共查询到18条相似文献,搜索用时 93 毫秒
1.
为及时准确地提取小麦倒伏面积,提出一种融合多尺度特征的倒伏面积分割模型Attention_U2-Net。该模型以U2-Net为架构,利用非局部注意力(Non-local attention)机制替换步长较大的空洞卷积,扩大高层网络感受野,提高不同尺寸地物识别准确率;使用通道注意力机制改进级联方式提升模型精度;构建多层级联合加权损失函数,用于解决均衡难易度和正负样本不均衡问题。Attention_U2-Net在自建数据集上采用裁剪方式提取小麦倒伏面积,查准率为86.53%,召回率为89.42%,F1值为87.95%。与FastFCN、U-Net、U2-Net、FCN、SegNet、DeepLabv3等模型相比,Attention_U2-Net具有最高的F1值。通过与标注面积对比,Attention_U2-Net使用裁剪方式提取面积与标注面积最为接近,倒伏面积准确率可达97.25%,且误检面积最小。实验结果表明,Attention_U2-Net对小麦倒伏面积提取具有较强的鲁棒性和准确率,可为无人机遥感小麦受灾面积及评估损失提供参考。 相似文献
2.
在灌区用水管理中,灌溉面积及其空间分布信息非常重要。传统的灌溉面积提取手段耗费大量的人力物力和时间,已经不能满足灌区的现代化管理。自遥感技术应用于灌溉面积提取以来,经过几十年的发展,已经有很多的研究成果。但现今在应用于灌溉面积提取的遥感技术中,前沿的方法多数采用多个传感器数据或长时间序列的数据,且往往针对某一特定的区域,很难具体的应用在实际的灌区工作中。为了在灌区管理的实际应用中准确高效地提取灌溉面积和分布,开展了一种基于光学卫星多时相差值数据的神经网络算法的灌溉面积提取技术研究。以山东省淄博市桓台县的试验田为研究区域,首先利用随机森林对Sentinel-2卫星数据的所有波段以及一些与土壤水含量以及植被相关的指数进行重要性排序,不同地区的地情下重要性排序结果也不同,所以利用重要性排序可以快速的获取适合此地区的波段以及指数的组合。选取重要性较高的波段或指数作为神经网络模型输入层进行灌溉面积提取。然后根据实际样本田的数据对提取结果进行检验,所得到的总体灌溉面积提取精度达到了76.7%。Kappa系数为0.74。此外,对研究区域进行植被覆盖度分级,并分析了在不同植被覆盖度下的灌溉面积提取结果... 相似文献
3.
采用Sentinel-2 MSI(multispectral instrument,MSI)作为数据源,以多尺度面向对象分析为基本方法,研究分析塑料大棚与其他地物在不同分割尺度下的典型特征,建立一组大棚指数,提出一种基于大棚指数集的塑料大棚提取方法。通过山东省潍坊市某地区的塑料大棚提取试验对方法进行验证,应用该方法提取大棚的生产者精度、用户精度和总体Kappa系数分别为96.6%、89.2%和0.9,测试精度表明该方法能较为有效地应用于塑料大棚提取研究。 相似文献
4.
基于决策树和SVM的Sentinel-2A影像作物提取方法 总被引:2,自引:0,他引:2
以河南省濮阳县为研究区,以2017年8月6日遥感影像为基础数据源,基于地面样方和样本点数据分析构建植被指数阈值分割分类决策树,结合支持向量机(Support vector machine,SVM)分类方法实现了秋季主要作物种植面积遥感识别,并与其他方法分类结果进行了精度验证与对比。结果表明,与最大似然法(Maximum likelihood,ML)和SVM法相比较,决策树和SVM相结合能较好地解决线状地物和小地块作物提取不全以及椒盐现象等问题,可以对秋季复杂作物进行有效识别,作物分类提取总体精度和Kappa系数分别为92.3%和0.886。利用中分辨率单时相遥感影像,结合波谱特征和植被指数能有效提高复杂作物分类精度,为区域复杂作物分类提取提供技术参考和借鉴价值。 相似文献
5.
基于多时相Sentinel-2A的县域农作物分类 总被引:1,自引:0,他引:1
利用遥感技术精准地获取区域农作物种植结构数据,对指导农业生产、制定农业政策具有重要意义。以景泰县为研究区,以多时相Sentinel-2A遥感影像为数据源,计算时序归一化植被指数(Normalized difference vegetation index,NDVI)和红边归一化植被指数(Red edge normalized vegetation index,RENDVI)及其组合特征(NDVI+RENDVI、NDVI-RENDVI和NDVIRENDVI),分析作物特征曲线,并采用随机森林法分别以5种特征参数作为分类特征对研究区农作物进行精细分类。结果表明:根据形态特征,研究区农作物特征值曲线可划分为3种类型:高值型(玉米、水稻、胡麻和马铃薯)、低值型(洋葱、大棚作物和砂田瓜果)和开口型(春小麦、春小麦-秋油葵)。高值型和低值型可在7、8月影像中区分,开口型和前两种类型在5月和9月影像上的特征值有明显差异。3种类型内的作物可以通过不同时相影像区分,高值型的4种作物在9月影像上通过成熟期差异可以区分;低值型的3种作物的特征值差异在全年影像上都可以明显体现;开口型的两种作物利用9月影像可以明显区分。利用NDVI、RENDVI、NDVI+RENDVI、NDVI-RENDVI和NDVIRENDVI 5种特征分类的总体精度分别为82. 14%、78. 16%、81. 17%、75. 64%和86. 20%,Kappa系数分别为0. 78、0. 74、0. 77、0. 71和0. 83,总体精度和Kappa系数由大到小依次为NDVIRENDVI、NDVI、NDVI+RENDVI、RENDVI、NDVI-RENDVI,说明RENDVI辅助NDVI可以有效提高分类精度(精度较仅用NDVI提高4. 06个百分点)。选择合适的时期和分类特征,利用Sentinel-2A特有的红边波段数据及其较高的空间分辨率在县域农作物精细分类上具有较好的精度。 相似文献
6.
《灌溉排水学报》2019,(9)
【目的】准确实现河南省冬小麦种植面积的遥感提取,并探索河南省冬小麦种植面积的变化过程。【方法】将遥感监测与统计数据结合,以多时相MODIS遥感影像作为数据源,分析制定了冬小麦信息的提取规则,利用统计数据辅助确定规则中的阈值选取,以减少阈值选取的主观性,提取出河南省2004—2013年冬小麦种植面积,并分析了河南省2004—2013年冬小麦种植面积的时空变化。【结果】遥感监测结果与各地市统计值具有较高的相关性(R2=0.938 5),在平原地区具有较高的精度,监测精度为89.5%,而在受到地形等因素影响的地区,冬小麦种植面积的分布相对破碎,监测精度具有较大误差,个别地区甚至不足50%。从空间上看,河南省冬小麦种植面积的空间分布总体较为集中,主要分布在河南中东部的黄河平原和淮河平原地区和豫西南的南阳盆地地区。从时间上看,河南省冬小麦种植区域总体变化较小,种植年份较为稳定的区域主要分布于豫东平原地区,累积种植年数显著增加地区主要分布于南阳盆地地区,累积种植年数显著减少地区的分布较为分散,无明显的分布趋势。【结论】基于遥感和统计数据相结合的方法可准确监测平原区冬小麦种植面积,河南省冬小麦种植面积的时空变化均较为稳定,为保障我国粮食安全发挥着重要作用。 相似文献
7.
针对干旱区复杂环境下水体光谱特性空间差异大、水体提取方法适用性差的问题,本研究基于Sentinel-2卫星多光谱数据,通过超分辨率算法重建10 m空间分辨率多光谱影像,将短波红外(Short-wave infrared, SWIR)重建波段、近红外(Near-infrared, NIR)重建波段作为水体识别特征波段,在此基础上采用超像素分割算法识别水体像元,基于24种光谱指数、支持向量机(Support vector machine, SVM)、神经网络(Neural network, NN)、K-means共构建60种水体提取方法,采用总体精度(Overall accuracy, OA)、准确率(Precision)、F1值、马修斯相关系数(Matthews correlation coefficient, MCC)等水体提取精度指标进行综合评价,以黑河流域为典型研究区,确定干旱区最佳水体提取方法。结果表明,基于Sentinel-2绿色波段(中心波长为560 nm)与超分辨率重建短波红外波段(中心波长为1 610 nm)构建的改进的归一化水体指数方法,显著增强水体提取时对干旱区细小水... 相似文献
8.
棉花是我国重要的经济作物和战略储备物资,及时、准确地获取棉花空间分布信息对于棉花产量预测、农业政策的制定与调整具有重要意义。针对高分辨率遥感影像获取难度大以及传统机器学习对特征信息利用不足的问题,本文以新疆南部地区图木舒克市为目标区域,提出一种以U-HRNet为基本框架,融合CBAM注意力机制的CBAM-U-HRNet棉花种植地块提取模型。选择U-Net、HRNet和U-HRNet作为对比模型,评估CBAM-U-HRNet模型在Sentinel-2(10 m)和GF-2(1 m)2种空间分辨率数据集上的表现以及在棉花地块提取的优势。结果表明,基于Sentinel-2遥感影像的CBAM-U-HRNet组合模型对棉花地块的提取精度最优,mIoU和mPA分别达到92.78%和95.32%。与Sentinel-2数据集相比,空间分辨率更高的GF-2数据在HRNet、U-Net和U-HRNet网络上取得了更高的精度。对于两种不同空间分辨率的数据集,基于CBAM-U-HRNet模型的棉花地块提取精度较为接近,表明CBAM-U-HRNet模型能够减少由于数据集空间分辨率不同导致的错分。与随机森林算法... 相似文献
9.
10.
【目的】探究基于Sentinel-2遥感影像的决策树分类模型提取破碎化地块灌区作物种植结构的适用性。【方法】选取新疆阿拉沟灌区为研究区,以2021年覆盖作物全生育期的Sentinel-2遥感影像为数据源,结合田间调查和Google高清影像目视解译采样,基于主要作物物候信息、NDVI时序特征等分析确定作物识别的关键期阈值,构建决策树模型进行灌区主要作物分类,并对分类结果精度验证。【结果】基于Sentinel-2提取的灌区种植结构分布图地块纹理清晰,能够满足灌区用水管理需要;构建的决策树分类模型可在灌区尺度实现作物分类,方法简便易行,总体精度达到81.56%,Kappa系数为0.716 6。【结论】采用Sentinel-2遥感影像和决策树分类方法识别破碎化地块灌区复杂作物分类是可行的,可为灌区输配水决策和农业用水精细化管理提供基础信息。 相似文献
11.
在研究区内冬小麦种植区选取149个地面样方,筛选样方内反映种植结构、地块破碎程度、地形因素的参数并利用差分GPS测量,对3个参数量化并确定插值的主辅变量。探讨和比较了利用普通克里格和协同克里格2种插值方法对研究区的冬小麦种植面积比例的插值结果。结果表明,相同采样数量下,协同克里格法相对于普通克里格法的均方根误差降低1.48%,预测值与实测值之间的相关系数提高了6.82%,利用COK插值获取研究区内冬小麦种植面积比例分布状况,可以分区域对大尺度冬小麦面积遥感提取结果进行修正。 相似文献
12.
在对Sentinel-2卫星遥感影像进行预处理的基础上,利用主成分变化提取小麦主要信息,基于云模型算法开展光谱遥感图像分类。分类时,首先根据训练样本集,由逆向云发生器生成典型小麦的云模型,然后利用云发生器计算出各波段每个象元对小麦地物的平均隶属度,在对各波段的隶属度分析基础上,摒弃含有复杂信息的第1主成分,利用第2主成分和第3主成分信息实现对冬小麦种植空间信息的提取。结果表明,提取小麦种植信息制图精度和用户精度分别为92.78%和99.90%,小麦种植田块的隶属度值因小麦长势和密度的不同有较大的差异,云模型对长势较差、密度较低的小麦像元存在漏分现象。基于云模型的算法精度极高,对小麦地块的识别错分、漏分现象少。该模型有助于冬小麦种植面积的精确提取,对于农业部门进行冬小麦生长监测与产量估测有重要的支撑作用。 相似文献
13.
研究利用遥感数据进行了运城地区冬小麦不同生育时期归一化差值植被指数和产量关系的研究,利用气象数据和光谱数据构建了冬小麦光谱产量模型、气象产量模型以及光谱气象产量模型。结果表明:运城地区水旱地冬小麦均以5月8日左右的NDVI值与产量相关性最好,且达极显著水平,因此该时期为建立冬小麦遥感估产模型的最佳时相。通过对冬小麦光谱产量模型、气象产量模型以及光谱气象产量模型预测效果进行的F检验,表明各模型均达到极显著水平。与其他两种模型相比,光谱气象产量模型的决定系数(R2)有明显的提高,并且相对均方根误差(RRMSE 相似文献
14.
粮食安全是最根本的民生问题,云、雾等自然因素是影响遥感种植监测的主要因素之一,因此获取精准、高效的耕地种植监测信息的对保障当地粮农安全、粮食估产及面积估算具有重要意义。在利用多时相植被指数(VI)合成模型的构建、农作物特征与耕地信息的可分离性两方面对高原山地农作物耕地面积提取的研究少。本研究基于哨兵2(Sentinel-2)数据,构建了多时相植被指数合成模型,估算了2020-2021年归一化植被指数(NDVI)、增强植被指数(EVI)和红绿叶绿素植被指数(RECI)三种植被指数的提取结果,研究了预测模型与高原山地农作物的相关性,探讨了不同植被指数模型对农作物识别精度。结果表明:①多时相NDVI模型相较EVI、RECI对冬小麦面积提取精度更高,与云南高原山地冬小麦相关性最强,用户精度约为93.28%;②利用三期NDVI组合与两期NDVI组合均可对冬小麦精准提取,但三期NDVI草型提取精度更高。因此,本研究利用多时相NDVI指数模型对冬小麦种植面积的精准预测,证明了该模型可有效适用于云南高原山地冬小麦,并为当地冬小麦面积的预测提供了数据支撑。 相似文献
15.
为了研究连续干旱对冬小麦产量的影响,以冬小麦品种“矮抗58”为试验材料,通过桶栽试验,在冬小麦的拔节期、抽穗期和灌浆期分别设置轻度干旱、中度干旱、重度干旱,分别对应土壤含水率控制在田间持水率的60%~70%,50%~60%,40%~50%.试验设置了单阶段受旱9个、两阶段连旱6个,三阶段连旱4个,试验对照1个,共计20个试验处理.研究结果表明,单旱条件下,拔节期减产最明显,抽穗期其次;拔节期轻旱、中旱和重旱分别减产4.08%,21.71%和36.73%.两阶段连旱条件下,拔节期和抽穗期连续中旱对产量影响最大,减产率达28.42%;抽穗期和灌浆期连续中旱对产量影响相对较小.三阶段连旱条件下,连续轻旱减产不明显,连续中旱和重旱分别减产24.96%,53.99%.总体上,拔节期是冬小麦的需水关键期,中旱及以上水平就会引起显著减产;相反,水资源紧缺条件下,抽穗期和灌浆期可以适当中旱,甚至重旱,对产量影响较小. 相似文献
16.
为了提高冬小麦种植区识别精度,本文基于谷歌地球引擎(Google Earth Engine, GEE)平台和随机森林算法,对比雷达和光学遥感数据对冬小麦提取效果的差异,并对多类特征变量进行重要性分析,研究特征优选对冬小麦识别精度的影响。选取2019年3—5月冬小麦关键生育期的Sentinel-1和Sentinel-2影像为数据源,构建Sentinel-1的极化特征和纹理特征以及Sentinel-2的光谱特征、植被指数特征、植被指数变化率特征共5类特征变量;设置不同数据源和不同特征组合的冬小麦种植区提取方案;对方案中特征变量进行优选,得出最优特征组合,利用最优特征组合对河南省驻马店市冬小麦种植区进行提取。结果表明,无论是否进行特征优选,基于多源遥感数据的冬小麦识别精度均优于仅采用光学或雷达数据的精度;经过特征优选后,各方案的分类精度均有不同程度的提升,说明多源数据特征变量组合和特征优选均能够提高分类精度。不同月份和类型的特征变量对分类精度的贡献率不同,贡献率由大到小为4月、3月和5月;贡献率由大到小的特征类型为极化特征、植被指数变化率特征、植被指数特征、光谱特征和纹理特征。基于多源数据特... 相似文献
17.
以吉林省四平市为研究区,利用Sentinel-1A上搭载的全天时、全天候、高分辨的双极化合成孔径雷达(Synthetic aperture radar, SAR)对玉米留茬区进行监测。对比分析了玉米作物留茬区和非留茬区C波段微波信号的后向散射特性,并探讨了不同极化组合下的差异,确定留茬区可分离性相对较高的模式。运用支持向量机(Support vector machine,SVM)方法对研究区主要地物进行识别,获取留茬区的地理分布及其覆盖面积和比例。实验结果表明不同极化组合均能得到比较理想的结果,证明了实验方案的有效性。特别是对于VH和VV双极化组合模式下,总识别精度为86.15%,留茬区识别精度达90.26%。 相似文献
18.
梯田具有蓄水固沙的作用,是旱作农业区重点建设的高产稳产农田设施,为粮食增产、农民增收提供了有力保障。因仅基于影像数据采用边缘提取方法进行梯田区域分割效果不理想,及时准确地掌握梯田信息较为困难。无人机遥感技术的不断发展为高精度梯田地形信息的获取提供了新方法。本研究以甘肃省榆中县为例,首先从数字高程模型DEM数据中提取坡度,将正射影像与坡度数据融合,并通过基于Canny算子的粗边缘提取方法和基于多尺度分割的精细边缘提取方法,对比分析坡度对无人机遥感梯田影像边缘提取的影响。试验结果表明,正射影像和坡度融合的提取效果均优于单一的正射影像数据提取效果,粗边缘提取方法中正射影像和坡度融合的数据源精度平均提高了23.97%,精细边缘提取方法中正射影像和坡度融合的数据源精度平均提高了17.84%。研究表明,在无人机遥感梯田影像边缘提取中加入一定的地形特征,可以取得更好的边缘提取效果。 相似文献