accumulations of active constituents in Glycyrrhiza uralensis Fisch., seedlings of 1-year-old G. uralensis were grown in a nutrient solution for 60 days. In this experiment, three concentrations of Mn were set up: 0 (–Mn), 7 μM L–1, and 14 μM L–1 Mn. The results showed that –Mn decreased the concentration of chlorophyll a with no significant differences in concentrations of chlorophyll b, total chlorophyll a + b, carotenoids, and chlorophyll a/b ratio. On days 45 and 60, SOD activity significantly decreased. However, dry weight of roots under –Mn showed no significant difference during the whole experiment. The accumulations of glycyrrhizic acid and liquiritin were significantly inhibited by Mn deficiency at different times. Thus results indicated that Mn deficiency could affect growth and contents of its secondary metabolites of G. uralensis.  相似文献   

12.
For dicots, bicarbonate (HCO3‐) is regarded as a main factor in the induction of iron (Fe) chlorosis in calcareous soils, and sand and solution culture. In sand culture experiments, peach [Prunus persica (Batsch) L.] rootstock developed chlorosis only when HCO3‐ levels were equal to or higher than 6 mM. Above this level, chlorosis increaeed as HCO3‐ level was increased. In spite of the lack of chlorosis at to or below 6 mM of HCO3‐, large growth reductions (40–60% reduction in fresh shoot weight) were seen in all rootstocks, although the tolerant rootstock had less reduction than the more susceptible rootstocks. Shoot growth was affected by HCO3‐ more than was root growth.  相似文献   

13.
In pot culture experiments using a calcareous soil the growth rate of sunflowers was depressed by latent iron deficiency. Iron-stress reactions, reflected by enhanced uptake rate of Fe-59 after short-term supply of 59FeEDDHA were observed under these conditions. These reactions, however, were delayed and much less distinct than those observed under latent iron deficiency in water culture experiments. Addition of MgCO3 to this soil increased the iron deficiency of the plants and caused chlorosis, but prevented these iron-stress reactions. In contrast to the soil experiments, distinct iron-stress reactions could be observed with latent iron-deficiency in sand culture experiments in which varied amounts of inorganic Fe-III were supplied. These reactions were only observed, however, in absence of bicarbonate. Even 4 meq bicarbonate severely inhibited these iron-stress reactions which were almost totally inhibited at 10 meq bicarbonate. Bicarbonate depressed both short-term uptake of Fe-59 as well as total iron content of the leaves. There was no evidence for an additional “inactivation” of iron within the leaves due to bicarbonate treatment. Bicarbonate also strongly depressed the manganese content of the young leaves. The results demonstrate that the regulatory mechanism of so-called “iron-efficient” plant species like sunflower under iron-stress - increase in H+ efflux and reducing capacity of the roots and thus enhanced uptake of iron (and manganese) - is severely inhibited or even blocked by high bicarbonate concentrations. “Lime chlorosis”, caused by high bicarbonate concentrations on calcareous substrates is therefore also widespread in so-called “iron-efficient” species.  相似文献   

14.
A hypothesis has been presented and tested that bicarbonate (HCO3) and nitrate (NO3) are the most important anions inducing iron (Fe) chlorosis because these anions increase the pH of leaf apoplast which in turn depresses ferric‐iron [Fe(III]) reduction, and hence, the uptake of Fe into the symplasm. Experiments with young sunflower (Helianthus annuus) plants showed that nutrition with NO3 as the sole nitrogen (N) source induced chlorosis whereas ammonium nitrate (NH4NO3) did not. Monohydrogen carbonate (bicarbonate) also favoured the development of chlorosis. The degree of chlorosis was not related to the Fe concentration in the leaves. Both anion species, NO3 and HCO3, increased the pH of the leaf apoplast which was measured by means of the fluorescence dye 5‐carboxyfluorescein. A highly significant negative correlation between leaf apoplast pH and chlorophyll concentration in the leaves (r = ‐0.97) was found. Ferric‐Fe reduction in the apoplast—measured by means of ferrocene—provided evidence that a low leaf apoplast pH, obtained with ammonium (NH4) supply, favoured the reduction of Fe(III) as compared with a higher leaf apoplast pH obtained with NO3 supply. These results support the hypothesis tested.  相似文献   

15.
Grapevine is considered a ‘Strategy I’ plant because it performs some peculiar biochemical and physiological responses when grown under iron (Fe) deficiency stress conditions. Callus cultures were started from leaf and internode cuts of micropropagated plantlets of two grapevine genotypes well known for their Fe‐chlorosis characteristic: Vitis riparia a very susceptible genotype and Vitis berlandieri a resistant one. Modification of NADH: ferric (Fe3+) reductase activity was spectrophotometrically evaluated by following the formation of the complex ferrous (Fe2+)‐(BPDS)3, while the malic and citric acid production were determined in callus cultures grown both in the presence (+Fe) and absence (‐Fe) of Fe. Moreover, a microsomal fraction was isolated from the calli to evaluate the H+‐ATPase and the Fe3+‐EDTA reductase activities. As expected, calli of the Fe‐efficient genotype (V. berlandieri) was able to enhance Fe3+‐EDTA reductase activity when growing under Fe deficiency while the Fe‐chlorosis susceptible V. riparia could not or did it with lower efficiency. Therefore, the H+‐ATPase assay showed a higher enzymatic activity in the microsomal fraction isolated from Vitis berlandieri grown without Fe with respect to its control (+Fe). Organic acid determination gave quite contradictory results, specially regarding malic acid which, under our study conditions, seemed not to be linked with the strategies of response to Fe deficiency.  相似文献   

16.
ABSTRACT

Two cultivars of pea: ‘PS210713’ (‘PS’), sensitive to iron deficiency, and ‘Marveille de Kelvedon’ (‘MK’), tolerant, were cultivated in controlled climatic conditions during one month, on a nutrient solution containing either nitrate (NO3 ?, 4 mM) or ammonium (NH4 +, 4 mM) and in the presence of bicarbonate (10 mM). The effects of these nitrogen forms on the growth and the mineral nutrition, and especially iron nutrition are analyzed.

The reduction of growth by bicarbonate was approximately 30% in case of NO3 ? nutrition in the two cultivars, whereas in ammoniacal treatment the reduction is only 6% and 18% respectively in ‘PS’ and ‘MK’ cultivars.

In presence of bicarbonate, the plant growth is not stimulated by NO3 ?relatively to its growth on ammoniacal medium, as often noticed when plants are cultivated on medium without bicarbonate: In presence of this compound, the biomass production of plant pea, was not influenced by the nitrogen forms. The nitric source led to a ferric chlorosis in the sensitive cultivar plants whereas any chlorosis was noted when ammoniacal source was applied. On the other hand, nitric nitrogen form decreased the nitrogen feeding of plants and increased the potassium one, while the effect of the ammoniacal nitrogen form on these nutrients was quite the inverse. In addition, the later increased the allocation of iron towards shoots. Besides, with this nitrogen source there was not accumulation of nitrate in the plant tissues. In nitric feeding case, the nitrate is mainly accumulated in the roots of the two cultivars. It is noticeable that the sensitive cultivar (‘PS’) accumulates three times more nitrate than the tolerant one (‘MK’).

On the level of the whole plant, the iron and phosphorus nutrition seems unaltered by the nitrogen form.  相似文献   

17.
Biological soil crusts are important in reversing desertification. Ultraviolet radiation, however, may be detrimental for the development of soil crusts. The cyanobacterium Microcoleus vaginatus can be a dominant species occurring in desert soil crusts all over the world. To investigate the physico-chemical consequences of ultraviolet-B radiation on M. vaginatus, eight parameters including the contents of chlorophyll a, reactive oxygen species, malondialdehyde and proline, as well as the activities of photosynthesis, superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7) and catalase (EC 1.11.1.6) were determined. As shown by the results of determinations, ultraviolet-B radiation caused decreases both in contents of chlorophyll a and in ratios of variable fluorescence over maximum fluorescence that indicate the growth and photosynthesis of M. vaginatus, besides, increases both in levels of reactive oxygen species and in contents of malondialdehyde and proline, while intensified activities of superoxide dismutase, peroxidase and catalase reflecting the abilities of enzymatic preventive substances to oxidative stress of the treated cells. Therefore, ultraviolet-B radiation affects the growth of M. vaginatus and leads to oxidative stress in cells. Under ultraviolet-B radiation, the treated cells can improve their antioxidant abilities to alleviate oxidative injury. The change trends of reactive oxygen species, superoxide dismutase, peroxidase and catalase are synchronous. These results suggest that a balance between the antioxidant system and the reactive oxygen species content may be one part of a complex stress response pathway in which multiple environmental factors including ultraviolet-B radiation affect the survival of M. vaginatus.  相似文献   

18.
Iron deficiency stress was induced in cultivars, PKV‐7237, Morden and EC‐68414 of sunflower (Helianthus annuus L) by first growing them in full nutrient medium and transferring to minus Fe medium after a month. The minus Fe nutrient medium was changed again at 13 and 26 days. The change in pH and the degree of chlorosis were recorded. It was found that the pH decreased rapidly in all cultivers from 6.4 to 3.8 in 5 days. The cv. Morden was found more tolerant to the stress than others. Furthermore, the flavinlike pigments as shown by the yellow coloration of the medium were more intense in PKV than in Korden, and were very much less in EC. It was also noted that the pH reduction was non‐redumptive, a feature observed even after transferring twice to fresh minus Fe medium adjusted to pH 6.4. The results of the experiments showed that as long as Fe absorbed from the pre‐stress medium was available in the root, the chlorosis was not severe; but once it was nearly depleted, chlorosis appeared and persisted for a long time.  相似文献   

19.
Abstract

To identify the detrimental effects of excess copper in radish (Raphanus sativus) cv. Jaunpuri, plants were grown in refined sand at control (0.001) and 0.1 and 0.2 mM (excess) copper (Cu) supplied as Cu sulphate. Previously plants were maintained for 24 days in complete nutrient solution and on the 25th day, excess Cu was superimposed. After 6 days of metal supply, the visible effects of excess Cu appeared as retardation in growth and interveinal chlorosis of young leaves; chlorosis intensified later with the development of irregular brown spots on lamina. Excess Cu not only reduced the size of leaves but also affected adversely the root development. In radish, Cu toxicity decreased the fresh weight, biomass, root weight, concentrations of total and active iron, chlorophyll, activities of antioxidative enzymes catalase (CAT), and peroxidase (POX), starch phosphorylase (ST) and acid phosphatase (AP) with concomitant increase in Cu accumulation in different parts. These effects were more pronounced at 0.2 than 0.1 mM Cu.  相似文献   

20.
Identifying cultivars resistant to iron (Fe) deficiency chlorosis so prevalent in calcareous soils is a more economical solution than fertilizer application in field crops. The current method of screening for resistance using chlorosis ratings in field trials is time consuming and highly variable. Root Fe reduction successfully separated cultivars or rootstocks, varying widely in resistance, of soybean (Glycine max L.), peach (Prunus persica L.), and grape (Vitis spp.), but was unsuccessful in sub‐clover (Trifolium subterraneum L.). Dry bean (Phaseolus vulgaris L.) exhibits Fe deficiency chlorosis in calcareous soils and initiates Fe reduction by the roots in response to such stress. The resistance of 24 dry bean cultivars to Fe deficiency chlorosis was assessed by measuring and summing daily Fe reduction by the roots. The cultivars were grown both hydroponically in an environmental chamber in low Fe solutions (0.05 mg‐L‐1) and at three field sites in both 1995 and 1996. A significant relationship (P<0.01) between field chlorosis scores made 36 days after planting and root Fe reduction summations was observed for all sites in 1995 and 1996 (r = ‐0.42 to ‐0.71). The variability of chlorosis scores among sites, especially in 1996, points out the difficulty of using field chlorosis scores for screening. These results indicate that measurements of root Fe reduction can be used to predict resistance to Fe deficiency chlorosis in dry bean. Successful implementation of this technique should reduce if not eliminate field trials for screening resistance to Fe deficiency chlorosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号