首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all eukaryotic organisms, inappropriate firing of replication origins during the G2 phase of the cell cycle is suppressed by cyclin-dependent kinases. Multicellular eukaryotes contain a second putative inhibitor of re-replication called geminin. Geminin is believed to block binding of the mini-chromosome maintenance (MCM) complex to origins of replication, but the mechanism of this inhibition is unclear. Here we show that geminin interacts tightly with Cdt1, a recently identified replication initiation factor necessary for MCM loading. The inhibition of DNA replication by geminin that is observed in cell-free DNA replication extracts is reversed by the addition of excess Cdt1. In the normal cell cycle, Cdt1 is present only in G1 and S, whereas geminin is present in S and G2 phases of the cell cycle. Together, these results suggest that geminin inhibits inappropriate origin firing by targeting Cdt1.  相似文献   

2.
3.
An in vitro assay was developed to study the positive factors that regulate the onset of DNA replication during the mammalian cell cycle. Extracts prepared from cells at defined positions in the cell cycle were used to examine the replication of SV40 DNA in a cell free system. Extracts prepared from S phase cells were ten times more efficient at initiating replication at the SV40 origin than were extracts from G1 cells, whereas elongation rates were similar in G1 and S reactions. At a discrete point in the cell cycle, just before the cell's entry into S, an activity appeared that was required, in conjunction with SV40 T antigen, for site specific initiation at the SV40 origin. This factor had a role in unwinding DNA at the replication origin.  相似文献   

4.
Multienzyme systems of DNA replication   总被引:48,自引:0,他引:48  
Replication is accomplished by multienzyme systems whose operations are usefully considered in respect to three stages of the process: initiation, elongation, anid termination. 1) Initiation entails synthesis of a short RNA fragment that serves as primer for the elongation step of DNA synthesis. This stage, probed by SS phage DNA templates, reveals three distinctive and highly specific systems in E. coli. The Ml3 DNA utilizes RNA polymerase in a manner that may reflect how plasmid elements are replicated in the cell. The ?X174 DNA does not rely on RNA-polymerase, but requires instead five distinctive proteins which may belong to an apparatus for initiating a host chromosome replication cycle at the origin. The G4 DNA, also independent of RNA polymerase, needs simply the dnaG protein for its distinctive initiation and may thus resemble the system that initiates the replication fragments at the nascent growing fork. In each case it is essential that in vitro the DNA-unwinding protein coat the viral DNA and influence its structure. 2) Elongation is achieved in every case by the multisubunit, holoenzyme form of DNA polymerase III. Copolymerase III, which is an enzyme subunit, and adenosine triphosphate are required to form a proper complex with the primer template but appear dispensable for the ensuing chain growth by DNA polymerase (33). 3) Termination requires excision of the RNA priming fragment, filling of gaps and sealing of interruptions to produce a covalently intact phosphodiester backbone. DNA polymerase I has the capacity for excision and gapfilling and DNA ligase is required for sealing. What once appeared to be a simple DNA polymerase-mediated conversion of a single-strand to a duplex circle (34) is now seen as a complex series of events in which diverse multienzyme systems function. Annoyance with the difficulties in resolving and reconstituting these systems is tempered by the conviction that these are the very systems used ,by the cell in replicating its chromosome and extrachromosomal elements. Thus, understanding of the regulation of replication events in the cell, their localization at membrane surfaces and integration with cell division, and their coordination with phage DNA maturation and particle assembly will all be advanced by knowledge of the components of the replicative machinery.  相似文献   

5.
Unwinding of duplex DNA from the SV40 origin of replication by T antigen   总被引:49,自引:0,他引:49  
The T antigen specified by SV40 virus is the only viral-encoded protein required for replication of SV40 DNA. T antigen has two activities that appear to be essential for viral DNA replication: specific binding to duplex DNA at the origin of replication and helicase activity that unwinds the two DNA strands. As judged by electron microscopy, DNA unwinding is initiated at the origin of replication and proceeds bidirectionally. Either linear or circular DNA molecules containing the origin of replication are effective substrates; with closed circular DNA, a topoisomerase capable of removing positive superhelical turns is required for an efficient reaction. Presence of an origin sequence on duplex DNA and a single-strand DNA-binding protein appear to be the only requirements for T antigen to catalyze unwinding. This reaction mediated by T antigen defines a likely pathway to precise initiation of DNA replication: (i) the sequence-specific binding activity locates the origin sequence, (ii) the duplex DNA is unwound at this site, and (iii) the DNA polymerase and primase begin DNA replication. A similar pathway has been inferred for the localized initiation of DNA replication by bacteriophage lambda and by Escherichia coli in which a sequence-specific binding protein locates the origin and directs the DnaB helicase to this site. Observations with the SV40 system indicate that localized initiation of duplex DNA replication may be similar for prokaryotes and eukaryotes.  相似文献   

6.
7.
DNA replication in archaea and in eukaryotes share many similarities. We report the structure of an archaeal origin recognition complex protein, ORC1, bound to an origin recognition box, a DNA sequence that is found in multiple copies at replication origins. DNA binding is mediated principally by a C-terminal winged helix domain that inserts deeply into the major and minor grooves, widening them both. However, additional DNA contacts are made with the N-terminal AAA+ domain, which inserts into the minor groove at a characteristic G-rich sequence, inducing a 35 degrees bend in the duplex and providing directionality to the binding site. Both contact regions also induce substantial unwinding of the DNA. The structure provides insight into the initial step in assembly of a replication origin and recruitment of minichromosome maintenance (MCM) helicase to that origin.  相似文献   

8.
9.
DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.  相似文献   

10.
Nonhexameric helicases use adenosine triphosphate (ATP) to unzip base pairs in double-stranded nucleic acids (dsNAs). Studies have suggested that these helicases unzip dsNAs in single-base pair increments, consuming one ATP molecule per base pair, but direct evidence for this mechanism is lacking. We used optical tweezers to follow the unwinding of double-stranded RNA by the hepatitis C virus NS3 helicase. Single-base pair steps by NS3 were observed, along with nascent nucleotide release that was asynchronous with base pair opening. Asynchronous release of nascent nucleotides rationalizes various observations of its dsNA unwinding and may be used to coordinate the translocation speed of NS3 along the RNA during viral replication.  相似文献   

11.
The faithful duplication of genetic material depends on essential DNA replication initiation factors. Cellular initiators form higher-order assemblies on replication origins, using adenosine triphosphate (ATP) to locally remodel duplex DNA and facilitate proper loading of synthetic replisomal components. To better understand initiator function, we determined the 3.4 angstrom-resolution structure of an archaeal Cdc6/Orc1 heterodimer bound to origin DNA. The structure demonstrates that, in addition to conventional DNA binding elements, initiators use their AAA+ ATPase domains to recognize origin DNA. Together these interactions establish the polarity of initiator assembly on the origin and induce substantial distortions into origin DNA strands. Biochemical and comparative analyses indicate that AAA+/DNA contacts observed in the structure are dynamic and evolutionarily conserved, suggesting that the complex forms a core component of the basal initiation machinery.  相似文献   

12.
S phase of the cell cycle   总被引:21,自引:0,他引:21  
In each cell cycle the complex structure of the chromosome must be replicated accurately. In the last few years there have been major advances in understanding eukaryotic chromosome replication. Patterns of replication origins have been mapped accurately in yeast chromosomes. Cellular replication proteins have been identified by fractionating cell extracts that replicate viral DNA templates in vitro. Cell-free systems that initiate eukaryotic DNA replication in vitro have demonstrated the importance of complex nuclear architecture in the control of DNA replication. Although the events of S phase were relatively neglected for many years, knowledge of DNA replication is now advancing rapidly in step with other phases of the cell cycle.  相似文献   

13.
Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes   总被引:5,自引:0,他引:5  
Zou L  Elledge SJ 《Science (New York, N.Y.)》2003,300(5625):1542-1548
The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.  相似文献   

14.
Establishment of cohesion between sister chromatids is coupled to replication fork passage through an unknown mechanism. Here we report that TRF4, an evolutionarily conserved gene necessary for chromosome segregation, encodes a DNA polymerase with beta-polymerase-like properties. A double mutant in the redundant homologs, TRF4 and TRF5, is unable to complete S phase, whereas a trf4 single mutant completes a presumably defective S phase that results in a failure of cohesion between the replicated sister chromatids. This suggests that TRFs are a key link in the coordination between DNA replication and sister chromatid cohesion. Trf4 and Trf5 represent the fourth class of essential nuclear DNA polymerases (designated DNA polymerase kappa) in Saccharomyces cerevisiae and probably in all eukaryotes.  相似文献   

15.
Marker frequency analysis of DNA isolated from amino acid-starved Bacillus subtilis cells shows that most chromosomes have not completed replication to the terminus. This finding agrees with earlier results concerning replication after amino acid starvation in this organism. The results are not compatible with regulation of chromosome replication at the initiation step only, and they suggest that a second regulatory circuit controls replication under conditions of amino acid starvation.  相似文献   

16.
When DNA replication is inhibited during the synthesis (S) phase of the cell cycle, a signaling pathway (checkpoint) is activated that serves to prevent mitosis from initiating before completion of replication. This replication checkpoint acts by down-regulating the activity of the mitotic inducer cdc2-cyclin B. Here, we report the relation between chromatin structure and induction of the replication checkpoint. Chromatin was competent to initiate a checkpoint response only after the DNA was unwound and DNA polymerase alpha had been loaded. Checkpoint induction did not require new DNA synthesis on the unwound template strand but did require RNA primer synthesis by primase. These findings identify the RNA portion of the primer as an important component of the signal that activates the replication checkpoint.  相似文献   

17.
Damage to the vessel wall is a signal for endothelial migration and replication and for platelet release at the site of injury. Addition of transforming growth factor-beta (TGF-beta) purified from platelets to growing aortic endothelial cells inhibited [3H]thymidine incorporation in a concentration-dependent manner. A transient inhibition of DNA synthesis was also observed in response to wounding; cell migration and replication are inhibited during the first 24 hours after wounding. By 48 hours after wounding both TGF-beta-treated and -untreated cultures showed similar responses. Flow microfluorimetric analysis of cell cycle distribution indicated that after 24 hours of exposure to TGF-beta the cells were blocked from entering S phase, and the fraction of cells in G1 was increased. The inhibition of the initiation of regeneration by TGF-beta could allow time for recruitment of smooth muscle cells into the site of injury by other platelet components.  相似文献   

18.
19.
A novel nucleoprotein complex at a replication origin   总被引:17,自引:0,他引:17  
The viral protein p6, required for the protein-primed initiation of replication of Bacillus subtilis phage phi 29, forms a nucleoprotein complex at the viral replication origins that shows novel features. Deoxyribonuclease I and hydroxyl radical footprinting data, as well as the induction of positive supercoiling, support a model in which a DNA right-handed superhelix tightly wraps around a multimeric p6 core. The interaction occurs through the DNA minor groove. The activity of p6 not only requires the formation of the complex but also its correct positioning, indicating that the other proteins involved in the initiation of replication recognize, at a precise position, either the p6 core or the DNA conformational change induced by p6.  相似文献   

20.
Static and initiator protein-enhanced bending of DNA at a replication origin   总被引:32,自引:0,他引:32  
DNA bending has been suggested to play a role in the regulation of gene expression, initiation of DNA replication, DNA packaging, and the recognition of specific DNA sequences by proteins. It has recently been demonstrated that DNA bending can be sequence-directed. Bent DNA has also been observed as a consequence of sequence-specific binding of proteins to DNA. In this report DNA of plasmid pT181 is shown to contain a bend at the replication origin. Furthermore, this bend is enhanced by the binding of the pT181 replication initiator protein, RepC, to the origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号