首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
基于多传感器融合的无人机精准自主飞行控制方法   总被引:1,自引:0,他引:1  
为解决我国植保无人机实际作业过程中普遍存在的由空间位置定位精度不足和飞行参数不稳定造成的雾滴分布不均匀、重喷、漏喷等问题,以多旋翼无人机系统为平台,基于ROS(Robot operating system)和MAVROS构建了由协同计算机与开源飞行控制器组成的二级控制系统,结合基于RTK-GPS的绝对位置测量和基于激光雷达的相对距离探测方法,融合外部传感器与飞行控制器板载传感器数据对无人机状态估计进行修正,提高了无人机飞行参数和飞行轨迹的稳定性。为进一步提高植保无人机自主作业性能,基于ROS设计了飞行任务管理系统,实现了无人机精准自主任务点之间的直线飞行。真实飞行试验结果表明:无人机自主飞行过程中水平方向平均定位误差为0.145m,垂直方向平均定位误差为0.053m。  相似文献   

2.
花生结荚期是提高花生群体质量、促进产量形成的关键阶段,此时正值高温高湿期,容易遭受病虫害的影响,在这一时期做好病虫害防控对于花生高产具有重要意义。为探究花生结荚期使用植保无人机施药时,飞行参数对雾滴沉积特性的影响,采用三因素五水平的正交试验方法,研究极飞P30植保无人机飞行高度、飞行速度、喷药量对雾滴覆盖率、雾滴沉积密度和雾滴沉积量的影响。极差分析结果表明,飞行高度为2 m、飞行速度为3.5 m/s、喷药量为15 000 mL/hm~2时雾滴覆盖率和雾滴沉积量最优,分别为5.48%、0.448μL;飞行高度为2.5 m、飞行速度为3.5 m/s、喷药量为15 000 mL/hm~2时雾滴沉积密度最优;并得出飞行参数对雾滴沉积影响的主次顺序。使用SPSS对试验结果进行方差分析,结果表明,喷药量对雾滴沉积特性的影响均为极显著。本试验可为花生结荚期进行植保无人机施药作业参数确定提供参考依据。  相似文献   

3.
苏伟  赵晓凤  张明政  王伟 《农业机械学报》2017,48(S1):79-85,97
无人机搭载激光雷达扫描仪以获取机载点云已成为农作物冠层结构信息提取的理想数据源,基于机载激光雷达点云提取树木、电力塔、电力线等飞行障碍物,为无人机安全飞行提供可靠数据。首先,使用TerraSolid软件对点云进行滤波,分离地面点,提取植被树木、电力塔、电力线等障碍物,根据地物分布进行点云分幅。利用PCL点云库中随机采样一致性及稳健的特征值法构建平面模型,实现分幅后的点云非地面点及飞行障碍物提取。最后,以人工滤波结果和分类结果为参考点云,分别建立基于TIN算法的滤波结果和PCL分割结果的精度验证混淆矩阵,从而对滤波及分割提取障碍物的结果进行精度评价。研究结果表明,TerraSolid软件处理分幅点云效率优于整幅点云数据,TerraSolid及PCL两者对于处理相同分幅点云结果较为相近,其中PCL操作快捷高效,可视性较差。在提取飞行障碍物的过程中,可结合二者优势。  相似文献   

4.
为了研究植保无人机在玉米病虫害防治及叶面肥喷洒中的作业效果,以无人机的飞行高度和飞行速度为试验因素进行正交试验,分析植保无人机在不同的作业参数下,玉米上、中、下3个层级的雾滴沉积密度和雾滴沉积均匀度,并结合极差和方差分析选择最优作业参数。试验结果表明:无人机在飞行高度为2.5 m、飞行速度为5 m/s时,无人机施药作业效果较好,上、中、下层的雾滴沉积密度分别为10.89、4.18、2.65个/cm2,雾滴沉积均匀度分别为25.06%、27.40%、48.56%。同时,考虑无人机作业参数受作业地点限制,无人机在不同飞行高度下的最优飞行速度参数分别为:高度2 m时速度为5 m/s、高度2.5 m时速度为5 m/s、高度3 m时速度为5 m/s。  相似文献   

5.
因无人机机载激光雷达(Light detection and ranging,Li DAR)数据具有离散性,在生成数字高程模型(Digital elevation model,DEM)时需选择有效插值方法。以荒漠植被区为研究背景,使用零-均值标准化方法归一化点云回波强度,利用肘方法确定最佳聚类数目,采用K-means方法对点云强度值聚类得到地面点云。在此基础上,采用克里金(Kriging)方法插值抽稀率为20%和80%的地面点云数据,且将点云高程作为变量,建立RBF神经网络预测模型,并通过线性回归检验方法对模型进行精度分析,采用Delaunay三角网内插生成高精度DEM。结果表明:采用K-means方法实现最佳聚类数目为4的聚类,得到地面点云48 722个,在点云较优抽稀率20%的情况下,径向基函数神经网络(Radical basis function neural network,RBFNN)训练时间为56 s,点云高程预测的决定系数R~2为0. 887,均方根误差RMSE为0. 168 m。说明使用RBFNN对K-means聚类滤波得到的地面点云进行高程预测效果较好,可为基于点云构建高精度DEM提供参考。  相似文献   

6.
为深入分析无人机进行施药作业过程中飞行高度和飞行速度对喷药效果带来的影响,对无人机喷药系统进行了设计。以无人机整体施药运作机理为载体,结合作业过程中的喷雾流量、雾滴粒径及飞行速度等核心参数,选择雾滴沉积密度、雾滴沉积覆盖率、雾滴沉积均匀度为衡量指标,建立喷药系统理论控制模型,并进行喷药系统的硬件系统设计和软件程序编写,展开无人机施药效果试验。结果表明:在一定的施药流量控制条件下,不同飞行高度的雾滴沉积平均覆盖率整体呈现出下降趋势,且当无人机选择飞行高度H=1.4m、飞行速度V=0.5m/s组合参数条件下,该喷药系统的雾滴沉积覆盖率为26.9%,雾滴粒径分布均匀度达90%以上,雾滴沉积密度保持在70%以上,为最佳施药参数组合。  相似文献   

7.
为探究无人机航空喷施时花生冠层雾滴沉积分布规律,设计无人机不同喷雾作业参数对花生冠层的雾滴沉积分布影响的试验。该试验以DJ T20型多旋翼电动无人机进行作业,以清水代替农药喷施采集雾滴沉积数据,以图像处理软件Depositscan来分析采集来的水敏纸数据。结果表明:各组试验的雾滴沉积分布趋势均相似,在靶区内雾滴沉积大致呈正态分布,受环境风场的影响,大量雾滴在中心航线左侧沉积,受无人机起飞时速度和高度的影响,各区域内第一条采样带R1的雾滴沉积效果较好;从雾滴沉积量、沉积密度均匀性分析可知,当飞行速度为2.5 m/s、喷雾流量为1.6 L/min,飞行高度为3.5 m时,喷雾效果最佳,为最佳作业组合;飞行高度、飞行速度对靶区内雾滴沉积量、雾滴沉积均匀性影响均显著。该研究对提高无人机喷施效率具有十分重要的指导意义。  相似文献   

8.
该文以无人机的飞行高度和飞行速度为试验因素,研究草地植保过程中,试验因素在6组不同作业参数组合状态下对雾滴覆盖密度和雾滴覆盖均匀度的影响。试验结果表明:不同作业参数组合下采样点的雾滴覆盖密度和雾滴覆盖均匀度不同;雾滴覆盖密度总体变化范围为3.71~63.29个/cm2;雾滴覆盖均匀度总体变化范围为24.65%~49.10%;当飞行高度为1.5 m,飞行速度为4和5 m/s时,试验指标均呈现最优状态;通过方差分析,飞行高度对试验指标的影响均为极显著(P<0.01),飞行速度对试验指标的影响均为显著(P<0.05);通过Duncan′s新复极差检验各组试验得出试验指标的差异显著情况(P<0.05)。   相似文献   

9.
为进一步提升植保无人机田间作业效率,从参数优化角度出发,对机体的飞控系统进行性能分析。通过全面理解植保机飞控系统原理,明确其控制流程,具体分析无人机作业变异系数、喷施压力、飞行高度与角度等参数间的内在关联,建立以影响飞控系统性能的各项参数为条件的二次性能指标控制模型。进行飞控系统的硬件与软件设计,并进行植保机飞控系统性能稳定性及参数优化可行性试验。结果表明:在频率7Hz、飞行速度为1.5m/s的条件下,系统理论轨迹偏差与试验轨迹偏差间的误差较小,可控制在±0.2%,且在20%~60%占空比范围内,占空比与轨迹误差存在负相关趋势。试验过程中,整机运行稳定,可为植保无人机及其他自动化田间作业设备的深度优化提供一定的参考思路。  相似文献   

10.
森林中线、面特征较少等,导致LOAM算法去畸变及配准精度低、鲁棒性差,很难将该算法直接用于森林调查。为此以LOAM算法为基础设计了LiDAR SLAM森林样地调查系统,在SLAM系统工作流程中剔除了遮挡线特征,避免视点与立木切线点作为线特征参与运算;引入二次去畸变、二次配准等模块提高了去畸变、配准的鲁棒性及精度;该系统将激光雷达测量精度、位姿估计精度等先验信息引入去畸变及配准优化算法中,提高去畸变及配准精度。使用32线激光雷达扫描了4块32 m×32 m的森林样地,利用LiDAR SLAM森林样地调查系统完成样地建图,利用该点云提取的立木位置及胸径与参考数据对比,完成了新型SLAM样地调查系统在森林中建图精度的间接评估。结果显示:立木位置估计值在x、y轴方向的平均误差分别为-0.004 m和-0.011 m,x、y轴方向均方根误差分别为0.081 m和0.083 m;胸径估计值的偏差为0.25 cm(相对偏差为1.18%),均方根误差为1.03 cm(相对均方根误差为5.53%);经与LOAM估计结果相比,改进系统获取的立木位置及胸径精度均提高。结果表明,所设计的LiDAR SLAM森...  相似文献   

11.
沈跃  肖鑫桦  刘慧  张璇 《农业机械学报》2023,54(11):20-28,48
针对果园环境中GNSS定位信号易丢失和传统SLAM算法鲁棒性较差的问题,本文提出一种基于LiDAR/IMU紧耦合框架的全局无偏状态估计果园机器人定位与建图方法。LiDAR/IMU紧耦合框架基于因子图进行多源约束的IMU里程计构建,实时输出高频位姿信息,IMU里程计因子和预积分因子优化LiDAR里程计并提供位姿先验约束IMU零偏。引入局部点云地图参与特征点云粗匹配和非特征点云递进式匹配进一步稠密化源点云,改善LiDAR里程计的性能。融合GPS信号与LiDAR/IMU紧耦合框架的地图构建,能够得到准确且高频连续的位姿信息,提高点云地图的复用率。在果园和苗木等场景验证了该算法的性能,实验结果表明,与LIO-SAM等算法相比,定位精度维持在0.05 m左右,均方根误差为0.016 2 m。本文算法使机器人具有更高的精度、实时性和鲁棒性,有效降低了系统累积误差,保证了所构建地图的全局一致性。  相似文献   

12.
基于无人机影像匹配点云的苗圃单木冠层三维分割   总被引:4,自引:0,他引:4  
陈崇成  李旭  黄洪宇 《农业机械学报》2018,49(2):149-155,206
近年来较多的树冠提取算法以激光雷达数据为基础,然而激光点云数据量大、冗余多而且采集成本高。本文基于无人机影像匹配点云提取单木树冠轮廓,研究一种成本可控、能够补充甚至部分替代激光雷达的小范围森林制图方案。以福建省三明市某林场内苗圃地作为研究对象,在稠密的无人机影像匹配点云中截取2个25 m×25 m的样地作为测试样本。预处理后,首先构建植被冠层高度模型,以局部最大值法探测树冠位置并标记为种子点;从这些种子点形成的初始区域开始生长,迭代计算直到全部的影像匹配点云归并完毕;最后,将算法提取的树冠轮廓导入Arc GIS中获取树冠轮廓矢量边界,并与手绘参考树冠叠加,利用F测度实现精度的评定。依此方案,在2个林分范围内的树冠提取F测度均达到了89%以上,单木冠幅提取的误差在0.14 m以内。结果表明,该方案简单有效、精度可靠,适用于小范围、高精度的植被制图。  相似文献   

13.
为减少果园机器人在定位与建图过程中产生的累积漂移误差,本文提出一种基于密度二进制模式(Density binary pattern, DBP)描述子的激光回环检测算法。算法将点云空间分割为二进制单元块,提取包含点云高度与密度信息的全局描述子DBP。针对复杂果园的大尺度、高度相似、非结构化特性,基于两阶段搜索算法实现高效回环检测。基于历史帧DBP的环因子检索K近邻候选帧,确认与当前帧DBP描述子最相似的候选帧为最终目标回环索引。在具有多个回环事件的复杂果园场景中,DBP-LeGO-LOAM算法轨迹的均方根误差与标准差分别为0.24 m与0.09 m,相对LeGO-LOAM中基于距离的回环检测算法分别减少81%与91%。实验证明,本文方法对多回环复杂果园环境具有更好的适应性,为提高果园机器人建图与定位精度提供了有效解决方案。  相似文献   

14.
为提高联合收获机无人驾驶导航路径的精度,本文提出一种基于激光雷达的作物收获导航线实时提取方法。搭建点云数据采集系统,利用平面拟合法确定激光雷达安装高度和安装角度。利用三维激光雷达扫描收获机前方作物的点云数据,结合IMU惯性传感器反馈的姿态信息,实现作物点云数据从激光雷达坐标系到车体坐标系的变换。基于激光雷达扫描视场角、安装高度和安装角度获取感兴趣区域(ROI)的坐标,并对感兴趣区域进行直通滤波和统计滤波,去除灰尘、秸秆粉末等噪声的影响,以实现点云数据无效点和离群点的剔除。提出一种基于栅格八邻域高程差的作物收获导航线快速识别算法,以点云栅格化后在Z轴方向上的坐标值作为检测依据,定义某一栅格与其8个相邻栅格在Z轴坐标上的差值为高程差,遍历栅格并根据设定阈值进行比较判断,实现收获边界点的有效提取。采用最小二乘算法进行收获边界点的拟合,实现田间作业过程中作物收获导航线动态提取。田间试验表明,该方法具有较好的鲁棒性,能在作物稀缺、杂草较多等情况下保持较高的准确性,其中前进方向偏差角平均值为0.872°,割台横向偏差为0.104m,收获导航线准确率为93.5%,可为联合收获机工作提供辅助导航,提高无人驾驶的准确率。  相似文献   

15.
针对我国梨树授粉用工量大、作业效率低等问题,基于液体授粉技术,以水平棚架式栽培的梨树为研究对象,开展多旋翼无人机液体授粉试验,探究多旋翼无人机单位面积液体喷施量、飞行高度及授粉方式等对雾滴沉积分布及授粉效果的影响。试验结果表明多旋翼无人机液体喷雾授粉作业性能稳定,雾滴沉积分布组内变异系数不超过20%;雾滴覆盖率及雾滴覆盖密度均与喷施量呈正相关,当液体喷施量为6mL/m2时,飞行高度的变化对雾滴沉积分布影响显著,飞行高度为4m时,雾滴覆盖率及覆盖密度分别为7.06%、84.77个/cm2,花朵坐果率为49.70%,花序坐果率为85.83%,较自然授粉分别提高91%及43%。当花粉液体喷施量为4.5、6mL/m2时,无人机液体授粉与自然授粉花序坐果率差异显著,且无人机液体授粉与背负式喷雾器授粉花序坐果率无显著差异,花序坐果率可达80%以上。研究结果表明,无人机液体授粉作业时雾滴覆盖率及覆盖密度越高,对提升花朵坐果率、花序坐果率作用越显著,当无人机飞行高度为4m、花粉液体喷施量为4.5mL/m2时为较优的无人机液体授粉参数组合。  相似文献   

16.
基于地面激光雷达点云数据的树种识别方法   总被引:1,自引:0,他引:1  
为了能够更有效地利用地面激光雷达的点云数据识别树种,以北京林业大学为研究区域,利用FARO Photon 120型地面激光雷达在研究区内获取4个树种、共92棵树木的点云数据。依据点云的三维坐标值提取研究区内立木的胸径、枝下高、树高、冠高、最长冠幅、垂直最长方向冠幅6个测树因子,同时提取由测树因子组合而成具有鲁棒性的6个树形特征参数,包括冠长树高比、胸径树高比、冠高树高比、分枝角、冠长最大冠幅之比、最长冠幅与垂直方向冠幅之比。分别使用测树因子和组合特征参数,采用支持向量机、分类回归决策树和随机森林的方法,对树种进行冠幅自动识别。研究结果表明:使用测树因子树木识别方法,识别平均准确率为0.765,平均召回率为0.778,3种识别方法中,分类效果较好的依次为分类回归决策树、随机森林、支持向量机;使用组合特征参数树木识别方法,识别平均准确率为0.891,平均召回率为0.896,分类效果较好的方法是随机森林和支持向量机,其次是分类回归决策树;总体上来看,不论是对于单个树种还是总体的准确率和召回率,组合特征参数法均高于测树因子法,而对于3种不同的分类方法,随机森林相对最好。研究结果表明,结合地面激光雷达获取的点云和不同机器学习分类方法进行树种识别分类可以达到满意的效果,且能节省大量时间和人力。  相似文献   

17.
近年来,应用植保无人机防治农业有害生物已成为中国植保机械发展的一大新亮点。无人机旋翼提供飞行升力的同时具有下洗气流场,低空低量施药作业雾滴沉积分布质量优劣与旋翼下洗气流场的作用密不可分。为探究植保无人机旋翼下洗气流场对喷雾效果的影响,本研究以当前植保无人机主流机型——“X型”布局八旋翼无人机为研究对象,采用实际作业测试方式,利用微气象测量系统测定无人机飞行状态下旋翼下方不同水平位置下洗气流场风速,同时采用诱惑红示踪剂水溶液代替农药喷雾获取喷雾沉积分布情况,重点对下洗气流场分布实测结果进行可视化分析,包括不同飞行高度、不同速度下旋翼下洗气流场分布特性与雾滴沉积分布特性以及二者的相互关系。测试结果显示:八旋翼植保无人机飞行过程中随着飞行速度加快(1.0~6.0 m/s)和飞行高度升高(1~2 m),冠层位置XYZ三向下洗气流场总体表现为气流强度由强到弱、分布状态由集中到分散的变化趋势;X方向气流来源于下洗气流与外界空气相互作用产生的卷扬气流,对喷施雾滴的作用为逆飞行方向;Y方向为下洗卷扬气流以及地面效应共同作用的结果,对雾滴的作用为垂直于航线朝向两侧;Z方向为下洗气流竖直向下方向分量,对雾滴下降沉积具有直接促进作用;飞行速度与下洗气流场范围内风速峰值(P<0.05,r=-0.836)和有效喷幅内平均沉积量(P<0.05,r=-0.833)均表现出显著负相关;在飞行速度为1.0 m/s和3.0 m/s时,雾滴沉积量与下洗气流场风速均呈现极显著正相关关系(P<0.01,r>0),即垂直地面方向的下洗气流场越强,有效喷幅内沉积的雾滴越多;速度加快至6.0 m/s,风速显著降低,气流场对雾滴沉积的促进作用逐步消失(P>0.05)。因此,植保无人机作业时飞行速度不应设置超过6.0 m/s,避免因下洗气流场作用减弱而导致雾滴损失。本研究结果可为改善低空低量施药作业质量和无人机田间作业规范的制定提供技术参考和支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号