首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the effects of fertilization and cultivar on the content of vitamins B1, B2, B6, B12, and E in wheat, seven fertility treatments with three levels of N (0, 56, and 280 kg/ha), two levels of P (0 and 122 kg/ha), and two levels of K (0 and 465 kg/ha) were applied on split plots to two relatively unrelated hard red spring wheat (Triticum aestivum L.) cultivars. An analysis of grain vitamins revealed that fertilizer P and K applications increased grain B1 and B2 levels by 60 and 61%, respectively, in Waldron wheat. The same treatments decreased the contents of B1 and B2 in Era. Application of K and N and/or P to Era wheat resulted in a large decrease in vitamin B1 and B2 content. Vitamin B6 was not influenced significantly by fertility treatments. Vitamin B12 levels were not significantly different due to the fertilizer treatments. The two cultivars differed significantly only in vitamin B12, Era being 52% higher than Waldron. Vitamins B1 and B2 varied together over all treatments and both cultivars (r=0.93).Contribution from the Department of Soils, North Dakota State University, Fargo, N.D. 58102. Journal Series No. 1196  相似文献   

2.
《Field Crops Research》2004,86(1):33-42
The study was undertaken to assess the variation within a bread wheat (Triticum aestivum L.) cultivar, primarily for grain yield, and the implications for wheat breeding. During the 1998–1999 growing season, cv. Nestos was established in a non-replicated (NR-0) honeycomb experiment, in the absence of competition (11 547 plants ha−1). Ten high yielding (H) and 10 low yielding (L) plants were selected, the seeds of which were used to form the respective H and L lines. The 20 lines, along with their original cultivar, were evaluated in two locations either in the absence of competition (11 547 plants ha−1) during the 1999–2000 season or under competition (5 000 000 plants ha−1) during the 2000–2001 season. Results showed significant differentiation between lines for grain yield, determined both in the absence of competition at the single-plant level, i.e. yield per plant (YP), and under competition at the crop yield level, i.e. yield per plot (CY). Significant differences between lines were also found for grain protein content (PC), grain carbon isotope discrimination (Δ), and grain ash content (ASH), either in the absence of competition or under competition. A positive relationship was found between YP and CY (r=0.53,P<0.02). Results showed that selection within a bread wheat cultivar, under very low density and on the basis of individual plant grain yield, could be an effective way to either upgrade or maintain the cultivar, whereas the use of Δ or ASH as indirect selection criteria instead of grain yield was not supported by the study.  相似文献   

3.
《Field Crops Research》2001,72(3):197-210
The effect of tillage system, crop rotation and nitrogen (N) fertilization rates on the quality of hard red spring wheat (Triticum aestivum L.) was studied over a 6-year period under rainfed Mediterranean conditions. Grain yield, test weight, protein content and alveogram parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio; G: swelling index) were analyzed. Tillage treatments included no tillage (NT) and conventional tillage (CT). Crop rotations were wheat–sunflower (Helianthus annuus L.) (WS), wheat–chickpea (Cicer arietinum L.) (WCP), wheat–faba bean (Vicia faba L.) (WFB), wheat–fallow (WF) and continuous wheat (CW). Nitrogen fertilizer rates were 50, 100 and 150 kg N ha−1 on a Vertisol (Typic Haploxerert). A split–split plot design with four replications was used. Weather conditions over the study years strongly influenced wheat yield and quality. Test weights rose considerably with yield and increased rainfall during the filling period, and fell slightly as N rates increased. Grain protein content increased with rainfall in the month of May (when grain protein accumulation occurs) up to a maximum of 80 mm. Grain protein content peaked at average mean temperatures of around 26–27°C. Protein content and alveogram parameter also improved under CT, following a prior legume crop and with rising N fertilizer rates. Alveogram parameters rose with protein content, although the P/L ratio showed greater imbalance. N fertilizer proved to be a key factor in determining bread-making quality, and the best strategy available to the farmer for optimizing wheat quality. However, the influence of weather conditions and soil residual N should be borne in mind when deciding on the additional fertilizer N to be used as a top dressing with a view to increasing yield and, particularly, enhancing wheat protein content and bread-making quality.  相似文献   

4.
Protein content and protein yield of three spring wheat cultivars differing in morphological and physiological growth characters were found to be influenced by intercultivar competition, irrigation levels and nitrogen fertilization. The protein content of the tall cultivar C 306 and the protein yield of the dwarf cultivar HD 2160 were more than the other cultivars. Binary mixed stands were not superior to the better component cultivar. Intercultivar competition increased the protein content of dwarf and semi-dwarf cultivars, but decreased the protein content of tall cultivar. On the other hand, protein yield of the dwarf cultivar decreased and that of tall cultivar increased when grown in mixed stands. Protein yield of semi-dwarf cultivar increased when grown with dwarf cultivar, but decreased when grown with tall cultivar. Two or three irrigations increased the protein content and protein yield of all the three cultivars and their mixed stands over one irrigation. Protein content and protein yield of the cultivars and their mixed stands were higher when 150 kg N/ha was applied than when 80 kg N/ha was applied.  相似文献   

5.
The effects of nitrogen (N) fertiliser on grain size and shape, starch and protein concentration, vitreosity, storage protein composition, and alcohol yield of two winter wheat varieties contrasting in endosperm texture were studied in a field trial in Herefordshire, UK in 2004. Averaged across varieties, the alcohol yield was 439 L/tonne for grain with a protein concentration of 11.5 g/100 g. The soft endosperm wheat variety Riband produced on average 7.7 L more alcohol per tonne of grain at a given protein concentration than the hard endosperm variety, Option. At the same time, N fertiliser was shown to have significant effects on alcohol production through its major influence on grain protein concentration. Averaged over both varieties, there was a reduction in alcohol yield of 5.7 L for each 10 kg increase in protein content per tonne of grain. The starch concentration of Riband was 2.9 g/100 g higher than Option at a given grain protein concentration, supporting its higher observed alcohol yields. A low conversion of starch to alcohol in this study (6.30 L/10 kg starch) compared to the theoretical value (6.61 L/10 kg starch) indicated that there is potential for improvement of this character. The traits relating to grain size and shape were principally influenced by genotype, and were not influenced by N fertiliser. Conversely, there were only minor genotypic effects on grain protein concentration and vitreosity. An important finding was that there were no interactions between variety and N treatment for any of the variables considered, indicating that the response of the two varieties to changes in applied N was the same, resulting in consistent differences in starch concentration and alcohol yield between genotypes at different levels of grain protein. An analysis of the composition of the wheat storage proteins by size-exclusion chromatography showed that the gliadins increased on average by 0.56 g per g increase in total grain protein and were quantitatively the major protein fraction, suggesting that selection for low gliadin content may be a desirable means by which to reduce grain protein, and thereby increase alcohol yield in wheat. The relationship between alcohol yield per unit area and applied N rate was described by a quadratic function and the maximum alcohol yield per unit area was ca. 3630 L/ha. Statistical analysis suggested that the economic optimum rate of N applied for grain yield was close to the optimum N rate for maximum alcohol productivity.  相似文献   

6.
Among the yield components, grain weight is considered a conservative trait whose determination is still beyond our complete understanding. Crop physiology uses a whole approach to study this complex trait, which can provide helpful information to plant breeders and molecular biologists. This study emphasizes the understanding of pre- and post-anthesis determinants of final grain weight. A field experiment was carried out in two growing seasons evaluating two wheat cultivars contrasting in grain weight potential. Carpel weight at pollination, grain dimensions, grain water, dry matter and volume dynamics were assessed. Among grain dimensions, grain length was the trait, which explained final grain weight (r2 = 0.78; P < 0.01 and r2 = 0.94; P < 0.001 for the 1st and 2nd season, respectively) and it was the first trait to stabilize after anthesis. Water content of grains stabilized little later and also showed a strong association with final grain weight (r2 = 0.93; P < 0.01 and r2 = 0.98; P < 0.01 for the 1st and 2nd season respectively). Most importantly, carpel weight at pollination showed a positive and linear association with final grain weight (r2 = 0.79, P < 0.01 and r2 = 0.86 P < 0.01 for the 1st and 2nd season, respectively) irrespective of the cultivar and grain position. In addition, positive associations were also found between grain volume, water content, grain length, and carpel weight at pollination. Therefore, the associations between pre- and post-anthesis traits found in this study support the hypothesis that grain weight is determined before anthesis and fruit tissues (i.e., pericarp in cereals and sunflower) set an upper limit to grain weight.  相似文献   

7.
8.
High temperature has a negative impact on wheat grain quality and reduces market value. Emmer wheat (Triticum dicoccon Schrank), one of the earliest domesticated wheat species, is a source of genetic diversity for the improvement of heat and drought tolerance in modern wheat. However, the potential of emmer wheat for the improvement of grain physical quality under high temperature stress is little studied. A diverse set of 184 emmer-based hexaploid lines was developed by crossing emmer wheat with hexaploid wheat and backcrossing once to hexaploid wheat. These materials, seven hexaploid recurrent parents and seven commercial cultivars, were evaluated at two times of sowing (E1 and E2) in the field, in 2015–2016. The materials were genotyped using a 90 K SNP platform and these data were used to estimate the contribution of emmer wheat to the progeny. Significant phenotypic and genetic variation for grain physical quality traits including protein content and test weight was observed. High temperature significantly increased protein content and decreased test weight. Large scale field phenotyping identified emmer progenies with improved grain characteristic compared to their respective parents and commercial cultivars in both environments. A few families consistently produced higher trait means across environments compared to their recurrent parents. The emmer wheat parent contributed between 1 and 37% of the genome in emmer-based genotypes. Selected emmer derived lines with superior protein content and test weight, tended to have a greater genetic contribution from the emmer parent, ranging from 12 to 37% and 7–37% in E1 and E2, respectively. It was concluded that new genetic variation for seed traits, such as protein content and test weight, can be introduced to hexaploid wheat from emmer wheat. The newly developed emmer derivatives identified with enhanced grain quality under high temperature stress can potentially be used to improve grain quality through breeding.  相似文献   

9.
Path-coefficient analysis based on an ontogenetic model was used to study the relationships between tuber yield and yield components as influenced by cultivar and nitrogen fertilization. Four experiments were carried out from 1987 to 1989 in Granada, southern Spain. Two of these experiments used six potato cultivars with a single N rate, while the other two experiments used one cultivar and nine levels of N, split between planting and top-dressing. Variation in tuber yield between cultivars resulted mainly from differences in stem number per m2 followed by tubers per stem and, to a lesser extent, average tuber weight. In N experiments, however, average tuber weight was the only yield component that showed a significant direct effect on yield, while the number of stems per m2 and tubers per stem had negligible direct effects. In addition, the ontogenetic model used indicated compensatory mechanisms during the formation of the three yield components in the potato, which resulted stronger in the N experiments.  相似文献   

10.
Starch was isolated from 98 hard red winter (HRW) wheat and 99 hard red spring (HRS) wheats. Granule size/volume distributions of the isolated starches were analyzed using a laser diffraction particle size analyzer. There were significant differences in the size distribution between HRW and HRS wheats. The B-granules (<10 μm in diameter) occupied volumes in the range 28.5–49.1% (mean, 39.9%) for HRW wheat, while HRS wheat B-granules occupied volumes in the range 37.1–56.2% (mean, 47.3%). The mean granule sizes of the distribution peaks less than 10 μm in diameter also showed a significant difference (HRW, 4.32 vs. HRS, 4.49 μm), but the mean sizes of the distribution peaks larger than 10 μm were not significantly different (21.54 vs. 21.47 μm). Numerous wheat and flour quality traits also showed significant correlation to starch granule size distributions. Most notably, protein content was inversely correlated with parameters of B-granules. Crumb grain score appeared to be affected by starch granule size distribution, showing significant inverse correlations with B-granules. Furthermore, the linear correlations were improved when the ratio of B-granules to protein content was used, and the polynomial relation was applied. There also appeared to be an optimum range of B-granules for different protein content flour to produce bread with better crumb grain.  相似文献   

11.
The genotype, environment and their interaction play an important role in the grain yielding and grain quality attributes. The main aim of this study was to determine the contributions of the genotype, environment and their interaction to the variation in bread-making traits. The data that were used for the analyses performed in this study were obtained from 3 locations in Poland from post-registration multi-environment trials with winter wheat in 2009 and 2010. The experimental factors were the cultivar (7 cultivars) and the crop management level (low input and high input). In the multi-environment trials, 17 traits were investigated that characterize grain, flour and dough quality. Most of the traits were affected much more strongly by environmental factors (i.e., year and location) than by genotype. The variance components revealed an especially strong effect of the year on the baking score, loaf volume and water absorption, as well a strong effect of the location on dough development and protein content. The obtained results demonstrate that the grain quality as measured by the parameters based on the protein content and quality may be substantially improved by crop management practices, especially by N fertilization level.  相似文献   

12.
To broaden genetic variation, an irradiated wheat (Triticum aestivum L.) M5 population was generated in the background of spring wheat cv. Almaken. This resource was used to measure components of productivity, including grain number and grain weight (GW) per main spike, GW per plant (GWP), 1000-grain weight (TGW), grain size and grain shape, and some quality parameters. Some mutant lines, mostly in the 200-Gy-dosed germplasm, had 2–4 times higher grain iron and zinc concentrations and 7–11% higher protein content relative to the parent line. Some irradiated lines had significantly larger TGW, and grain area (GA), length, and width than the parent, cv. Almaken. The largest GA and grain length (GL) were 30–40% greater than those of the parent. Correlations for Zn concentration versus GA = 0.191, p ? 0.01, grain protein content (GPC) versus GA = 0.128, p ? 0.05, GPC versus GL = 0.113, p ? 0.05, and GPC versus grain width = 0.191, p?0.001 were observed in 200 Gy-dosed mutants. In 100 Gy-dosed mutants, correlations for Fe concentration versus GWP = 0.302, p ? 0.001 and Fe concentration versus TGW = 0.153, p ? 0.01 were found. The mutant lines showed the capacity to biofortify wheat grain without negatively impacting on crop productivity and this population offers promising donors for improving grain parameters such as GA, length, and width and quality. The data presented showed how the genetic variation generated through radiation could be used to test the linkage between various important grain parameters.  相似文献   

13.
《Field Crops Research》1997,52(3):261-269
Cultivar blends can provide a measure of disease control due to host diversity. The diversity of cultivar blends also may be useful for improving agronomic performance and end-product quality. This paper reports on the performances of blends (0:1, 1:2, 1:1, 2:1, and 1:0) of two fall-sown hard red spring wheat cultivars, Yolo (high grain yield, low susceptibility to septoria tritici blotch and leaf rust, good lodging resistance, poor grain quality) and Serra (high grain yield, high susceptibility to septoria tritici blotch and leaf rust, high susceptibility to lodging, excellent grain quality). The blends were grown in several environments in California for 3 years. The taller Serra was more competitive than Yolo in the various blends. Spike populations of Serra often were larger in blends than expected from the proportion of seed sown. Spikes of Yolo in blends had fewer spikelets than spikes of Yolo in sole crop Yolo, while spikes of Serra in blends had more spikelets than spikes of Serra in sole crop Serra. Blends had advantages over sole crops in several respects. When disease pressure was moderate or high, blends had less leaf rust and septoria tritici blotch than sole crop Serra, but more disease than sole crop Yolo. When lodging occurred, blends had less lodging than sole crop Serra. Overall, there were no significant differences in yield among the blends and sole crops of Serra or Yolo. The blends produced grain protein and baking quality equivalent to sole crop Serra and better than sole crop Yolo. The 2:1 Yolo:Serra blend was the optimum blend and is an attractive alternative to sole crop Yolo or sole crop Serra for wheat growers in the Sacramento Valley of California.  相似文献   

14.
大豆蛋白质含量及产量的回交效应分析   总被引:2,自引:0,他引:2  
以两个杂交组合(组合Ⅰ:吉林28×吉林27;组合Ⅱ:吉林26×吉林20)的F1与其亲本分别回交,形成B1F1、B2F1世代,自交加代形成B1F2和B2F2及B1F3和B2F3世代,分析了高蛋白和高产亲本回文对后代蛋白质含量及籽粒产量的影响。结果表明,回交后代BF1和BF2平均蛋白质含量及BF2变异幅度随回交亲本蛋白质含量的高低而变化。BF2蛋白质含量总变异幅度略小于F2,并随回交亲本蛋白质含量的高低,表现为偏态分布。与低蛋白高产亲本回交,BF2群体中低蛋白个体的比例增加,小于或等于低值亲本的比例两组合分别为9.2%和16.4%;相反,以高蛋白品种作回交亲本的BF2世代,高蛋白个体的比例提高,大于或等于高值亲本的比例,两组合分别达50.4%和36.4%。回交后代BF2、BF3平均产量与亲本产量水平方差分析结果呈现与蛋白质含量变化的相反趋势。  相似文献   

15.
Plant breeders are interested in rationally reducing the number of testing environments for breeding new genotypes adapted to diverse conditions. One way to characterize the adaptation of a genotype is to use the joint regression model. Our objectives were to estimate the stability for grain yield (GY), grain protein yield (GPY) and grain protein content (GPC) of a set of wheat genotypes grown under varying nitrogen conditions and then to determine optimal numbers of environments for assessing the slopes of joint regression.  相似文献   

16.
A field experiment on two wheat varieties namely NI-5642 and Kalyansona with foliar spray of three herbicides viz 2,4-D, atrataf and taphazine at three concentrations i.e. 250, 500 and 1000 ppm was conducted inrabi season of 1971. From the studies it was observed that all three herbicides at all the concentrations increased the protein content and the maximum increase was to the extent of 56.8 as percentage of control. Of the chemicals used 2,4-D at 500 ppm concentrations was effective in respect of protein content, yield and 1000 grain weight.  相似文献   

17.
Present study aimed to assess silicon (Si) mediated yield, grain quality and regulations in 2-acetyl-1-pyrroline accumulation (2-AP) in aromatic rice. Four different levels of Si at 15, 30, 45 and 60 mg kg−1 were applied to two aromatic rice cultivars i.e., Nongxiang 18 and Meixiangzhan 2, while pots without Si were served as control (CK). Results revealed that Si fertilization improved 2-AP, Si and proline contents in leaves and grains as well as activities of proline dehydrogenase (PRODH) and net photosynthetic rates (Pn) (in leaves) while interfered with total N contents in leaves and grains. Moreover, leaves N and proline contents, and net photosynthetic rates (Pn) were decreased with plant age i.e., tillering > flowering > maturity while PRODH activities and Si contents were highest at flowering and maturity stages, respectively and minimum at tillering stage. Furthermore, growth, yield and quality components were also improved by Si application but results were not consistent regarding grain quality for both rice cultivars. Further, Si contents in leaves have significant positive relations (r = 0.3974, P < 0.05) with grain 2-AP contents at flowering stage. Hence, Si proved better for both rice cultivars whereas 2-AP contents were higher for Meixiangzhan 2 than Nongxiang 18.  相似文献   

18.
Unpredictable temperatures and rainfall associated with climate change are expected to affect wheat (Triticum aestivum L.) production in various countries. The development of climate-resilient spring wheat cultivars able to maintain grain yield and quality is essential to food security and economic returns. We tested 54 CIMMYT spring bread wheat genotypes, developed and/or released over a span of 50 years, in the field for two years under optimum sowing dates, as well as using two delayed sowing dates to expose crops to medium and severe heat-stress conditions. The grain yield and yield components were severely affected as the heat-stress increased. Two contrasting groups of 10 lines each were identified to determine the effect of heat-stress on bread-making quality. The first set included entries that produced high yields in optimal conditions and maintained higher yields under heat-stress (superior-yielding lines), while the second set included genotypes that did not perform well in the environment with high temperature (inferior-yielding lines). We identified genotypes exhibiting bread-making quality stability, as well as the quality traits that had higher correlation with the loaf volume in the environment without stress and under heat-stress. Of all the quality traits tested, dough extensibility (AlvL) and grain protein content had a significant influence in heat-stress adaptation. Most of the lines from the superior-yielding group were also able to maintain and even improve quality characteristics under heat-stress and therefore, could be used as parents in breeding to develop high-yielding and stable quality wheat varieties.  相似文献   

19.
Straw and grain yield and water content in both grain and straw were measured during 3 years in 17 varieties of winter wheat following treatments with different fungicides. The water content of the straw varied significantly dependent on year, variety and fungicide treatment. In 1998, the water content in straw was significantly higher after the use of strobilurins compared with untreated and EBI fungicides (ergosterol biosyntesis inhibitors). On average water content in 10 varieties increased from 15% in untreated to 31% after applying two full dosages of azoxystrobin. In 1999 and 2000, lower dosages of azoxystrobin were used and water content increased only by 2–4 percentage units. The results indicate that in some years and with high doses precaution has to be taken following the use of strobilurins regarding handling and removing of the straw, which likely will include postponement of baling. Water content in grain was also increased significantly from fungicide treatments, but the increase was minor and at the maximum increase found to be 1.1% percentage unit. The effect of fungicide input on water content in grain was reduced much faster during the ripening period than for water content in straw. Fungicide treatments and varieties significantly influenced straw yields. The yield increases in straw varied between 0 and 1.0 tonnes/ha depending on year and variety, and was on average 0.42 tonnes/ha for two fungicide treatments. Two fungicide applications carried out at GS 31 and 45–55 gave only slightly higher increases compared with one application around ear emergence. Varieties showed variable increases following the use of fungicides. The variation was not influenced by the straw length (crop height). The increases in straw yield from fungicide treatments were relatively low compared to the increases in grain yield and no clear correlation was found between grain yield increases and straw yield increases.  相似文献   

20.
A rising global population necessitates continued genetic improvement of wheat (Triticum spp.), but not without monitoring of unintended consequences to processors and consumers. Our objectives were to re-establish trends of genetic progress in agronomic and milling traits using a generational meter stick as the timeline rather than cultivar release date, and to measure correlated responses in flour quality and human wheat-sensitivity indicators. Grain yield and kernel size showed stepwise increases over cycles, whereas wheat protein content decreased by 1.1 g/100 g. Reduced protein content, however, did not result in lower dough strength pertinent to bread baking. A novel method of directly testing gluten elasticity via the compression-recovery test indicated a general increase in gluten strength, whereas the ratio of total polymeric to total monomeric proteins remained stable. Also showing no change with genetic progress in yield were flour levels of gluten epitopes within the key immunotoxic 33-mer peptide. The oligosaccharide fructan, present in milled and wholemeal flours, increased with increasing grain yield potential. While yield improvement in U.S. bread wheat was not accompanied by a decline in gluten strength or systematic shift in a key wheat sensitivity parameter, the unanticipated rise in total fructans does implicate potentially new dietary concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号