首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 671 毫秒
1.
针对自走式全混合日粮制备机缺乏取料机理、堵塞问题明显的情况,建立了取料作业的理论模型,对取料宽度、刀具回转半径、取料刀安装螺距、取料刀密度、取料转速、每刃进给量、抛料速度、物料射入角和输送带尺寸等关键因素进行了设计与计算.为衡量取料刀刃口长度与取料宽度之间的关系,提出取料刃长度比C的概念,取C为1.25.采用EDEM对...  相似文献   

2.
为解决有机肥流动性差、机械抛撒难的问题,基于自制的卧式有机肥撒施机,建立了有机肥在抛撒过程中的运动模型,分析了影响抛撒均匀度的主要因素;采用SolidWorks软件建立了有机肥和卧式有机肥撒施机的三维模型,运用EDEM软件以输肥速比(作业速度与刮板输肥速度比值)、抛撒辊转速、螺旋叶片螺距为试验因素进行了响应面设计试验;采用Design-Expert 8.0.5软件优化了作业参数,并进行仿真试验验证和田间试验验证。仿真结果表明:影响抛撒均匀度横向变异系数的主次顺序为螺旋叶片螺距>抛撒辊转速>输肥速比;当输肥速比为-16.42、抛撒辊转速为557.90 r/min、螺旋叶片螺距为365.40 mm时,抛撒均匀度横向变异系数为14%,仿真验证值与预测值误差≤5%,响应面模型合理。田间试验表明,当输肥速比为-16.6、抛撒辊转速为560 r/min、螺旋叶片螺距为360 mm时,抛撒均匀度横向变异系数为14.5%,与EDEM仿真值误差≤5%,满足有机肥撒施机的田间作业标准,仿真模型及优化参数合理。该研究可为有机肥撒施机的优化设计及抛撒性能提升提供参考。   相似文献   

3.
针对东北地区免耕播种时易出现秸秆堵塞等问题,本研究设计一种螺旋切分式种带清理装置。通过理论分析,确定了清茬刀的排布方式和清茬刀刃口曲线参数,并得到影响种带清理效果的主要因素:拖拉机前进速度、螺旋切分式种带清理装置转速和螺距。在离散元软件EDEM中建立螺旋切分式种带清理装置仿真模型,以种带清秸率为试验指标,以前进速度、转速和螺距为试验因素,进行了二次回归组合仿真试验,建立了种带清秸率的回归模型,结果表明,前进速度、转速和螺距对种带清秸率影响极显著(P<0.01),其中转速影响最为显著。利用Design-Expert软件对影响因素进行优化求解,得到最优参数组合为:前进速度2m/s、转速400r/min、螺距570mm,最佳组合下种带清秸率为92.55%。在最优参数下进行了田间验证试验,试验种带清洁率比仿真减少了约2.89个百分点,基本满足玉米免耕播种的要求。该研究为东北地区免耕播种机秸秆清理与防堵装置的研究提供了参考。  相似文献   

4.
为解决黑茶发酵过程中翻堆降温的问题,设计一种黑茶翻堆设备,并在溧阳进行试验研究。利用该设备在长10m、底宽1m、高0.5m的渥堆上进行翻堆,取辊筒外圆线速度与前进速度的比值分别为90、120、150,以翻堆前后的温差、含水率变化和蓬松率作为试验指标,对设备的辊筒外圆线速度和前进速度进行正交试验。试验结果表明,在一定范围内,影响温差变化最大的是辊筒线速度;影响含水率变化最大的是辊筒线速度和前进速度的速比;影响蓬松率最大的是前进速度。  相似文献   

5.
针对目前我国对散粒物料螺旋输送装置研究缺乏的现状,设计一种参数可调散粒物料试验台设计试验台。该试验台可实现对螺旋输送装置转速、螺距、下料口大小等参数的调整,并采集到物料输送过程中螺旋叶片以及输料筒等位置的受力情况。满足不同输送试验的要求;采用先进的数据采集处理系统,对试验数据进行实时采集处理。试验台结构简单,操作方便,为散粒物料螺旋输送装置的设计与研究提供新的试验平台。该试验台转速的调节范围为0~600rpm;可调节螺距有25mm、30mm、35mm、40mm、45mm、50mm六种;下料口的口径调节范围在0~0.25m2。  相似文献   

6.
为解决甘蔗横向种植人工撒肥的不均匀问题,结合农艺要求,在甘蔗横向种植机开发基础上,设计了一种小开口螺旋施肥机构。选取料槽开口、螺旋叶片螺距和螺旋轴转速3个因素对施肥幅宽及其变异系数进行单因素离散元仿真试验,并完成三元回归正交旋转组合仿真试验,通过得出的二次回归方程进行目标参数的优化,回归方程求解得出:当料槽开口为8.7mm、螺旋叶片螺距为60.3mm、螺旋轴转速为64r/min时,施肥幅宽为225mm,变异系数为15.71%;仿真分析结果为:施肥幅宽220.5mm,变异系数16.34%;台架试验验证结果为:施肥幅宽215.1mm,变异系数为17.42%;优化结果、仿真验证试验结果及台架试验结果基本一致。研究结果可为甘蔗横向种植机施肥机构的开发提供参考。  相似文献   

7.
针对山地烤烟种植起垄机所制垄体的饱满度与土壤细碎度不足的问题,根据螺旋叶片输送物料原理建立土壤输送模型,计算起垄所需最小土壤输送量。在此基础上,设计了一种双螺旋变螺距式旋耕起垄组合刀辊,并在EDEM离散元软件中进行仿真分析,结果表明:当机组前进速度为2.5 km/h,刀轴转速为240 r/min,耕深为0.12 m时,刀辊平均抛土质量为133.0 kg,满足起垄所需的土壤量要求。为基于微耕机平台的山地小型起垄机研发提供技术支持。  相似文献   

8.
针对现有棉秆收获机械拔断率、漏拔率高,作业时需对行等问题,设计了一种夹持辊式棉秆拔取装置。该装置主要由棉秆拔取机构、棉秆输送机构组成,通过对棉秆拔取机构作业过程进行运动学与动力学分析确定了各零部件的结构参数与工作参数。为了验证棉秆拔取装置工作的可靠性与作业性能,以机具前进速度、上拔秆辊转速、机具前进速度与拨秆轮线速度比值(简称速比)作为试验因素,棉秆拔断率、漏拔率为试验指标进行了三因素三水平二次回归响应面试验,建立了回归模型,分析了各因素对棉秆拔取装置作业性能的影响,并进行了参数优化与试验验证。试验结果表明:影响棉秆拔断率的因素主次顺序为上拔秆辊转速、机具前进速度、速比;影响棉秆漏拔率的因素主次顺序为速比、机具前进速度、上拔秆辊转速。优化后的工作参数为:机具前进速度0.60 m/s、上拔秆辊转速46 r/min、速比0.50,以此参数组合进行田间试验,得到棉秆拔断率为3.68%,漏拔率为5.19%,与理论优化值相对误差不超过5%,研究结果可为棉秆拔取装置的设计提供参考。  相似文献   

9.
甘蔗收获机组合式扶起装置设计与试验   总被引:1,自引:0,他引:1  
设计了一种由锥形螺旋滚筒和拨指链组成的组合式扶起装置,并在土槽中进行了试验研究。以扶起合格率为试验指标,对甘蔗倒伏状态、螺旋滚筒转速、甘蔗与滚筒中心距离和前进速度为因素进行正交试验。在得出优化组合后,再分别进行滚筒轴线与地面夹角、滚筒叶片螺距和滚筒转速等因素的单因素试验,以及滚筒转速和前进速度的双因素试验。通过高速摄影分析了扶起过程。试验结果表明,在最优参数组合下,组合式扶起装置对严重倒伏甘蔗的扶起合格率达到90%。  相似文献   

10.
当前井窖移栽机成穴装置挖掘井窖稳定性差、易坍塌、土壤回流严重、直立度差,无法满足深井窖移栽成穴农艺要求。为此设计一种井窖移栽机单线螺旋成穴装置。对单线螺旋成穴装置的锥形钻尖、螺旋叶片、中心钻杆等关键结构进行设计,并采用动力学方法对其作业过程的入土阶段、切土阶段和排土阶段的成穴机理进行分析,确定了单线螺旋成穴装置的直径、螺距和转速为影响其作业质量的关键参数。应用离散元仿真软件EDEM对成穴装置作业过程进行仿真分析,以井窖深度、井窖直径、井窖直立度和土壤回流程度为评价指标,以直径、螺距、转速为试验因素,进行单因素试验确定关键参数的取值范围。根据取值范围,利用二次正交旋转中心组合试验方法建立单线螺旋成穴装置响应指标与试验因素的回归方程,并通过响应曲面得到其影响趋势和交互关系,结果表明各因素对井窖深度影响的主次顺序为螺距、转速、直径,对井窖直径影响的主次顺序为直径、螺距、转速。以回归方程为基础,采用多目标函数优化获取单线螺旋成穴装置的优化参数组合。根据优化后的参数组合研制单线螺旋成穴装置及田间作业平台并进行田间试验,试验结果表明:成穴装置直径为100mm、螺距为75mm、转速为350r/min时作业效果最佳,此时井窖深度为182mm、井窖直径为80.7mm,优化后的单线螺旋成穴装置满足井窖移栽成穴的农艺要求。  相似文献   

11.
开沟旋耕机渐变螺旋升角轴向匀土刀辊设计与试验   总被引:4,自引:0,他引:4  
针对长江中下游农业区开厢沟后旋耕作业地表平整度差、土壤轴向分布不均匀等问题,设计了一种渐变螺旋升角轴向匀土刀辊。分析了旋耕刀轴向运土力学条件,建立了匀土刀辊旋耕刀扰土体积参数方程和旋耕刀渐变螺旋升角排列螺旋线方程,并分析确定了影响匀土刀辊轴向匀土性能的关键因素为刀辊转速、旋耕切土节距、初始螺旋升角。运用离散元法模拟匀土刀辊作业过程,以耕后地表平整度为试验指标,以刀辊转速、旋耕切土节距、初始螺旋升角为试验因素,进行了正交试验,建立地表平整度回归方程。利用Design-Expert分析软件得到最优参数组合为:刀辊转速260r/min、旋耕切土节距8.3cm、初始螺旋升角71°,此时仿真地表平整度为17.35mm。在最优参数组合下进行了田间试验,结果表明,匀土刀辊作业后,地表平整度、土壤轴向分布均匀度、耕深稳定性系数、碎土率的均值分别为14.5mm、8.82%、92.34%、81.66%,整体耕整效果优于常用旋耕刀辊。  相似文献   

12.
油菜联合收获机滚筒筛式复清装置设计与试验   总被引:1,自引:0,他引:1  
针对油菜联合收获机脱粒分离作业后脱出物组分杂,籽粒细小不易分离,导致清选作业清洁率低、人工复清劳动强度大等问题,设计了一种挂接在粮箱上的模块化滚筒筛式复清装置。基于运动学与动力学分析了物料提升螺旋输送器和筛分装置的结构参数与运行参数范围;以滚筒筛式复清装置的损失率、清洁率及筛分效率为评价指标,以滚筒筛转速、筛网内助流螺旋叶片螺距和筛孔直径为影响因素,基于EDEM开展了三因素三水平正交试验,确定了最佳参数组合,并利用收获关键部件试验台开展了验证试验。仿真结果表明:当喂入量为0.6kg/s时,滚筒筛式复清装置的较优参数组合为筛孔直径5mm、滚筒筛转速105r/min、筛网内助流螺旋叶片螺距250mm,此时滚筒筛式复清装置损失率为0.92%、清洁率为98.96%、筛分效率为95.12%。台架验证试验表明,带有滚筒筛式复清装置的清选系统工作顺畅,在最佳参数组合条件下,滚筒筛式复清装置的损失率为0.96%、清洁率为98.67%、筛分效率为95.36%,对比未增加滚筒筛式复清装置前清洁率提升了4.38个百分点。研究可为油菜联合收获机清选装置结构改进和优化提供参考。  相似文献   

13.
土壤分流式宽苗带小麦少耕播种机设计与试验   总被引:1,自引:0,他引:1  
为实现长江中下游农业区宽苗带小麦少耕播种需求,本研究结合区域小麦种植农艺特点,设计一种土壤分流式宽苗带小麦少耕播种机.通过对表土盖种装置结构与抛土运动学分析,设计耕抛刀辊结构参数,得到覆盖种带运动学条件;通过对沟土匀摊装置结构及螺旋叶片作用下土壤受力与速度分析,设计沟土匀摊装置结构参数,明确影响播种深度与其稳定性关键因...  相似文献   

14.
针对目前我国牛羊养殖场饲喂过程中饲喂通道存在剩余饲料的问题,设计一种代替人工收集剩余饲料的剩料收集机。该机主要由盘刷、收料装置、输送装置、集料箱等部件组成。收集机通过前端的盘刷,将剩料清扫到收集机的清扫方向上,再利用圆柱刮板、螺旋圆柱刷、两侧绞龙将剩料输送到吸口处,利用链条、刮板将剩料输送到剩料箱。重点对盘刷清扫装置、螺旋圆柱刷、螺旋集料机构、链条刮板机构和液压系统等关键部分进行设计计算,确定盘刷的旋转速度为150 r/min,螺旋圆柱刷的转速为80 r/min,螺旋绞龙的转速为60 r/min,剩料收集机的前进速度为5 km/h。在实际试验中,剩料收集率均在96%以上,平均收集率达到97%,收集机收料效果良好,达到牧场的使用要求,验证了本设计的正确性。  相似文献   

15.
冬春鲜喂饲用油菜收获机滚刀式切碎装置设计与试验   总被引:2,自引:0,他引:2  
针对长江中下游地区饲用油菜生物量大、含水率高,缺乏适用收获机械的问题,开展了冬春鲜喂饲用油菜机械化收获切碎装置设计与试验。根据物料特性、切碎及抛送等作业要求,确定了平板型滚刀式切碎装置主要结构参数和作业参数;采用单因素与二次旋转正交组合试验研究了喂入压辊转速与切碎器主轴转速对茎秆切碎长度合格率和功耗的影响,构建了长度合格率和功耗与喂入压辊转速和切碎器主轴转速的回归方程,优化得出了最佳作业参数。试验结果表明:喂入压辊转速为400~550 r/min,切碎器主轴转速为600~800 r/min,茎秆切碎长度合格率较优。优化得出喂入压辊转速496. 17 r/min、切碎器主轴转速为709. 14 r/min时,茎秆切碎长度合格率为91. 16%。采用平板型滚刀式切碎装置开展鲜喂饲用油菜收获田间试验和饲喂试验表明:收获饲用油菜切碎茎秆长度满足饲用油菜冬春鲜喂要求。  相似文献   

16.
基于响应面分析法的香蕉茎秆纤维刮杂装置优化设计   总被引:1,自引:0,他引:1  
为了优化香蕉茎秆纤维提取机刮杂装置部件结构,提高纤维提取质量,以刮杂装置的刀辊速度、刀片间距、定刀弧长为影响因子,采用响应面优化设计方法,建立了影响因子与纤维提取率之间的数学模型,确定了较优的参数组合。试验表明:当香蕉纤维提取机刮杂装置影响因子的实际参数为刀辊转速1 200r/min、刀片间距1 1 0 mm、定刀弧长5 0 mm时,纤维提取率平均可达到9 2.6%,符合优化目标及生产要求。研究结果可为植物纤维提取装置的研发和应用提供理论依据和思路。  相似文献   

17.
针对黄花苜蓿收割难度大、成本高、效率低制约其大规模推广的问题,设计一种能实现黄花苜蓿收割与收集的手扶电动式收获机。介绍该机的整体结构并对切割装置、收集装置和传动装置等关键部件进行参数设计,设计刀片节距为34 mm,单个动刀的行程17 mm,切割功耗为1.175 kW,风机功率消耗为0.124 3 kW,主风管尺寸为30~50 mm,支分管为15~25 mm,选用电机功率为2.2 kW;为测试该机作业性能,基于响应面分析法进行田间作业试验,结果表明,该机的最佳作业参数为:作业速度0.72 m/s,切割速度0.78 m/s,吹送速度1.29 m/s,此时收获机工作效率为0.091 2 hm~2/h,漏割率为1.75%;各因素对工作效率的因子贡献率为:吹送速度>切割速度>作业速度;各因素对漏割率的因子贡献率为:切割速度>作业速度>吹送速度。各项指标均达到设计要求,能实现稳定高效作业。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号