首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
针对农田铺管装备采用传统激光高程控制技术控制精度低、适应性差的问题,设计了基于载波相位实时动态差分北斗卫星定位系统(RTK-BDS)的无沟铺管机高程控制系统。该系统以RTK-BDS为核心,以V型犁式无沟铺管机为作业对象,采用多模型UKF多传感器信息融合算法获取高精度海拔高度信息;利用多模态模糊PID算法控制高程油缸,从而满足犁头按照指定坡降指标工作的需求。田间试验表明,多模型UKF算法较无迹卡尔曼滤波(UKF)、粒子滤波的滤波效果更好,其波动幅度降低至0.885cm,均方差降低至0.040cm,多点相对误差在±0.2cm之内;不同坡降高程控制的控制误差均在±2cm之内,平均误差小于1cm,满足无沟铺管机的作业需求。  相似文献   

2.
为提高水田自走式喷雾机喷施作业均匀性,设计了喷杆自动调平系统,包括自动调平机械结构、喷雾机车身倾角传感器和控制器,以及车身倾角传感器和控制器的硬件系统和软件系统,并研究了对加速度计和陀螺仪数据进行融合的卡尔曼滤波算法和喷杆自动调平PID控制算法。以井关JKB18C型喷雾机为平台,采用叉车调节喷雾机车身倾斜角度,用2台MTI-300高精度惯性传感器分别测量喷雾机车身和喷杆倾角,并进行了测试试验。结果表明:随着车身倾角变化速率的增加,喷杆倾斜角度的平均绝对误差、均方根误差和最大误差增大,平均绝对误差最大为0. 90°,均方根误差最大为1. 39°,最大误差为1. 70°,车身倾角变化速率对喷杆控制精度影响较大。为检测喷杆自动调平控制系统的田间作业性能,采用双天线RTK-GNSS导航定位系统测量喷雾机作业过程中喷杆水平倾角,并进行了田间试验。试验结果表明:喷杆相对于水平面的平均绝对误差最大为0.79°,均方根误差最大为0. 85°,最大误差为1. 70°,喷杆自动调平控制系统可以有效地控制喷杆的水平姿态。  相似文献   

3.
扈凯  张文毅  祁兵 《农机化研究》2021,43(3):123-127
为提高移栽机的仿形精度,对其自适应仿形系统进行了设计。使用水平倾角传感器和位移传感器分别测定水平姿态和离地间隙,以电动推杆作为执行元件实现自适应仿形。为验证自适应仿形系统作业效果,设计了液压试验台并对液压系统进行了仿真,结果表明:压力补偿系统确保了液压缸的速度稳定可控。对自适应仿形系统进行了试验,结果表明:水平倾角正向最大值和负向最大值分别为1.40°和-0.86°,水平倾角误差绝对平均值为0.54°,垂向位移误差最大值为7.85mm,垂向位移误差绝对平均值为4.91mm,满足自适应仿形系统的使用要求。  相似文献   

4.
杨一男  姚强  耿冠杰  张鑫  庄重  李怡 《农业工程》2021,11(6):99-103
高程主控臂是开沟铺管机执行机构中的关键部件,其结构强度决定整机运行可靠性,质量大小影响高程控制响应速度。结合实际作业工况,基于有限元方法,通过静力学分析、瞬态动力学分析得到高程主控臂力学特性。基于力学特性,通过定义设计变量、约束条件及优化目标,对高程主控臂结构进行尺寸优化。结果表明,优化前的结构稳定性偏于保守,远高于设计使用需求,优化后的结构虽然减小了板厚,但通过数据分析对比,结构抗失稳系数依旧保持在合理范围内,证明结构优化合理。研究方法与结果为开沟铺管机高程主控臂的结构设计提供了参考。   相似文献   

5.
为适应新疆复杂多变的大田栽植环境,设计一种农业领域使用的自动移栽机机械臂,以期搭载末端执行器实现钵苗的精确、无损取投,由于一般的控制方法很难保证自动移栽机机械臂作业的精度,通过对比模糊PID自适应控制与经典PID控制优缺点,使两种方法相结合同时进行算法优化,设计一种模糊PID自适应复合控制器,运用ADAMS和MATLAB/Simulink进行联合仿真分析,同时进行干扰测试,仿真试验表明:与模糊PID自适应控制相比,该复合控制方法的超调量降低14.9%,响应时间降低31%,干扰信号作用下,跳动幅度降低50%,恢复到给定值的时间降低约0.2 s。  相似文献   

6.
超声波传感器评定水田激光平地机水平控制系统性   总被引:4,自引:0,他引:4  
为了评定水田激光平地机平地铲水平控制系统性能,采用2个SensComp 600超声波传感器测量平地铲两端与参考水平面的距离,然后利用三角关系计算得到平地铲倾斜角度.对超声波测距、传感器与反射面成一定夹角的影响以及运动对测量的影响因素进行了分析,并与姿态航向参考系统AHRS500GA-226提供的参考倾角进行了对比,结果表明2个超声波传感器在静态和动态条件下均能较准确地测量出平地铲倾斜角度,最大静止误差和最大动态误差分别为0.08°和1.00°.在平整的水泥地面上对平地铲水平系统性能进行了测试,实验结果表明,水田激光平地机水平控制系统倾斜角度测量准确,误差不超过1.00°,整个系统能较好地实现平地铲水平控制,满足水田平整作业需要.  相似文献   

7.
针对履带式联合收获机在不平坦地表作业时车体随着地形起伏而倾斜,造成作业效率降低、机手驾驶舒适性差、安全性低等问题,设计了一种履带式联合收获机全向调平底盘。该底盘由上架、下架、升降机构和电液控制系统组成,可实现联合收获机底盘倾斜时自动与手动调节,纵向调节范围为-5° ~7°,横向调节范围为-6.5° ~6.5°,底盘最大提升高度为130 mm。阐述了全向调平底盘工作原理、电液控制系统结构与调平控制策略,开展了针对底盘性能的静态与动态调平验证试验。静态调平试验对底盘前最低、后最低、左最低、右最低、左前最低、右前最低、左后最低、右后最低8种倾斜状态进行调平试验,结果表明,自动调平系统最大调节时间为8.2 s,平均调节时间4.2 s,倾斜度误差最大值为0.67°。动态调平试验针对自动调平控制、手动调平控制和固定地隙调平控制3种调平控制模式进行了坡地、畦沟田块、水田等地形下的调平对比试验。在坡地与畦沟田块试验中,自动调平控制模式可以改善底盘的倾斜状态,提高底盘的稳定性,手动调平控制模式有一定的调节作用,但调节稳定性较差。在水田试验中,自动调平控制模式调平效果优于坡地与畦沟田块,表明在地形起伏较小的条件下,自动调平控制系统调平性能更好。动态调平试验表明自动调平系统可以减小底盘的倾斜度,提高底盘的稳定性,增强联合收获机对于不平坦地表的适应性。  相似文献   

8.
针对目前姿态调整式丘陵山地拖拉机只能实现静态调平和差高调平、调平精度低等问题,设计了一种轮式丘陵山地拖拉机扭腰姿态调整装置,该装置通过调整前后车身的相对转动来实现丘陵山地拖拉机对复杂路面的适应。首先,根据丘陵山地特殊作业要求,对拖拉机坡地作业稳定性进行研究,设计了扭腰姿态调整装置;然后,对扭腰姿态调整装置进行动力学仿真,建立轮式拖拉机模型并进行多工况动力学仿真分析,仿真试验结果显示,扭腰姿态调整装置最大转动角为15.2°,拖拉机纵向坡行驶保持稳定的最大倾角为23.2°,横向坡行驶保持稳定的最大倾角为16.8°;最后,进行了样机田间试验,田间试验结果表明,扭腰姿态调整装置平均转动角为15.03°,拖拉机最大纵向爬坡角为25.6°,最大横向爬坡角为16.2°;在坡度为15°的地面上,旋耕作业平均生产率为0.65 hm2/h,犁耕作业平均生产率为0.36 hm2/h,该拖拉机能够较好地适应丘陵山地环境,满足丘陵山地正常作业需求。  相似文献   

9.
为了克服自主式水稻播种机在水田应用中的障碍,基于一种高精度的路径跟踪算法,结合侧向偏差和航向角偏差作为反馈,建立了非线性转向控制模型,对在泥泞不平的水田中直线行驶时的转向控制进行路径跟踪,且为了避免倾斜引起的位置误差,考虑了车辆倾斜时侧倾角和俯仰角对位置坐标的影响。田间试验表明:该算法的平均绝对横向偏差小于2.9cm,航向角偏差小于0.03°,能将横向偏差减小到0.5m以内的短距离,且超过95%的测量横向偏差绝对值小于0.01m,能够满足我国水田自主式水稻播种机的精度及农艺要求。  相似文献   

10.
机械臂神经网络非奇异快速终端滑模控制   总被引:2,自引:0,他引:2  
针对多自由度机械臂轨迹跟踪控制系统存在收敛速度慢、跟踪精度低的问题,提出了一种基于径向基神经网络(RBFNN)的非奇异快速终端滑模(NFTSM)自适应轨迹跟踪控制方法。首先,该方法采用非奇异快速终端滑模超曲面,切换控制项引入连续终端吸引子,使得系统能在有限的时间内收敛到平衡点。其次,采用RBFNN逼近系统未知非线性动力学,并结合逼近误差的自适应补偿机制,实现无模型控制。利用Lyapunov理论证明闭环系统的全局渐进稳定性和有限时间收敛性。最后,将该控制方法应用于Denso串联机械臂进行实验验证,并分析系统传输延时对实验结果的影响,提出解决方法。仿真和实验结果表明,该控制方法能有效地提高系统收敛速度和跟踪精度,增强对外部扰动的鲁棒性,削弱系统抖振。  相似文献   

11.
履带式联合收获机全向调平底盘设计与试验   总被引:2,自引:0,他引:2  
针对履带式联合收获机在不平坦地表作业时,车体随地形起伏而倾斜,造成作业效率降低、驾驶员舒适性变差、安全性降低的问题,设计了一种履带式联合收获机全向调平底盘。该底盘由上架、下架、升降机构和电液控制系统组成,可实现联合收获机底盘倾斜时的自动与手动调节,纵向调节范围为-5°~7°,横向调节范围为-6.5°~6.5°,底盘最大提升高度为130mm。阐述了全向调平底盘的工作原理、电液控制系统结构与调平控制策略,进行了针对底盘性能的静态与动态调平的验证试验。静态调平试验对底盘前最低、后最低、左最低、右最低、左前最低、右前最低、左后最低、右后最低8种倾斜状态进行调平,结果表明,自动调平系统最长调节时间为8.2s,平均调节时间4.2s,倾斜度调节误差最大值为0.67°。动态调平试验针对自动调平控制、手动调平控制和固定地隙调平控制3种调平控制模式,进行了坡地、畦沟田块、水田等地形下的调平对比试验。在坡地与畦沟田块试验中,自动调平控制模式可以改善底盘的倾斜状态,提高底盘的稳定性;手动调平控制模式有一定的调节作用,但调节稳定性较差。在水田试验中,自动调平控制模式调平效果优于坡地与畦沟田块,说明在地形起伏较小的条件下,自动调平控制系统调平效果更好。动态调平试验表明,自动调平系统可以减小底盘倾斜度,提高底盘稳定性,增强联合收获机对不平坦地表的适应性。  相似文献   

12.
针对丘陵山地拖拉机坡地适应性差,易翻倾,通过性差等问题,设计一种具有自动调平机构的504型丘陵山地拖拉机。整机采用机械传动,四驱轮式行走系统,两侧独立传动转向系统,平行四杆自动调平机构,可实现拖拉机姿态自动仿形调平。基于SolidWorks对拖拉机进行整机三维建模,运用ADAMS软件对虚拟样机进行侧倾稳定性动态仿真分析。结果表明: 自动调平机构调平动作范围732 mm,可在25°的坡地上保证车身横向水平。上坡极限翻倾角及下坡极限翻倾角均为45°,上坡纵向滑移角为33.69°,下坡纵向滑移角为16°,前后驱动轮越障高度为214 mm。调平状态下车身的最大侧倾角为37.5°,与理论计算35.93°非常接近。该机前后驱动桥均可进行独立调平,保证机身始终处于水平姿态,能够满足丘陵山地生产作业要求。  相似文献   

13.
果树对靶喷雾机柔性喷臂控制设计及试验   总被引:1,自引:0,他引:1  
由于生态环境问题日益严峻,农药喷雾必然是朝着低污染、高精度、智能化与安全化的趋势发展。现有的对靶喷雾机虽然可以针对有无靶标植株进行喷药,但其喷雾架通常是固定不变的,难以同时适用于不同靶标植株。为此,提出喷臂变形以使中心喷头对准靶标植株树冠中心的柔性喷雾架方案,通过安装在拖拉机侧面的激光测距传感器对靶标植株进行距离探测,采用安装在喷臂上的角度传感器对柔性喷雾架的形状进行实时检测。根据上述检测结果,通过程序内部运算,获得控制量,驱动电推杆对喷雾架进行形状调整,同时由安装在十字架上的超声波传感器对喷雾架下的靶标植株进行实时的识别探测,并设计了一种能同时满足不同靶标植株形状的对靶喷雾控制机构。为了减小调节时间和由于机构抖动造成的系统误动作,在喷臂调节算法的基础上增加了调整死区。通过试验分析,喷雾架可以根据拖拉机侧面与靶标植株树干的距离进行柔性对靶调节,喷雾架最大的调节时间为5.8s,满足对靶喷雾的实时性要求。  相似文献   

14.
计算了非独立钢板弹簧后悬架和单横摆臂式独立后悬架三轮汽车的平顺性和操纵稳定性指标,通过比较可见,具有单横摆独立后悬架的三轮汽车有较好的平顺性和操纵稳定性,并建立了计算三轮汽车车架侧倾角的公式。  相似文献   

15.
植保机存在水稻田土壤时行走困难,牵引性能差等问题,以植保机高花纹驱动轮为研究对象,基于SPH(光滑流体粒子动力学法)建立植保机驱动轮-土壤有限元模型,以植保机高花纹轮结构参数中花纹深度,花纹倾斜角及花纹宽度为三个因素,以挂钩牵引力和牵引效率为牵引性能指标,利用ANSYS显式动力学求解模块LS-DYNA对驱动轮在水稻田土间行走进行仿真分析,通过正交试验法分析各因素对驱动轮土壤间行走牵引性能的影响规律,经过多目标优化,花纹深度50 mm、花纹倾斜角为80°、花纹宽度121.87 mm时可以获得最优的牵引性能,较原始值挂钩牵引力提高249 N,牵引效率提高15.51%,该结果为后期的驱动轮结构设计优化提供参考。  相似文献   

16.
采用CAD/CAM软件Pro/E对立式径向挤压水泥制管机机架进行几何实体建模.基于ANSYS Workbench仿真平台对制管机机架进行静态分析和模态分析以及瞬态动力分析.制管机机架采用热轧H 型钢作为机架的立柱和横梁,材料为Q235B.通过静力分析可知,下侧移动平台负载变化较大时,如更换大口径模具,其支撑气缸和牵引气缸结构强度不足.通过模态分析可知,制管机机架侧向支撑刚度不足,应根据低阶振型对其加强以提高机架整体的低阶振动的稳定性.通过瞬态分析可知,制管机机架瞬态应力集中区域主要在立柱和侧向支撑上,和预期比较一致,该区域的机械强度需要进一步增强.通过上述静态、模态以及瞬态分析验证了机架设计的合理性,优化了机架设计方案,研究了冲击载荷随着时间的变化对机架结构的影响,为大口径立式径向挤压制管机的设计提供了必要的依据.  相似文献   

17.
针对现有拖拉机牵引性能预测模型未包含前后轮附着差异、载荷转移和前后桥运动不协调等因素对滑转效率和滚动阻力的影响,导致四轮驱动拖拉机的田间牵引性能预测精度较低。为此本文从拖拉机轮胎的驱动特性和载荷特性入手,通过引入轮胎指数、机动指数等特征参数,分别建立了土壤-轮胎驱动模型与包含轴荷转移的前后轮胎载荷模型;在牵引受力分析的基础上,考虑实际前后桥运动不协调性对总体底盘作业的影响,分别建立了整机滚动效率与滑转效率的预测模型,导出了包含轮胎规格、土壤特性、整机前后桥运动不协调特性、传动效率的四轮驱动拖拉机牵引性能预测模型。针对模型多变量、非线性产生的求解难题,基于双维度迭代法设计了预测算法与流程;采用研究的方法开展了实例分析应用;针对预测模型的有效性验证需求,设计并开展了实车田间牵引试验,结果表明:最大牵引力与特征滑转率对应的牵引力的仿真值误差分别为1.41%与1.74%,滚动阻力误差为0.64%,较对照组准确度提升较大,总体误差较小。  相似文献   

18.
为提高联合收获机收获质量与效率,构建了轮式谷物联合收获机视觉导航控制系统,结合OpenCV设计了谷物收获边界直线检测算法识别水稻田间已收获区域与未收获区域边界,经预处理、二次边缘分割和直线检测等得到联合收获机视觉导航作业前视目标路径,并根据前视路径相对位置信息进行田间动态标定获得联合收获机满幅收获作业状态;提出了一种基于前视点的直线路径跟踪控制方法,通过预纠偏控制实现维持满割幅的同时防止作物漏割,以相对位置偏差值和实时转向后轮转角作为视觉导航控制器的输入,并根据纠偏策略对应输出转向轮控制电压大小。稻田试验结果表明,该导航系统实现了轮式联合收获机田间相对位置姿态的可靠采集及目标直线路径跟踪控制的稳定执行,在田间照度符合人眼正常工作的情况下,收获边界识别算法检测准确率不低于96.28%,单帧检测时间50 ms以内;以不产生漏割为前提的视觉导航平均割幅率为94.16%,随作业行数增多,割幅一致性呈提高趋势。本研究可为联合收获机自动导航满割幅作业提供技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号