首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
水电机组状态监测与故障诊断系统   总被引:4,自引:0,他引:4  
利用信息技术实现水电机组的状态监测和故障诊断是提高水电厂经济效益和安全运行的重要技术保证。本文重点介绍了水电机组状态监测和故障诊断系统及其经济效益和成功案例。  相似文献   

2.
水电机组状态监测与故障诊断   总被引:1,自引:0,他引:1  
李德军 《湖南农机》2011,38(7):105-106
文章主要从水电站的实际情况出发,对水电站机电设备状态监测和故障诊断的意义、内容以及国内外的应用、发展方向进行了描述,分析了现有水电机组状态监测与故障诊断技术的研究现状,指出了存在的问题,同时提出了未来水电机组故障诊断技术的发展方向.  相似文献   

3.
针对水电机组状态监测数据量逐步增大,数据质量差的问题,提出了一种基于改进K维树(K-Dimensional Tree,KD-Tree)与基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的水电机组状态监测数据清洗方法,首先对输入数据建立KD-Tree,再使用DBSCAN在最近邻样本上扫描完成聚类,聚类结束以后会分离出噪声点,将噪声点去除即可完成对水电机组状态监测数据清洗。选取某水电站状态监测系统上导摆度数据1 088条,再以相同时间间隔插入随机数据100条,通过算例与常规DBScan、K-means、OCSVM算法对比聚类性能与时间性能,所提出的方法识别正确率最高,为97.78%,消耗时间最少,为0.007 732 s,数据清洗效果最优,并可以大幅减少计算时间。  相似文献   

4.
电厂、电网的安全稳定与水电机组的运行状态息息相关.机组状态趋势预测弥补了故障诊断作为事后决策的不足,通过预测提前发现故障征兆,可以避免事故发生.本文结合EEMD和神经网络理论,提出了一种水电机组状态趋势预测模型.以国内某两电站的机组振动状态趋势预测为例,首先对机组振动信号进行EEMD分解,其次利用GA-BP预测模型预测...  相似文献   

5.
提出了一种结合卷积神经网络,小波变换和奇异值分解理论的水电机组故障诊断方法.利用卷积神经网络提取机组轴心轨迹的图像特征;通过离散小波变换对摆度信号进行分解,获得信号的小波分解系数,对各分支系数进行重构,构造奇异值分解输入矩阵,提取矩阵奇异值作为特征向量.将两种方法提取的特征进行组合,构建包含图像特征和波形特征的混合特征...  相似文献   

6.
针对常规水力机组故障类型识别需要人工参与、识别效率低下的问题,借助轴心轨迹图片蕴含的丰富信息,在引入细粒度模型对故障严重程度进行区分的基础上,提出了一种基于卷积神经网络的水力机组轴心轨迹类型的智能识别方法.该方法先建立了4种故障严重程度的评判标准和对应的2种水电机组轴心轨迹细粒度数据库;利用改进过卷积层与池化层参数的卷...  相似文献   

7.
根据调压灌溉特点和水泵性能曲线与机组断续运行的关系,提出了改善机组运行状态的几种调节方法,并给出了相应调整量的计算式。  相似文献   

8.
水电是具有灵活调节作用的清洁能源,在维持电力系统稳定性,保证电能质量方面发挥了其他能源难以替代的作用。随着风、光等可再生能源在电网中的比例进一步增加,传统的水电机组控制策略已难以满足应对各种复杂工况的要求。尽管针对水电机组先进控制策略的理论研究已较为成熟,但应用受制于算法本身的复杂性和现实条件。为此,在传统PID控制的基础上,分别利用智能优化算法和神经网络寻找和拟合不同工况下的最优PID控制参数,设计了适应于水电机组工况变化的自适应PID控制器。仿真结果表明,相比传统的定PID控制器,设计的自适应控制器能够根据工况变化自动调节PID参数,实现了在不同工况下均能保持最优控制性能的目标。  相似文献   

9.
由于甘蔗收获机在收获过程中智能化水平较低,依靠人工操作很容易对甘蔗收获机的运行状态产生误判,从而造成物流通道堵塞、能源浪费、收割效率低。针对这些问题,提出一种基于主成分分析(PCA)、遗传算法(GA)和支持向量机(SVM)状态识别模型。首先,通过实地采集甘蔗收获机刀盘轴、行走轴、切段轴和风机轴扭矩和行驶速度特征信息,然后通过PCA进行数据降维,最后利用GA优化参数C、γ,使用每个特性信息来训练SVM,对甘蔗收获机运行状态进行分类。结果表明:PCA-GA-SVM状态识别模型对甘蔗收获机运行状态的识别准确率为93.75%,建模时间为3.688 s,与SVM(81.25%,9.487 s)、PCA-SVM(87.5%,5.817 s)和GA-SVM(90%,8.969 s)进行对比,该模型具有最高准确识别率和最快建模速度,具有较大的应用价值。  相似文献   

10.
针对槟榔人工分级劳动生产率低、准确率低的问题,开展基于遗传神经网络的机器视觉槟榔分级研究。以4种类别的槟榔图像为研究对象,首先设计一个6层结构的遗传神经网络对槟榔进行分级,虽然分级准确率较高但是网络结构复杂。然后对运用主成分分析法降低图像特征的维数并将遗传神经网络简化为3层结构的方法进行研究。最后用400幅和100幅槟榔图像对这个3层神经网络进行训练和验证,经过调整网络的学习率等参数,训练和验证的准确率达到95%以上。通过神经网络模型测试试验,槟榔正确分级的准确率为90%。数据降维后的三层遗传神经网络能够实现对槟榔的实时分级,为机器分级提供了技术支持。  相似文献   

11.
为解决果园需水量预测精度低、鲁棒性差等问题,提出了遗传算法(GA)优化BP神经网络的果园需水量预测模型.选取空气温度、土壤含水率、光照强度3个主要环境因子作为BP神经网络的输入量,利用遗传算法的全局搜索能力优化神经网络权值和阈值,建立GA-BP神经网络模型预测果园需水量.仿真结果表明:GA-BP预测模型的预测值比BP模型更加趋近期望需水量,模型评价指标平均绝对百分比误差(MAPE)、均方根误差(RMSE)和平均绝对误差(MAE),均优于单一BP神经网络模型.与传统的BP神经网络算法相比,GA-BP神经网络模型能较好的表达果园需水量与主要环境因子的非线性关系,具有较高的预测精度和适应性.  相似文献   

12.
针对BP神经网络在解决复杂非线性问题时,存在初始权值和阈值随机赋值,网络学习速度慢,局部极小的问题,运用群体搜索能力强的思维进化算法(MEA),寻找出最优的初始权值和阈值,优化BP神经网络的网络结构,建立MEA-BP神经网络的土壤养分等级评价模型。以敦化市黑土的土壤养分数据作为测试集,评价指标选用土壤的有机质、全氮、速效氮、速效磷和速效钾。对比MEA-BP网络预测模型、遗传算法(GA)优化BP网络预测模型和单一的BP网络预测模型,结果表明MEA-BP网络预测模型的均方误差(MSE)最小、决定系数(R^2)最接近1和误差波动最小,可以更准确地反映土壤养分分级特性。  相似文献   

13.
为解决传统的玉米病害识别方法中特征提取主观性强及误识率高的问题,提出利用卷积神经网络对玉米病害进行识别。以玉米病害图像和健康图像共5种类别的玉米图像为研究对象,并采用LeNet模型进行试验。首先,按照8∶2的比例为每种玉米病害图像选择训练集和测试集。然后,通过试验组合和对比分析的方法比较不同卷积神经网络结构设置对准确率的影响,选出最佳参数。另外,选用Adam算法代替SGD算法来优化模型,通过指数衰减法调整学习率,将L2正则项添加到交叉熵函数中,并选择Dropout策略和ReLU激励函数。最后,确定了一个10层CNN网络结构。试验结果显示,玉米花叶病、灰斑病、锈病、叶斑病和玉米健康识别率分别为95.83%、90.57%、100%、93.75%、100%,平均识别率达96%,平均计算时间为0.15 s。经试验结果比较,该模型识别效果明显高于传统方法,为玉米病害的防治提供技术支持。  相似文献   

14.
基于GA-BP神经网络的池塘养殖水温短期预测系统   总被引:1,自引:0,他引:1  
为解决传统的水温小样本非实时预测方法预测精度低、鲁棒性差等问题,基于物联网实时数据,提出了遗传算法(GA)优化BP神经网络的池塘养殖水温短期预测方法,并在此基础上设计开发了池塘养殖水温预测系统,首先采用主成分分析法筛选出影响池塘水温的关键影响因子,减少输入元素;然后使用遗传算法对初始权重和阈值进行优化,获取最优参数并构建了基于BP神经网络的水温预测模型;最后采用Java语言开发了基于B/S体系结构的预测系统。该系统在江苏省宜兴市河蟹养殖池塘进行了预测验证。结果表明:该系统在短期的水温预测中具有准确的预测效果,与传统的BP神经网络算法相比,研究内容评价指标平均绝对误差(MAE)、平均绝对百分误差(MAPE)和误差均方根(MSE)分别为0.196 8、0.007 9和0.059 2,均优于单一BP神经网络预测,可满足实际的养殖池塘水温管理需要。  相似文献   

15.
水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效性差和劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用YLS-D系列植株营养测定仪测量玉米植株的氮素和水分含量等营养信息,根据这些信息将采集的图像分为3个等级(每个等级共包含530幅五通道图像,其中480幅作为训练集,50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于TensorFlow深度学习框架搭建了ResNet18卷积神经网络模型,通过向模型输入彩色图像数据和五通道多光谱图像数据,分别训练出适合于彩色图像和多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像和多光谱图像,能够输出玉米的营养状况等级和GPS 信息,识别彩色图像模型在验证集的正确率为84.7%,识别多光谱图像模型在验证集的正确率为90.5%,模型训练平均时间为4.5h,五通道图像识别平均用时为3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法和依据。  相似文献   

16.
为实现玉米种子快速、准确地优选,以不同质量的玉米种子为研究对象,提出一种分水岭算法结合卷积神经网络对玉米种子进行质量检测的方法.首先利用分水岭算法分割出单粒玉米种子,然后通过卷积神经网络模型对每粒种子进行质量分类,根据分水岭算法得到的单粒种子的位置,将结果在图像中进行标注,实现种子质量检测.使用改进型的Inceptio...  相似文献   

17.
基于不变矩和神经网络的泵机组轴心轨迹自动识别   总被引:2,自引:0,他引:2  
基于泵机组故障信号处理的需要,介绍了不变矩原理,同时对神经网络建模,包括其样本获取进行了详细讨论;由于泵机组的多种故障与表征其运行状态的轴心轨迹形状有关,根据不变矩的平移、伸缩和旋转不变性特征,对实时检测的轴心摆度信号进行不变矩处理,利用BP型神经网络对其进行模式识别,进而判断出轴心轨迹的形状.为了弥补泵机组用于神经网络训练样本的不足,采用数值模拟与现场测试相结合的方法,将获取的所有样本进行求不变矩处理,并连同样本对应的实际形状作为神经网络的训练样本.网络训练完成后,将其输出结果与轴心轨迹图形进行比较验证.以山西大禹渡泵站水泵机组故障检测及诊断为例,在样本中选取其中的10组数据,比较的结果表明神经网络自动识别的结果准确.该方法为泵机组轴心轨迹自动识别和实现泵机组故障诊断智能化提供了依据.  相似文献   

18.
王丽萍 《湖南农机》2011,38(9):29-31
运用计算机高级语言编程对神经网络BP模型进行仿真和辅助设计是件十分麻烦的事情,为了解决这个矛盾,Matlab神经网络工具箱中专门编制了大量有关设计BP网络模型的工具函数.文章分析了Matlab软件包中人工神经网络工具箱的有关BP网络的工具函数,结合一个实际的例子详细阐述了基于BP神经网络的函数逼近过程及其MATLAB实现方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号