首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Laboratory studies to evaluate dicyandiamide (DCD) as a soil nitrification inhibitor showed that it is considerably more effective than several compounds that have been patented or proposed as fertilizer amendments for retarding nitrification of fertilizer nitrogen (N) in soil, but is considerably less effective than 2‐ethynylpyridine, nitrapyrin (N‐Serve), etridiazole (Dwell), 3‐methylpyrazole‐l‐carboxamide (MPC), or 4‐amino‐l,2,4‐triazole (ATC). Other findings in studies reported were as follows: a) DCD is more effective for inhibiting nitrification of ammonium‐N than of urea‐N; b) the effectiveness of DCD as a nitrification inhibitor is markedly affected by soil temperature and soil type and is limited by the susceptibility of DCD to leaching; c) DCD has very little, if any, effect on urea hydrolysis, denitrification, or seed germination in soil; d) products of DCD decomposition in soil (guanylurea and guanidine) have little, if any, effect on nitrification compared with DCD; e) in the absence of leaching, the persistence of the inhibitory effect of DCD on nitrification decreases with increase in soil temperature from 10 to 30°C, but the inhibitory effect of 50 μg DCD g‐1 soil is substantial even after incubation of DCD‐treated soils at 20 or 30°C for 24 weeks.  相似文献   

2.
三种硝化抑制剂抑制土壤硝化作用比较及用量研究   总被引:16,自引:4,他引:12  
【目的】硝化抑制剂是调控土壤氮素转化与硝化作用微生物群落结构的有效途径。本文通过室内模拟试验对3种硝化抑制剂在不同剂量下的硝化抑制效果进行研究,旨在筛选出效果最佳的剂型与剂量,为石灰性土壤硝化抑制剂的合理应用提供依据。 【方法】培养试验在生长箱内进行,25℃黑暗条件培养;盆栽试验在温室内进行。供试硝化抑制剂为双氰胺(DCD)、3,4-二甲基吡唑磷酸盐(DMPP)和2-氯-6-三氯甲基吡啶(Nitrapyrin),DCD和DMPP用量均设定为纯氮(N)量的0(CK)、1.0%、2.0%、3.0%、3.5%、4.0%、4.5%、5.0%、6.0%和7.0%;Nitrapyrin用量分别为纯氮量的0、0.1%、0.125%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%和0.5%,三种硝化抑制剂均设10个水平,每个水平3次重复。盆栽试验氮加入量为每公斤风干土0.50 g,三种硝化抑制剂用量分别为纯氮用量的5%、1%、0.648%。调查比较了三者的硝化抑制效果及对土壤氮素转化的影响及其对小青菜鲜重的生物学效应;采用变性梯度凝胶电泳(DGGE)法分析了不同硝化抑制剂对土壤AOA、AOB群落结构的影响。 【结果】DCD、DMPP、Nitrapyrin均可显著抑制土壤硝化作用(P<0.05),各硝化抑制剂处理土壤的NH4+-N含量分别较对照提高了46.2~256.1 mg/kg、291.8~376.7 mg/kg、3.68~372.9 mg/kg。DCD与DMPP处理的硝化抑制率分别为49.3%~79.4%和96.4%~99.4%,DCD表现出明显的剂量效应,但DMPP在1%~7%浓度范围内的剂量效应不明显。Nitrapyrin在0.1%~0.2%浓度范围内有明显的剂量效应。0.25%~0.5% Nitrapyrin的硝化抑制率为98.9%~99.9%,其硝化抑制效果与DMPP处理相同。DCD、DMPP、Nitrapyrin处理的小青菜地上部分鲜重分别比氮肥处理(ASN)提高了12.7%、11.1%、17.6%。施用硝化抑制剂可改变土壤AOA和AOB群落结构,且对AOA群落结构的影响大于AOB,不同硝化抑制剂之间对AOA和AOB群落结构的影响无差异。 【结论】3种硝化抑制剂的硝化抑制效果表现为Nitrapyrin≥DMPP>DCD,均对AOA与AOB群落结构产生明显影响。各硝化抑制剂处理均可提高小青菜地上部鲜重、叶片Vc含量及可显著提高小青菜叶片氨基酸含量(P<0.05)。综合比较,Nitrapyrin硝化抑制效果好于DMPP,DCD效果最差,推荐用量为基于纯氮0.25%的Nitrapyrin添加量。  相似文献   

3.
Abstract

The persistence of the effects of four nitrification inhibitors (2‐ethynylpyridine, nitrapyrin, etridiazole, 3‐methylpyrazole‐l‐carboxamide) on nitrification in soil was assessed by measuring the ability of two soils to nitrify NH4 + [added as (NH4)2SO4] after they had been treated with 5 μg inhibitor g‐1 soil and incubated at 10, 20, or 30°C for 0, 21, 42, 84, 126, or 168 days. The soils used differed markedly in organic‐matter content (1.2 and 4.2% organic C). The data obtained showed that the persistence of the effects of the inhibitors studied decreased markedly with increase in soil temperature from 10 to 30°C and that, whereas the initial inhibitory effects of the test compounds on nitrification were greatest with the soil having the lower organic‐matter content, the persistence of their effects at 20 or 30°C was greatest with the soil having the higher organic‐matter content. The inhibitory effects of 2‐ethynylpyridine and etridiazole on nitrification were considerably more persistent than those of nitrapyrin or 3‐methylpyrazole‐l‐carboxamide and were significant even after incubation of inhibitor‐treated soil at 20°C for 168 days.  相似文献   

4.
Abstract

Nitrogen efficiency may be improved in grain sorghum [Sorghum bicolor (L.) Moench.] production by using the optimum N rate, splitting the N applications, and by the use of nitrification inhibitors. Nitrogen rates of 0, 56, 112, 168, and 224 kg N/ha with and without nitrification inhibitors, dicyandiamide (DCD) and nitrapyrin, were evaluated in 1985 and 1986 at two locations in Arkansas. Selected N rates were evaluated when applied all preplant and when the applications were split. In 1986, at one location, two N rates (0 and 168 kg N/ha), DCD and nitrapyrin, and different times of N application were evaluated. These treatments were evaluated at two soil water deficits, 2 and 4 cm. The soils were a poorly drained Sharkey sc (Vertic Haplaquept) in northern Arkansas and moderately well drained Hebert sl (Aeric Ochraqualf) in southern Arkansas. Maximum grain sorghum yield occurred at a lower N rate on the silt loam soil than on the clayey soil in both years of the study. Based on soil inorganic N, the DCD nitrification inhibitor tended to inhibit nitrification during the early growing season on the Sharkey sc. However, the inhibitors did not affect the soil inorganic N on the Hebert sl. Grain yield and plant N were not increased by the inhibitors in any of the studies. Grain yield was not increased by the split N application treatment compared to the preplant N application. However, split N applications increased plant N above the preplant application under high soil moisture conditions.  相似文献   

5.
Abstract

Degradation of dicyandiamide (DCD) was assayed in laboratory studies at 8, 15, and 22 C in a Decatur silt loam and in a Norfolk loamy sand. Dicyandiamide was very short lived at 22 C, with half‐lives of 7.4 and 14.7 days in the Decatur and Norfolk soils, respectively. In the Norfolk soil at 8 C, half‐life increased to 52.2 days. In a nitrificaton study of both soils at 22 C, 80 mg (NH4)2SO4‐N kg‐1 of soil was applied with 20 mg DCD‐N kg‐1 of soil and 100 mg kg‐1 (NH4)2S04‐N was added with 5% nitrapyrin. Distinct lag phases preceded zero order nitrification with the inhibitor treatments. Lag periods were 2 and 2.6 times the half life of DCD in the degradation study for Decatur and Norfolk soils, respectively. Like most nitrification inhibitors, the effectiveness of DCD decreases with increasing temperature. In the Norfolk loamy sand, nitrification inhibition by DCD was equal to nitrapyrin for up to 42 days, but in Decatur silt loam, DCD was less potent to nitrapyrin as a nitrification inhibitor.  相似文献   

6.
N fertilizer is often poorly recovered in irrigated cotton production, due to N loss through denitrification. We researched the ability of inhibitors to delay nitrition and reduce the availability of NO3 - to denitrifying microorganisms and thus improve N fertilizer recovery, 2-Ethynylpyridine, etridiazole, and nitrapyrin proved highly effective nitrification inhibitors, although nitrification was evident several weeks after their application. CaC2 was relatively ineffective, even when wax-coated to prolong the evolution of C2H2. Phenylacetylene and ethynylcyclohexanol were also ineffective, despite having a chemical structure similar to 2-ethynylpyridine. A strong association was identified between each compound's ability to inhibit nitrification and its capacity to improve N fertilizer recovery. In one experiment, N fertilizer recovery was increased by 50% with 2-ethynylpyridine, etridiazole, or nitrapyrin application, from 33% without inhibitors. The inhibitors had little effect on fertilizer recovery where N losses were relatively small. 3-Methyl pyrazole significantly increased N uptake and lint yield, but the nitrification inhibitors had no significant effect on N uptake or on yield in two of the three of the cotton crops. A laboratory study confirmed that nitrification inhibitor effectiveness declined in the order 2-ethynylpyridine>etridiazole>nitrapyrin>3-methyl pyrazole>phenylacetylene>CaC2>ethynylcyclohexanolThis research was conducted at Australian Cotton Research Institute, CSIRO Division of Plant Industry, Locked Bag 59, Narrabri, NSW 2390, Australia  相似文献   

7.
Abstract

Ammonium thiosulfate (ATS, 12–0–0–26S) and dicyandiamide (DCD, 66–0–0) are fertilizer products that also inhibit nitrification. It has also been proposed that ATS can improve the nitrification inhibition properties of DCD. The purpose of this research was to compare the effects of ATS, DCD, and ATS/DCD mixtures on the nitrification of banded urea solution or urea‐ammonium nitrate (UAN) under laboratory, field microplot, and field conditions. The laboratory study demonstrated that adding 8.7% (vol vol‐1) ATS to a urea solution inhibited nitrification by 68%. Inhibition of nitrification was greater with ATS + DCD than with DCD alone. Some nitrite accumulated when ATS was added, but little or no nitrite accumulated when both ATS and DCD were present In field microplot studies, the addition of ATS to urea solution significantly (P ≤ 0.10) increased residual soil ammonium levels over urea alone at six of 11 trials. ATS was usually a less effective nitrification inhibitor than was DCD, and ATS + DCD outperformed DCD at only one of 11 trials. In all three field trials, adding ATS to banded UAN solution led to increased residual ammonium levels. Again, ATS was less effective than DCD or nitrapyrin as a nitrification inhibitor, and no ATS/DCD synergism was observed. It was concluded that the use of ATS as a sulfur fertilizer in fluid fertilizer bands can lead to measurable inhibition of nitrification, but ATS was not as reliable as DCD or nitrapyrin.  相似文献   

8.
Summary Laboratory studies to evaluate 3-methylpyrazole-1-carboxamide (MPC) as a soil nitrification inhibitor showed that it was comparable to nitrapyrin (N-Serve) for inhibiting nitrification of ammonium in soil, but was not as effective as etridiazole (Dwell) or 2-ethynylpyridine. They also showed that the effectiveness of MPC as a soil nitrification inhibitor is markedly affected by soil type and soil temperature, that MPC is more effective for inhibiting nitrification of ammonium-N than of urea-N, and that MPC has little, if any, effect on hydrolysis of urea or denitrification of nitrate in soil. These observations and other work discussed indicate that MPC is one of the most promising compounds so far proposed for inhibition of nitrification in soil.  相似文献   

9.
Summary The influence of 28 nitrification inhibitors on denitrification of nitrate in soil was studied by determining the effects of different amounts of each inhibitor on the amounts of nitrate lost and the amounts of nitrite, N2O and N2 produced when soil samples were incubated anaerobically after treatment with nitrate or with nitrate and mannitol. The inhibitors used included nitrapyrin (N-Serve), etridiazole (Dwell), potassium azide, 2-amino-4-chloro-6-methylpyrimidine (AM), sulfathiazole (ST), 4-amino-1,2,4-triazole(ATC),2,4-diamino-6-trichloromethyl-s-triazine (CL-1580), potassium ethylxanthate, guanylthiourea (ASU), 4-nitrobenzotrichloride, 4-mesylbenzotrichloride, sodium thiocarbonate (STC), phenylmercuric acetate (PMA), and dicyandiamide (DCD).Only one of the nitrification inhibitors studied (potassium azide) retarded denitrification when applied at the rate of 10 g g–1 soil, and only two (potassium azide and 2,4-diamino-6-trichloromethyl-s-triazine) inhibited denitrification when applied at the rate of 50 g g–1 soil. The other inhibitors either had no appreciable effect on denitrification, or enhanced denitrification, when applied at the rate of 10 or 50 g g–1 soil, enhancement being most marked with 3-mercapto-1,2,4-triazole. Seven of the inhibitors (potassium azide, sulfathiazole, potassium ethylxanthate, sodium isopropylxanthate, 4-nitrobenzotrichloride, sodium thiocarbonate, and phenylmercuric acetate) retarded denitrification when applied at the rate of 50 g g–1 soil to soil that had been amended with mannitol to promote microbial activity.Reports that nitrapyrin (N-Serve) and etridiazole (Dwell) inhibit denitrification when applied at rates as low as 0.5 g g–1 soil could not be confirmed. No inhibition of denitrification was observed when these compounds were applied at the rate of 10 g g–1 soil, and enhancement of denitrification was observed when they were applied at the rate of 50 or 100 g g–1 soil.  相似文献   

10.
采用土壤盆栽法,研究了双氰胺(DCD)、硫脲(THU)和硫脲甲醛树脂(TFR)以及包硫尿素(SCU)对土壤氮素形态和小麦产量的影响。试验共设不施氮(CK)、单施尿素、包硫尿素(SCU)、以及尿素分别与DCD、THA、TUF的3个浓度梯度(分别按尿素用量的0.5%、1%、2%)配合施用共12个处理。结果表明:随添加浓度的增加,硝化抑制作用逐渐增强,高剂量硝化抑制剂显著降低土壤NO-3-N含量,在2%添加浓度下,DCD、THU、TFR的土壤NO-3-N浓度分别比单施尿素降低29%、22%和14%,对土壤表观硝化率的抑制强度也是2%DCD2%THU2%TFR;SCU处理与2%DCD作用强度接近,且在施用早期就体现抑制效果,并在追肥后第74 d土壤表观硝化率显著低于使用硝化抑制剂的处理(P0.05);硝化抑制剂和SCU都可以使土壤NH+4-N含量稳定在较高的水平,抑制剂用量越多,土壤NH+4-N含量越高;与单施尿素相比,尿素+DCD模式,均可提高小麦产量,且在0.5%、1%、2%添加浓度,都达到显著水平(P0.05);THU在1.0%和2.0%添加浓度,小麦产量显著高于单施尿素,但增产效果次于DCD。总体上,包硫尿素(SCU)比硝化抑制剂在控释氮素方面效果更持久,而3种硝化抑制剂中,在控制土壤NH+4-N转化、土壤硝化抑制方面,DCD和THU优于TFR;作为外源添加物的抑制剂长期应用可能对土壤环境造成潜在的危害,不同硝化抑制在土壤中的形态归趋和长期作用还有待进一步研究。  相似文献   

11.
通过室外模拟田间培养试验,研究不同硝化抑制剂及其复配后的硝化抑制效果。结果表明:不同硝化抑制剂,明显抑制了NH4+-N向NO3--N的转化。硝化抑制剂1-甲胺酰基-3,5-二甲基吡唑(CMP)有明显的抑制效果,优于4氨基-1,2,4-三唑盐酸盐(ATC)、双氰胺(DCD);硝化抑制剂CMP与DCD复配的抑制效果显著,硝化抑制率为35.6%。为了结合生产实际获得最优性价比,在硝化抑制剂复配比率方面尚需进一步研究。  相似文献   

12.
The aims of this study were to assess the effectiveness of the nitrification inhibitors dicyandiamide (DCD) and nitrapyrin on reducing emissions of nitrous oxide (N2O) following application of NH4 + or NH4 +-forming fertilisers to grassland and spring barley. DCD was applied to grassland with N fertiliser applications in April and August in 1992 and 1993, inhibiting N2O emissions by varying amounts depending on the fertiliser form and the time of application. Over periods of up to 2 months following each application of DCD, emissions of N2O were reduced by 58–78% when applied with urea (U) and 41–65% when applied with ammonium sulphate (AS). Annual emissions (April to March) of N2O were reduced by up to 58% and 56% in 1992–1993 and 1993–1994, respectively. Applying DCD to ammonium nitrate (AN) fertilised grassland did not reduce emissions after the April 1993 fertilisation, but emissions following the August application were reduced. Nitrapyrin was only applied once, with the April fertiliser applications in 1992, reducing N2O emissions over the following 12 months by up to 40% when applied with U. When N fertiliser was applied in June without DCD, the DCD applied in April was still partly effective; N2O emissions were reduced 50%, 60% and 80% as effectively as the emissions following the April applications, for AS in 1993, U in 1992 and 1993, respectively. In 1992 the persistence of an inhibitory effect was greater for nitrapyrin than for DCD, increasing after the June fertiliser application as overall emissions from U increased. There was no apparent reduction in effectiveness following repeated applications of DCD over the 2 years. N2O emissions from spring barley, measured only in 1993, were lower than from grassland. DCD reduced emissions from applied U by 40% but there was no reduction with AN. The results demonstrate considerable scope for reducing emissions by applying nitrification inhibitors with NH4 + or NH4 +-forming fertilisers; this is especially so for crops such as intensively managed grass where there are several applications of fertiliser nitrogen per season, as the effect of inhibitors applied in April persists until after a second fertiliser application in June. Received: 30 August 1996  相似文献   

13.
唐冲  杨劲松  姚荣江  王胜  王相平  谢文萍 《土壤》2021,53(2):291-298
为研究生物质炭及硝化/脲酶抑制剂对滨海盐渍土土壤盐碱、氮素有效性、作物氮素吸收利用以及土壤氮平衡的影响,通过盆栽试验,共设9个处理:不施氮肥、常规化肥、生物质炭+常规化肥、常规化肥+硝化抑制剂DCD、常规化肥+脲酶抑制剂NBPT、常规化肥+DCD+NBPT、生物质炭+常规化肥+DCD、生物质炭+常规化肥+NBPT、生物...  相似文献   

14.
Summary The effects of 19 nitrificiation inhibitors on germination of seeds in soil were investigated. The nitrification inhibitors tested were sodium azide, potassium azide, potassium ethyl xanthate, nitrapyrin (N-Serve), etridiazole (Dwell), 3-mercapto-1,2,4-triazole (MT), 2-amino-4-chloro-6-methylpyrimidine (AM), 2,4-diamino-6-trichloromethyl-s-triazine, 2-mercaptobenzothiazole (MBT), 4-amino-1,2,4-triazole (ATC), sodium thiocarbonate (STC), guanylthiourea (ASU), thiourea (TU), dicyandiamide (DCD), sulfathiazole (STC), phenylacetylene, 2-ethynyl-pyridine, 3-methylpyrazole-l-carboxamide (MPC), and ammonium thiosulfate (ATS). Germination tests were performed with seeds of alfalfa (Medicago sativa L.), wheat (Triticum aestivum L.), rye (Secale cereale L.), barley (Hordeum vulgare L.), sorghum [Sorghum bicolor (L.) Moench], oats (Avena sativa L.), and corn (Zea mays). Only 2 of the 19 nitrification inhibitors studied (potassium azide and sodium azide) reduced germination of the seeds tested when applied at the rate of 12.5 g g–1. The other inhibitors studied had no effect on the germination of wheat, alfalfa, barley, corn, oat, rye, or sorghum seeds when they were applied at the rate of 125 g g–1 soil, and most of them had no effect on seed germination when applied at the rate of 625 g g–1 soil.  相似文献   

15.
硝化抑制剂对毛竹林土壤N_2O排放和氨氧化微生物的影响   总被引:1,自引:3,他引:1  
为了探索硝化抑制剂在毛竹生产中的施用技术,通过培养试验研究3,4-二甲基吡唑磷酸盐(DMPP)和双氰胺(DCD)两种硝化抑制剂对毛竹林施用尿素后土壤N2O排放、氮素转化和相关氨氧化细菌(AOB)、氨氧化古菌(AOA)群落结构和丰度的影响。试验设(1)对照(CK)、(2)单施尿素(Urea)、(3)尿素+1%DMPP(DMPP占总N的1%,下同);(4)尿素+1.5%DMPP;(5)尿素+10%DCD;(6)尿素+15%DCD等6个处理,测定N2O的排放动态以及气体排放转折点时的土壤特征指标。结果表明:与单施尿素相比,160 d的时间内两种DMPP用量处理的土壤N2O累积排放减排幅度均为54%,而10%DCD和15%DCD处理的土壤分别减少28%和41%。DMPP和DCD处理50 d和90 d时土壤的NH4+-N含量均显著高于(p0.05)单施尿素处理,而NO3--N含量和表观硝化率则恰好相反,但两种抑制剂间无差异。DMPP处理的AOB群落结构的变化从10 d开始显现,至50 d和90 d时仍保持明显的抑制状态,而DCD处理则至90 d时抑制作用基本消失。单施尿素AOB功能基因(amo A)的丰度均显著高于硝化抑制剂处理(90 d时尿素+10%DCD处理除外);在整个培养期内,尿素和对照土壤的AOA群落结构相似,硝化抑制剂反而增加了AOA功能基因的丰度,表明硝化抑制剂对AOA丰度无明显抑制作用。即两种硝化抑制剂主要通过抑制AOB起作用;调节土壤p H至中性范围,并在1%DMPP施用条件下,硝化抑制剂的抑制效果最显著。  相似文献   

16.
This study compared the relative effectiveness of two products recently introduced as nitrification inhibitors with other materials used to inhibit nitrification. Four soils were treated with 0, 0.2, 1, 5, and 25 mg kg?1 of nitrapyrin (NP), a new microencapsulated nitrapyrin product (ENP), dicyandiamide (DCD), a new maleic-itaconic polymer product (MIP), and ammonium thiosulfate (ATS). The soils were also treated with 200 mg N kg?1 as urea, and percent inhibition of nitrification determined after 2 or 4 weeks of incubation. After 4 weeks, similar levels of nitrification inhibition were provided by 1 mg kg?1 of NP (72%), 5 mg kg?1 of ENP (79%), and 25 mg kg?1 of DCD (73%), averaged across soil. After 4 weeks with a sandy soil, the highest rate of MIP and ATS provided 15 and 36% inhibition, respectively. MIP and ATS were ineffective at inhibiting nitrification when added to the other three soils.

Abbreviations: ATS: ammonium thiosulfate; DCD: dicyandiamide; ENP: encapsulated nitrapyrin; MIP: maleic-itaconic polymer; NP: nitrapyrin; UAN: urea-ammonium nitrate liquid fertilizer  相似文献   


17.
Abstract

A field experiment was conducted on Maury silt loam soil (Typic Paleudalf) during 2 years to determine the effects of rate of nitrapyrin and source of N fertilizer on soil pH and response of burley tobacco (Nicotiana tabacum L.cv.xKy‐14'). All sources of N were applied at the rate of 280 kg N ha‐1. The information was needed to increase the efficiency of N fertilizer use and improve the growth and safety of tobacco.

Results indicated that application of a NO3 source of N fertilizer or low rates of nitrapyrin (0.56 to 2.24 kg ha‐1) decreased surface soil acidification and the concentration of plant Mn, while plant dry weight early in the growing season was increased. The early growth benefits noted for .nitrapyrin did not lead to increased cured leaf yields or value. Cured leaf yield and value were highest in plots receiving Ca(NO3)2, followed by KH4NO3, then urea.

Concentration of protein N, total alkaloids, and total volatile nitrogenous bases of cured leaves increased and NO3 ‐N decreased as rate of nitrapyrin increased. Total N concentration of cured leaf, however, was not significantly affected by nitrapyrin application, indicating that the proportion of absorbed N as NH4 +increased as nitrapyrin rate increased.  相似文献   

18.
Abstract

The effectiveness of the nitrification inhibitors, nitrapyrin and dicyandiamine, in reducing nitrogen loss from soil and preventing reduction in crop yield was evaluated in field studies conducted over dozens of site years in Illinois, Iowa, Minnesota, and Wisconsin on corn, wheat, and a vegetable crop, potato. Both chemicals were effective in retarding the nitrification of ammoniacal fertilizers, including nitrogen from liquid animal manures, but this inhibitor did not always result in yield increases above that obtained with equivalent amounts of nitrogen applied without inhibitor. Greatest benefits for nitrification inhibitor use was obtained on coarse‐textured soils under conditions that were conducive to nitrate nitrogen loss when nitrogen was applied at rates not considered to be excessive.  相似文献   

19.
A field experiment was conducted to study yield and soil N dynamics in an irrigated, intermittently submerged rice field at New Delhi, India, where chemically synthesized as well as neem derived urea coating nitrification inhibitors with prilled urea were applied. Rice (var. IR-32) was grown on a Typic Ustochrept alluvial soil. No nitrogen (control), prilled urea alone, prilled urea mixed with dicyandiamide (DCD), neem (powdered Azadirachta indica Juss. seeds) coated urea and Nimin (commercial derivative of neem) coated urea were tested for their efficacy in regulating yield and conservation of N. None of the inhibitors could increase biomass or grain yield over urea. But all the inhibitors were able to conserve soil ammonium and DCD was the most efficient nitrification inhibitor followed by Nimin coated urea. N-uptake, recovery, physiological and agronomic efficiencies were highest in urea treated plots. The performances of all the inhibitors were against the popular trend where crop yield and N-uptake were enhanced by their application. But, more studies are required on the performance of these inhibitors in rice fields to come to a stronger conclusion.  相似文献   

20.
玉米滴灌栽培条件下尿素与氢醌、双氰胺配施方法及效果   总被引:1,自引:0,他引:1  
本研究通过在滴灌栽培条件下将脲酶抑制剂氢醌(简称HQ)、硝化抑制剂双氰胺(简称DCD)和尿素在玉米盆栽试验中进行配施,以探求HQ和DCD在滴灌施氮肥条件下应用的可行性。试验共设17个处理。试验结果表明:在滴灌施尿素条件下,加入0.3%HQ、0.5%HQ和5.0%DCD于溶液中,尿素的氮素利用率分别为74.8%、75.8%和75.3%,均显著高于单独施用尿素处理;当将HQ和DCD进行土壤施用并配合滴灌浇水时,HQ对提高氮肥利用率无显著作用,但DCD的施用能显著提高尿素氮的利用率;HQ和DCD在滴灌施肥条件下的施用效果要好于土壤施用效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号