共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
通过近几年调查比较,防治棉叶螨采用的四种机械中,以大型机车带喷雾机效果最好,中型四轮机车带喷雾机其次,弥雾机居第三位,手动式工农16型喷雾器效果最差。 相似文献
3.
4.
基于SVM和AdaBoost的棉叶螨危害等级识别 总被引:1,自引:0,他引:1
针对自然条件下棉叶螨虫害等级识别难的问题,在自然条件下以普通手机采集棉叶图像作为实验对象,首先使用大津法和连通区域标记算法,将棉花叶片图像与背景分离,然后,提取不同棉叶螨危害等级棉叶图像的颜色、纹理和边缘特征数据,使用支持向量机(Support vector machine,SVM)单独进行分类实验,得到平均识别正确率为76. 25%,最后,采用SVM和AdaBoost相结合的算法,生成最优判别模型,实现对棉叶螨危害等级的识别,平均识别正确率为88. 75%。对比实验表明,提出的棉叶螨危害等级识别方法比BP神经网络的平均识别正确率高13. 75个百分点,比单独采用SVM算法高12. 5个百分点,比单独采用AdaBoost算法高8. 75个百分点,SVM和AdaBoost相结合的算法可较好地对棉叶螨危害等级进行识别,为棉叶螨数字化防治和变量喷药提供了数据支持。 相似文献
5.
基于无人机数码影像的大豆育种材料叶面积指数估测 总被引:6,自引:0,他引:6
利用低成本的无人机(Unmanned aerial vehicle,UAV)高清数码影像获取系统,于2016年7—9月在山东省济宁市嘉祥县圣丰大豆育种基地,获取大豆育种材料试验区的R1-R2、R3、R5-R6共3个关键生育期的高清数码影像,首先利用高清数码影像中的黑白定标布,对数码影像的DN(Digital number,DN)值进行归一化标定,并构建标定的18个数码影像变量,然后基于900个育种小区的叶面积指数实测数据构建大豆育种材料叶面积指数的一元线性回归、逐步回归、全子集回归、偏最小二乘回归、支持向量机回归和随机森林回归模型,最后基于模型建立和验证的决定系数(R~2)、均方根误差(RMSE)和归一化的均方根误差(nRMSE)3个指标,筛选估测叶面积指数的最佳模型。研究表明,全子集回归模型中采用4个数码影像变量B、RGBVI、GLA和B/(R+G+B)的多元线性回归模型对大豆育种材料叶面积指数的解析精度最优,模型建立的R~2、RMSE和nRMSE分别为0.69、0.99和17.90%,验证模型的R~2、RMSE和nRMSE分别为0.68、1.00和18.10%。结果表明,以无人机为遥感平台,搭载低成本的高清数码相机,利用高清数码影像进行大豆育种材料LAI估测是可行的,可以快速、有效、无损地获取大豆育种材料的长势信息,为筛选高产大豆品种提供一种低成本的可行方法。 相似文献
6.
基于无人机高光谱长势指标的冬小麦长势监测 总被引:5,自引:0,他引:5
为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R~2、RMSE和NRMSE分别是0. 716 4、0. 096 3、15. 90%。 相似文献
7.
文章对目前我国对于精准农业技术发展的概况总结相关问题,综合我国目前现状,查阅相关的文献,进行总结分析,加入一些思考研究。并且结合现代科技运用遥感技术以及传感探测技术分析出大面积农田里面植被指数相关的数据,获得土壤的成分以及植物养分和病虫害信息等,为了农业生产的定量决策以及科学化的管理提供理论基础,为后续植保无人机提供参考。 相似文献
8.
9.
基于无人机遥感与随机森林的荒漠草原植被分类方法 总被引:2,自引:0,他引:2
荒漠草原是草原中最旱生的类型,属于草原的极限生态状态,也是气候变化和生态系统演变的预警区。利用无人机高光谱遥感技术快速、准确地提取荒漠草原草地植被类型,对动态监测草原生态安全和合理开发草地畜牧业具有重要意义。以无人机搭载高光谱成像系统采集内蒙古荒漠草原遥感图像,获得具有高空间分辨率和高光谱分辨率的图像;通过光谱连续统去除变换,增强草地植被之间的光谱差异,并构建植被指数;采用分步波段选择法选择荒漠草原植被的特征波段,实现高光谱数据降维;构建融合光谱特征、植被特征、地形特征和纹理特征等24个变量的随机森林分类模型,并与支持向量机(SVM)、K-最近邻(KNN)和最大似然分类(MLC)法进行比较。结果表明,在4种分类方法中随机森林分类算法分类效果最好,总体分类精度达到91.06%,比SVM、KNN和MLC等机器学习算法分别高7.9、15.61、18.33个百分点,Kappa系数达到0.90,比SVM、KNN和MLC算法分别高0.13、0.23和0.26。无人机高光谱低空遥感和随机森林算法的结合为荒漠草原草地植被分类提供了新途径。 相似文献
10.
11.
由于无人机受相机广角和飞行高度的限制,单张影像无法拍摄整个农田形状,导致无法准确测量农田实际面积。为此,基于图像特征匹配技术,提出改进SURF算法,用于无人机影像拼接。该算法针对传统SURF算法初始特征点选取精度不足的问题提出改进方案,优化高斯模糊的过程,进而形成新的尺度空间生成方式。通过在实验基地试验得出:本研究提出的改进SURF算法比传统SURF算法特征点在卷积核尺寸为3×3时,70 m、120 m高空的匹配率分别提升4.7%和5.3%;在卷积核尺寸为5×5时,70 m、120 m高空的匹配率分别提升4.0%和4.3%。本研究将改进后的SURF算法用于后期图像拼接中,经试验对比发现:改进的SURF算法在图片拼接处衔接程度明显提升,得到匹配精度更优的拼接图像。 相似文献
12.
13.
无人机热红外反演土壤含水率的方法 总被引:1,自引:0,他引:1
以不同生育期夏玉米为对象,讨论无人机热红外反演夏玉米田土壤含水率的精度及反演方法.利用无人机获取试验区的可见光和热红外图像.通过可见光图像提取冠层掩膜并叠加在热红外图像上提取玉米冠层温度,分析冠层温度的变化趋势及与叶面积指数(LAI)的相关性.最后,利用冠气温差的相反数与叶面积指数构建了一个新指标(DTL),讨论了冠气温差或DTL指标反演土壤含水率的准确性.结果表明:冠层温度随着土壤含水量的增加而降低,夏玉米LAI在一定程度上可以表征冠层温度;对比4个时期的数据,发现冠气温差反演效果在灌溉后较好(如2次灌后R2分别为0.614 6和0.463 7);与冠气温差相比,DTL指标可以提高土壤含水量反演的精度,如0~20 cm深度的R2从0.614 6和0.463 7提高到0.661 6和0.485 0.该研究对热红外反演夏玉米田间土壤含水率方法进行了新的尝试. 相似文献
14.
基于深度学习的无人机水田图像语义分割方法 总被引:1,自引:0,他引:1
为高效获取水田信息提高精准农业应用水平,提出一种基于深度学习的无人机水田图像语义分割方法。首先,采集无人机水田图像并制作一套高分辨率水田数据集,使用双边滤波去除图像噪声;然后,通过调整编码器获取更为细致的田块边界特征信息;最后,改进解码器融合更多浅层特征并采用深度可分离卷积解耦图像深度信息与空间信息,获得改进网络结构的DeepLabv3+模型。试验结果显示,改进模型的像素精度和平均交并比分别为96.04%和85.90%,与原始模型相比提升2.09%和4.66%;与典型的UNet、SegNet和PSPNet语义分割模型相比,各项指标均有不同程度的提高。本文方法能够实现准确、高效的水田分割,为进一步获取水田边界定位信息和构建高精度农田地图提供重要基础。 相似文献
15.
梯田具有蓄水固沙的作用,是旱作农业区重点建设的高产稳产农田设施,为粮食增产、农民增收提供了有力保障。因仅基于影像数据采用边缘提取方法进行梯田区域分割效果不理想,及时准确地掌握梯田信息较为困难。无人机遥感技术的不断发展为高精度梯田地形信息的获取提供了新方法。本研究以甘肃省榆中县为例,首先从数字高程模型DEM数据中提取坡度,将正射影像与坡度数据融合,并通过基于Canny算子的粗边缘提取方法和基于多尺度分割的精细边缘提取方法,对比分析坡度对无人机遥感梯田影像边缘提取的影响。试验结果表明,正射影像和坡度融合的提取效果均优于单一的正射影像数据提取效果,粗边缘提取方法中正射影像和坡度融合的数据源精度平均提高了23.97%,精细边缘提取方法中正射影像和坡度融合的数据源精度平均提高了17.84%。研究表明,在无人机遥感梯田影像边缘提取中加入一定的地形特征,可以取得更好的边缘提取效果。 相似文献
16.
为精准掌握北京市设施蔬菜种植情况和产能情况,项目深入挖掘“数字菜田项目”采集的5000个设施温室数据价值,开展基于物联网技术和图像识别技术的设施生产状态和作物品种识别研究,构建设施大棚生产状态识别模型和作物品种识别模型,并集成到北京市种植业综合管理平台,构建监管设施农业应用场景,从而为政府提供精准、高效的集中监管、远程指挥和决策支持,以北京市设施蔬菜发展带动农业产业振兴、乡村振兴。 相似文献
17.
无人机避障不及时造成的人员伤亡及财产损失是阻碍无人机发展应用的重要原因之一,实时性好、准确率高的避障系统可降低无人机的运行风险。提出基于目标检测的智能避障系统,以one stage与two stage目标检测方法相结合的方式改进目标检测模型YOLOv3。其中,障碍物检测分三部分完成:基于darknet-53进行三个不同尺度的特征提取、RPN根据ground truth筛选感兴趣区域和yolo层多尺度特征融合预测障碍物的位置和分类。然后,在该文数据集的基础上将训练好的障碍物检测模型进行测试,测试结果表明:改进模型的障碍物检测速率为25帧/s,mAP为95.52%,与现有的目标检测模对比结果表明:本研究改进的目标检测智能避障算法,比Faster R-CNN的mAP提高17.2%,检测速率加快14个FPS;并在保证实时性的同时,mAP比YOLO2提高23.3%,比YOLOv3提高6.25%。最后,将目标检测模型应用于无人机避障系统中提出实现方案,进一步为无人机安全运行提供新的方法。 相似文献
18.
近年来极端暴雨天气与自然灾害频发,导致农田损毁,影响耕作。该研究利用高精度农田数字地形模型(FDTM, Farmland Digital Terrain Model),基于地形因子综合属性提出一种识别农田微地形特征(凸起特征及洼地特征)的方法。首先,基于SfM(Structure from Motion)技术处理试验田的航拍图像,获取高精度农田FDTM。分析FDTM的高程方差随局部窗口尺度的变化趋势,确定分析窗口的尺度区间为31×31至51×51像素。其次,选择高程、地形起伏度和坡度综合评价在51×51像素窗口下提取的315个高程极值点,获取多窗口地形因子综合隶属度。最终,根据斯特吉斯公式确定阈值为0.627,提取16个农田凸起特征顶点,并结合等高线图识别凸起特征的外形轮廓。类似地,建立反转数字地形模型(RFDTM, Reverse-FDTM),将FDTM中的洼地特征转变为RFDTM中的凸起特征,识别9个农田洼地特征。研究结果可为农田复垦及精准土地平整作业提供理论依据与方法支持。 相似文献
19.
为克服无人机林间飞行环境复杂、作业多样化、点云数据质量难以评价等导致的飞行参数不合理、点云数据质量差的问题,提出一种基于同时定位与建图(Simultaneous Localization and Mapping,SLAM)的无人机林间环境飞行参数设定方法。首先使用三维激光雷达所采集的林间点云数据进行建图,然后通过建图轨迹与GNSS-RTK数据轨迹进行对比分析,评价点云数据的质量,最后根据其均方根误差对无人机的最佳飞行高度与速度参数进行设定。分析结果表明:飞行速度固定时,机载激光雷达飞行轨迹的均方根误差与飞行高度成正相关。飞行高度固定时,机载激光雷达飞行轨迹的均方根误差与飞行速度成正相关。在平均高度为6~7 m,长度为100 m的林间,无人机的最佳飞行高度为12 m,最佳飞行速度为2 m/s,均方根误差为1.262 m。该方法满足评价点云数据质量的需求,同时为无人机林间环境飞行参数的设定提供理论支撑。 相似文献
20.
基于单片杌数字转速表设计是以单片机(AT89S52)为控制芯片,利用S52单片机三个定时器的特点,运用转速测量M/T法,通过对光电编码盘输出的脉冲信号测量获得电动机转速.测量精度高,范围宽. 相似文献