共查询到17条相似文献,搜索用时 93 毫秒
1.
2.
典型双季稻田基施碳酸氢铵和尿素的氨挥发损失研究 总被引:2,自引:0,他引:2
采用密闭室连续抽气法研究了湖南典型双季稻田,尿素和碳酸氢铵基施后的氨挥发特征。结果表明,基施碳酸氢铵(NC)稻田初始氨挥发强度和氨挥发总量大于基施尿素(UR)稻田。早稻季NC处理稻田氨挥发排放量为45.19 kg·hm-2,损失率达30.12%,UR处理氨挥发排放量为32.93 kg·hm-2,损失率达21.95%;晚稻季NC处理稻田氨挥发排放量为70.91 kg·hm-2,损失率达31.93%,UR处理氨挥发排放量为61.78 kg·hm-2,损失率达27.04%。基施尿素能够显著降低稻田氨挥发排放,减少氮素损失。 相似文献
3.
氮肥用量对太湖水稻田间氨挥发和氮素利用率的影响 总被引:28,自引:0,他引:28
Ammonia volatilization losses, nitrogen utilization efficiency, and rice yields in response to urea application to a rice field were investigated in Wangzhuang Town, Changshu City, Jiangsu Province, China. The N fertilizer treatments, applied in triplicate, were 0 (control), 100, 200, 300, or 350 kg N ha^-1. After urea was applied to the surface water, a continuous airflow enclosure method was used to measure ammonia volatilization in the paddy field. Total N losses through ammonia volatilization generally increased with the N application rate, and the two higher N application rates (300 and 350 kg N ha^-1) showed a higher ratio of N lost through ammonia volatilization to applied N. Total ammonia loss by ammonia volatilization during the entire rice growth stage ranged from 9.0% to 16.7% of the applied N. Increasing the application rate generally decreased the ratio of N in the seed to N in the plant. For all N treatments, the nitrogen fertilizer utilization efficiency ranged from 30.9% to 45.9%. Surplus N with the highest N rate resulted in lodging of rice plants, a decreased rate of nitrogen fertilizer utilization, and reduced rice yields. Calculated from this experiment, the most economical N fertilizer application rate was 227 kg ha^-1 for the type of paddy soil in the Taihu Lake region. However, recommending an appropriate N fertilizer application rate such that the plant growth is enhanced and ammonia loss is reduced could improve the N utilization efficiency of rice. 相似文献
4.
应用密闭法对尿素及其二次加工产品—复合肥料、包膜尿素和包膜复合肥料在施入土壤后的氨挥发特征进行了研究。结果表明,尿素二次加工产品的氨挥发损失特征各不相同:尿素、复合肥料、包膜尿素、包膜复合肥的氨挥发分别占总施氮量的9.2%、10.4%、7.6%、9.3%;复合肥料氨挥发损失比尿素高12.9%,而包膜尿素的氨挥发损失较尿素低17.9%。包膜复合肥与尿素相比,二者氨挥发总体上接近,但在施肥后前25 d包膜复合肥降低氨挥发15.6%,降雨后25 d却增加氨挥发20.7%。尿素二次加工产品的氨挥发损失特征需结合其生产工艺进行进一步研究。 相似文献
5.
红壤不同含水量对尿素氨挥发的影响 总被引:7,自引:1,他引:7
根据第四纪红壤水分特征设计160、200、240、280、320、360g/kg6个土壤含水量处理,通过温室模拟,研究了红壤不同含水量对尿素氨挥发的影响。结果表明,等量尿素施入红壤后,氨挥发通量与土壤含水量之间无显著相关性,而高含水量(280、320、360g/kg)处理氨挥发通量峰值较低含水量(160、200g/kg)处理提前10天。氨挥发过程可分为快速-慢速2个阶段,氨累积挥发量(y)与对应时间(t)符合Elovish动力学方程(y=a blnt)。第1~10天,氨挥发累积量随红壤含水量的增加而递增;第11天后,以含水量为240g/kg处理的氨挥发累积N量最低。试验期间,氨挥发累积总N量,以含水量240g/kg时最低(0.90gN),含水量320g/kg时最高(1.16gN),分别占尿素施入N量的9.0%和11.6%。 相似文献
6.
太湖地区水稻追肥的氨挥发损失和氮素平衡 总被引:8,自引:0,他引:8
采用密闭室通气法和15N 微区试验, 对太湖地区水稻不同生育期追施氮肥的氨挥发损失、水稻对氮肥的吸收利用和土壤氮素残留情况进行了研究。结果表明, 氨挥发损失主要发生在施肥后1 周内, 峰值出现在施肥后1~2 d, 氨挥发速率变化与田面水NH4+-N 浓度变化规律一致, 分蘖肥和穗肥氨挥发损失率分别为16.7%和6.3%; 水稻分蘖肥的作物氮素利用率低于穗肥, 分别为36.7%和49.6%, 主要原因是穗肥的氨挥发损失较少,并且更易于向籽粒转移; 2 次追施氮肥的表观损失率分别为52.8%和40.7%; 在土壤中残留肥料氮为10.6%, 大都集中在0~20 cm 土壤中, 耕层以下较少。本结果表明, 在水稻孕穗时期施氮肥有利于提高氮肥利用效率、减少氮肥损失, 主要体现在穗肥拥有较低的氨挥发损失率和较高的籽粒利用率。 相似文献
7.
太湖地区氮磷肥施用对稻田氨挥发的影响 总被引:22,自引:1,他引:22
在太湖地区乌栅土上,采用田间小区试验连续两年研究了施氮(N)量为0、180、255、330kg hm-2,施磷(P2O5)量为0、309、0、180 kg hm-2的6个组合(对照N0P0、低氮N180P90、优化N255P90、低磷N255P30、高磷N255P180、高氮N330P90)以及三个施肥时期对稻田氨挥发损失的影响,氨挥发采用密闭室间歇通气法测定。结果表明,稻田氨挥发损失主要发生在施肥后6d内,基肥和第一次追肥后各处理氨挥发量占施氮量的0.4%~11.5%,而第二次追肥后氨挥发损失比例较大,对照、低氮、优化、低磷、高磷和高氮处理的氨挥发在2002年稻季分别占施氮量的5.8%、9.7%、25.6%、15.6%和11.6%,在2003年稻季则分别为27.4%、26.2%、30.0%、35.1%和27.6%。若施肥后遇阴雨天气或正值水稻拔节孕穗期,氨挥发量便降低。田面水中的NH4 -N浓度是氨挥发的决定因素之一,与氨挥发通量呈正相关。施磷量相同时,氨挥发随施氮量增加而增加;施氮量相同时,高磷和低磷处理氨挥发均高于优化处理,表明在氮磷不平衡施用时,氮肥氨挥发损失会加剧,从氨挥发损失方面考虑,稻田推荐施磷量不宜超过P2O590 kg hm-2。 相似文献
8.
黄河上游灌区稻田氨挥发损失研究 总被引:6,自引:1,他引:6
采用密闭气室间歇式抽气法研究了黄河上游灌区不同施肥处理下稻田氨挥发损失特征。结果表明,在水稻全生育期不同施肥处理下稻田氨挥发量为N 27.6~94.1 kg/hm2,肥料氮损失率为16.4%~22.2%;不同施肥阶段氨挥发损失持续时间为10 d左右,氨挥发最大峰值均发生在施肥后2~3d;分蘖肥后氨挥发损失量最大,损失量占全生育期损失总量的27.1%~37.0%。温度、光照、pH值是黄河上游灌区氨挥发的主要影响因素,稻田田面水铵浓度与氨挥发呈显著线性正相关。稻田氨挥发损失量随氮肥施用量的增加而增加,与习惯施肥(N300)相比,减氮20%(N240)及有机肥和化肥配合施用(N240-1/2OM)均能有效减少稻田氨挥发损失,且这两个处理的水稻产量最高,是生态效益和经济效益双赢的最佳模式。 相似文献
9.
应用微气象学方法研究太湖地区水稻三个不同施肥期施用尿素后的氨挥发损失 ,并对其影响因素 (气候、田面水中NH 4 N浓度和作物覆盖等 )的作用进行了分析研究。结果表明 ,水稻施用尿素后的氨挥发损失为各时期施氮量的 18 6 %~ 38 7% ,其中以分蘖肥时期损失最大 ,其次为基肥 ,穗肥氨挥发损失最小。氨挥发损失主要时期是在施肥后 7d内。在水稻不同生长期 ,各因素对氨挥发的影响能力大小并不一样 ,三个施肥期的氨挥发损失通量与施肥后田面水中铵态氮浓度呈显著正相关。 相似文献
10.
氨挥发是肥料氮素损失的重要途径之一,损失率因土壤类型、气候条件、肥料用量、施肥时间和方式等不同而存在很大差异。为了筛选提高氮肥利用率的肥料运筹方式,本文利用长期定位试验平台,采用间歇密闭通气法,研究了有机无机肥长期施用条件下小麦季土壤氨挥发损失及其影响因素。结果表明,不同肥料种类和配施强烈地影响着土壤氨挥发,在150kgN·hm^-2用量下小麦季氨挥发损失量以NK和有机肥处理为最高,分别达到17.89和15.70kgN·hm^-2,占氮肥用量的10.47%-11.93%,显著高于NPK、NP和有机无机肥配施(1/20M)处理。土壤氨挥发速率与气温呈显著正相关,基肥施用后灌水可以有效地降低氨挥发损失。NPK肥料平衡施用或者有机无机肥配施可以减少氨挥发损失。 相似文献
11.
表施尿素的冬小麦土壤氨挥发损失 总被引:22,自引:0,他引:22
Ammonia volatilization was measured with a continuous air flow enclosure method from a winter wheat field in the Experimental Farm of Jurong Agricultural School to investigate its main influencing factors. The experiment with five treatments in triplicate, no N (control), 100, 200 and 300 kg N ha-1 with rice straw cover at a rate of 1 500 kg ha-1 and 200 kg N ha-1 without rice straw, started when the winter wheat was sown in 1994. Sixty percent of the total amount of N applied was basal and 40% was top-dressed. The measurement of ammonia volatilization was immediately conducted after urea was top-dressed on soil surface at wheat elongation stage in spring of 1996 and 1997. The results showed that there was a diurnal variation of ammonia volatilization rate from the winter wheat field, which synchronized with air temperature. N losses through ammonia volatilization increased with increasing N application rate, but the ratio of N lost through ammonia volatilization to applied N was not significantly affected by N application rate. The coverage of rice straw had no significant effect on ammonia volatilization. Soil moisture and rain events after urea was top-dressed affected ammonia volatilization significantly. 相似文献
12.
13.
《Communications in Soil Science and Plant Analysis》2012,43(4):431-445
Abstract N loss by volatilization was measured for surface‐applied granular urea and ammonium nitrate, liquid urea‐ammonium nitrate and liquid acid urea in closed containers. Urea‐containing fertilizers lost between 10 and 451 of the N added within 10 days. The presence of a straw mulch accentuated the losses. N volatilization losses from acid urea solutions were significantly less than from granular urea. Addition of water following surface application of granular urea significantly reduced the loss of N as ammonia from the soil. The results of this laboratory study indicate that use of acid urea for surface application of N fertilizers may reduce N volatilization losses relative to granular urea, but losses still exceed those from ammonium nitrate. 相似文献
14.
15.
基于文献分析的北方冬麦田氨挥发特性 总被引:1,自引:1,他引:1
中国北方地区是冬小麦-夏玉米种植体系的主要集约化农业区,过去30多年间化学氮肥投入量大和肥料利用率低的现象较为普遍,氨挥发等农业面源污染严重,需要对冬小麦生长过程中的氨挥发规律及测定方法等进行系统研究。该研究对1980年至2018年的华北平原冬小麦氨挥发文献进行研究总结,采用回归方程和T检验等统计学方法分析了不同施氮水平、施肥时期和测定方法对冬小麦氨挥发的影响。研究发现,随着化肥施氮量的增加,冬小麦氨挥发累积量呈现指数函数增加趋势(y=2.64e0.006 6x),净氨挥发量呈现幂函数增加特征(y=0.004 8x1.358 9)。不考虑激发效应的净氨挥发量比考虑激发效应的高估约21.8%。冬小麦生产中,基追比为1∶1的情况下,基肥期氨挥发量显著高于追肥期氨挥发量(P<0.05),占整个生育期氨挥发量分别为58.7%和41.3%。在180 kg/hm2氮肥水平时,海绵吸收法与真空抽气法测定的氨挥发数量无显著性差异。冬小麦季的氨挥发控制,应该重点通过优化氮肥施用数量,主要在基肥期进行控制。田间生产中,采用海绵吸收法和真空抽气法监测氨挥发应考虑不同施肥水平下的高估。 相似文献
16.
S. H. Chien 《Soil Use and Management》2023,39(3):1033-1035
Surface application of ammonium sulfate (AMS) as S source to soils with pH ≥7.0 is subjected to ammonia (NH3) volatilization. However, AMS volatilizes less NH3 than urea does. In soils with pH <7.0, unlike urea, very little NH3 volatilization from AMS occurs. The associated N with AMS may enhance early biological N fixation by leguminous crops as compared to S sources without N such as polyhalite. 相似文献
17.
缓释尿素与普通尿素配施对氨挥发和土壤氮素动态变化过程的影响 总被引:1,自引:1,他引:1
通过室内模拟试验,采用静态吸收法和土壤培养法,研究了缓释尿素与普通尿素混施条件下,氨挥发和土壤中氮素的动态变化特征。结果表明:缓释掺混肥处理能减少氨挥发损失氮量;与普通尿素处理(SRU0)相比,25%缓释尿素+75%普通尿素(SRU25)、45%缓释尿素+55%普通尿素(SRU45)、65%缓释尿素+35%普通尿素(SRU65)、100%缓释尿素(SRU100)处理的氨挥发量分别降低19.88%、25.94%、42.84%和46.13%。在培养前期,普通尿素处理的土壤全氮、碱解氮和铵态氮含量明显高于缓释尿素处理,随着培养时间延长,普通尿素处理降低幅度最大,缓释掺混肥处理的全氮、碱解氮和铵态氮含量明显高于普通尿素处理;而硝态氮含量随培养时间延长逐渐升高。其中,以45%缓释尿素+55%普通尿素配比最佳,既能满足植物全生育期对养分的需求,又能减少氨挥发损失,节省经济成本。 相似文献