首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Worsening water scarcity will increase pressure to use water more productively. In the classical view of irrigation research, some important aspects are often ignored: the total water balance approach, productivity of water, food security, and irrigation-system level analyses. These four approaches were evaluated using a detailed agro-hydrological model applied to an irrigation system in western Turkey. Emphasis was placed on the two dominant crops in the area: cotton and grapes. According to the classical point of view, the only result would be to irrigate the cotton with 1000 mm and the grapes with 800 mm. From the water productivity point of view, however, the water productivity of grapes appeared to be maximal without any irrigation; while for the cotton, irrigation at 600 mm maximizes water productivity. To minimize risks and increase yield stability, grapes perform better than cotton. Finally, from the irrigation system point of view, decisions can be made about the desirable cropping pattern and the distribution of water between crops. With limited amounts of water available for irrigation, a cropping pattern consisting mainly of grapes is desired; while with higher water availability, a mixture of cotton and grapes is preferable. The methods presented provide a clear methodology with which to achieve the most productive use of water. Received: 3 June 1999  相似文献   

2.
Characterizing water use and management in irrigated agriculture is a prerequisite for conserving agricultural water. We carried out a detailed analysis of irrigation performance by documenting the water use of about 840 parcels in an irrigation scheme (Genil–Cabra irrigation scheme; GCIS) located in Andalusia, southern Spain, from 1996 to 2000. Performance indicators based on the water balance detected two water-management strategies, depending on the crop: (1) cotton, garlic, maize and sugar beet had average ratios of measured irrigation supply to the simulated optimum demand (ARIS) ranging between 0.73 and 0.91 and (2) winter cereals, sunflower and olive had a much lower average ARIS (with a 4-year average of 0.28–0.39). We found a large variability in water usage among the management units in all cases. For instance, in cotton, even though the average ARIS was around 0.8, about 50% of the fields were not irrigated adequately (41% with deficit, 9% with excess). Water productivity (WP) in the GCIS was highest for the horticultural crops (garlic, olive; from 1.13 €/m3 to 6.52 €/m3) while it varied among the field crops, being lowest in maize (4-year average of 0.28 €/m3) and highest in sugar beet (4-year average of 1.04 €/m3). Large year-to-year variations in WP were observed in all crops, particularly in sunflower and garlic due either to fluctuating prices for garlic or to the effects of the 1998/1999 drought for sunflower. In fact, WP was lowest in all crops in that year, because seasonal irrigation depths were much higher than in the other 3 years. The combination of ARIS and other performance indicators allowed for determining performance levels and improvement measures. It was found that if more irrigation water is used in the GCIS, garlic and olive will be the crops that profit most from the additional supply. However, it was concluded that, given the wide range in water use and management encountered at the parcel level, improvement policies at the scheme level should always consider individual performance when designing measures for water conservation in irrigated agriculture.  相似文献   

3.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

4.
A field experiment was conducted for 2 years to investigate the effects of deficit irrigation, nitrogen and plant growth minerals on seed cotton yield, water productivity and yield response factor. The treatment comprises six levels of deficit irrigation (Etc 1.0, 0.9, 0.8, 0.7, 0.6 and 0.5) and four levels of nitrogen (80, 120, 160 and 200 kg N ha−1). These were treatments superimposed with and without plant growth mineral spray. Furrow irrigation treatments were also kept. Cotton variety Ankur-651 Bt was grown during 2006 and 2007 cotton season. Drip irrigation at 1.0 Etc saved 26.9% water and produced 43.1% higher seed cotton yield over conventional furrow irrigation (1.0 Etc). Imposing irrigation deficit of 0.8 Etc caused significant reduction in seed cotton yield to the tune of 9.3% of the maximum yield. Further increase in deficit irrigation from 0.7 Etc to 0.5 Etc significantly decreased seed cotton yield over its subsequent higher irrigation level. Decline in the yield under deficit irrigation was associated with reduction in number of bolls plant−1 and boll weight. Nitrogen at 200 kg ha−1 significantly increased mean seed cotton yield by 36.3% over 80 kg N ha−1. Seed cotton yield tended to increase linearly up to 200 kg N ha−1 with drip Etc 0.8 to drip Etc 1.0. With drip Etc 0.6-0.5, N up to 160 kg ha−1 provided the highest yield, thereafter it had declined. Foliar spray of plant growth mineral (PGM) brought about significant improvement in seed cotton yield by 14.1% over control. The water productivity ranged from 0.331 to 0.491 kg m−3 at different irrigation and N levels. On pooled basis, crop yield response factor of 0.87 was calculated at 20% irrigation deficit.  相似文献   

5.
High frequency irrigation with surface irrigation methods has been proposed as a means to increase cotton productivity in cases where drip irrigation or other pressurized systems are not economically justifiable. Field studies were conducted in 1993 and 1994 to evaluate the effects of surface irrigation frequency on the growth, lint yield and water use for a semi-determinate cotton cultivar in central Arizona. Cotton was grown in level basins on a sandy loam under three irrigation treatments defined as low frequency irrigation for the whole season (L), high frequency irrigation for the whole season (H), and low frequency irrigation until the initiation of rapid fruiting, high frequency during rapid fruiting, and low frequency after rapid fruiting (LHL). The treatments were governed by the percentage of allowable soil water depletion within the effective root zone, and the allowable depletion targets for low and high frequency irrigation were 55 and 30%, respectively. An irrigation scheduling program calculated the soil water depletion within the estimated cotton root depth on a daily basis for each treatment and was used to project the dates and amounts for treatment irrigations. In 1993, seven, 14, and 11 irrigations and in 1994 eight, 13 and 10 irrigations were given to the L, H, and LHL treatments, respectively. The total amount of water applied including rainfall differed among the treatments by 4% in 1993 and by 1% in 1994. Soil water measurements indicated that actual soil water depletion within the estimated cotton root depth immediately before treatment irrigations was close to the intended treatment allowable depletion targets for the majority of the growing season. Cotton growth and lint yields were maximized under the H treatment, and yields in this treatment averaged 15 and 21% more lint than the L treatment for the first and second seasons, respectively. The LHL treatment, although not as effective in increasing crop productivity as the H treatment, out yielded the low frequency treatment by an average of 10% in the two seasons. Crop evapotranspiration determined from the soil water balance was 8 and 9% higher for the H than the L treatment and 3 and 5% higher for the LHL than the L treatment in 1993 and 1994, respectively.  相似文献   

6.
Effective irrigation management in arid and semi-arid regions, like South Africa, could increase crop yield and thereby improve productivity of scarce fresh water resources. Experiments were conducted at the Hatfield Experimental Farm of the University of Pretoria, South Africa, from 2004 to 2006, to investigate the effect of soil water depletion regimes on rose-scented geranium (Pelargonium capitatum × P. radens cv. Rose) essential oil yield, essential oil composition and water-use efficiency in an open field and a rain shelter. Four maximum allowable soil water depletion levels (MAD), 20, 40, 60 and 80% of the plant available soil water (ASW) in the top 0.8 m root zone, were applied as treatments. Plant roots extracted most soil water from the top 0.4 m soil layer. Increasing the soil water depletion level to 60% and higher resulted in a significant reduction in herbage mass and essential oil yield. Water stress apparently increased the essential oil concentration (percentage oil on fresh herbage mass basis), but its contribution to total essential oil yield (kg/ha oil) was limited. Irrigation treatments did not affect essential oil composition. An increase in maximum allowable depletion level generally resulted in a decrease in leaf area and an increase in leaf to stem fresh mass ratio. Up to 28% of irrigation water could be saved by increasing maximum allowable depletion level of ASW from 20 to 40%, without a significant reduction in essential oil yield.  相似文献   

7.
In countries facing water scarcity, governmental water agencies try to transfer this constraint to farmers, e.g. by encouraging them to shift from traditional to localized irrigation methods to save water. However, water shortage is often much less a problem for farmers than soil limitations, their objective being mostly to maximize their income per cultivated area (US$ per hectare rather than per cubic meter of water). This discrepancy can only be solved if governments find ways to ‘transfer’ water scarcity, e.g. through economic incentives such as water pricing and/or subsidies. The aim of this study was to address the question of how to match the interest of both water managers and farmers. We aimed particularly at evaluating whether shifting to drip irrigation is a relevant way to save water and increase farmer's income.Our analysis was based on the interactive impacts among economic, environmental, technical and methodological parameters on the net productivity of two crops. We focused on the case study of Turkey considering two crops with contrasted gross productivity, tomato and cotton, characterized by partial vegetation cover during a large part of crop cycle. A 3D crop energy balance model was applied showing that crop transpiration is increased by up to 10% when shifting from furrow to drip irrigation. These results were used to correct the maximal evapotranspiration (ETm), estimated with the simple “crop coefficient” (Kc) method, and then used to enhance net productivity estimation both for furrow and drip irrigation.The results suggest that water managers and farmers share a common interest in adopting drip irrigation of tomato. Inversely, interests divergence may increase with low/medium value crops as cotton; the combination between water pricing and subsidies could be a way of agreement, but it would require subsidies for irrigation equipment of at least 40%, for low water tariffs, to 60%, for high water tariffs, to make the transfer from furrow to drip irrigation acceptable. This approach appeared generic enough to be applied for other economic, technical or environmental conditions, to modernize irrigation by harmonizing constraints faced by water managers and farmers.  相似文献   

8.
水肥耦合对棉花产量和氮累积利用的影响   总被引:2,自引:0,他引:2  
研究膜下滴灌施肥条件下,不同滴灌水量和滴灌施肥用量对棉花产量、氮素动态累积和氮素利用效率的影响。通过设置5个滴灌施肥水平和3个水分水平的完全组合处理以及一个不施肥对照处理,研究了水肥耦合对棉花干物质动态累积量、籽棉产量、氮动态累积量和氮素利用效率的影响。在收获后棉花地上部分器官质量从高到低依次为棉铃,茎秆和叶,而氮素主要集中在棉铃内部,其次是叶片,茎秆最少。灌溉水量显著增加了棉花叶片,茎秆和棉铃质量,从而增加了干物质量和籽棉产量,同时灌溉水量显著增加氮累积量和氮肥利用率。水肥对氮肥偏生产力,氮肥农学效率和氮肥生理利用率影响显著。灌溉水量降低至60%ETc会抑制棉花对氮素的吸收,使干物质量和籽棉产量下降,但可以显著提高氮肥利用率,氮肥偏生产力,氮肥农学效率。在本试验条件下,灌水量在380 mm,施肥量(N-P2O5-K2O)为(250-100-50)kg/hm2时,可以获得低于最高产量6%的籽棉产量,并节省15%的灌水量和16.7%施肥量。  相似文献   

9.
Decreasing in water availability for cotton production has forced researchers to focus on increasing water use efficiency by improving either new drought-tolerant cotton varieties or water management. A field trial was conducted to observe the effects of different drip irrigation regimes on water use efficiencies (WUE) and fiber quality parameters produced from N-84 cotton variety in the Aegean region of Turkey during 2004 and 2005. Treatments were designated as full irrigation (T100, which received 100% of the soil water depletion) and those that received 75, 50 and 25% of the amount received by treatment T100 on the same day (treatments T75; T50 and T25, respectively). The average seasonal water use values ranged from 265 to 753 mm and the average seed cotton yield varied from 2550 to 5760 kg ha−1. Largest average cotton yield was obtained from the full irrigation treatment (T100). WUE ranged from 0.77 kg m−3 in the T100 to 0.98 kg m−3 in the T25 in 2004 growing season and ranged from 0.76 kg m−3 in the T100 to 0.94 kg m−3 in the T25 in 2005 growing season. The largest irrigation water use efficiency (IWUE) was observed in the T25 (1.46 kg m−3), and the smallest IWUE was in the T100 treatment (0.81 kg m−3) in the experimental years. A yield response factor (ky) value of 0.78 was determined based on averages of two years. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use for treatments. Fiber qualities were influenced by drip irrigation levels in both years. The results revealed that well-irrigated treatments (T100) could be used for the semi-arid climatic conditions under no water shortage. Moreover, the results also demonstrated that irrigation of cotton with drip irrigation method at 75% level (T75) had significant benefits in terms of saved irrigation water and large WUE indicating a definitive advantage of deficit irrigation under limited water supply conditions. In an economic viewpoint, 25.0% saving in irrigation water (T75) resulted in 34.0% reduction in the net income. However, the net income of the T100 treatment is found to be reasonable in areas with no water shortage.  相似文献   

10.
Many farmers in West Central Nebraska have limited irrigation water supplies, and need to produce crops with less water. This study evaluated the impact of four water management strategies on grain yield of surface-irrigated corn (Zea mays L.) at North Platte, Nebraska. Treatments included: (1) no irrigation (DRYLAND), (2) one irrigation prior to tassel formation (EARLY), (3) one irrigation during the silk stage (LATE), and (4) irrigation following farmer’s practices (FARMER). The study included three wet years (1992, 1993, and 1996) and 2 years with average annual rainfall for the area (1994 and 1995). Significant yield differences among treatments, and a yield response to irrigation, were only observed during the 2 years with average rainfall. During all years, the FARMER treatment was over-irrigated and resulted in considerable water losses by runoff and deep percolation. Grain yield response to irrigation during the three wet years was insignificant among the treatments, but significant during the dry years. The results of this study suggest that inducing stress is not a good strategy for increasing crop water productivity (yield per unit ETd) for corn and point out the need to minimize irrigation water losses and improve irrigation scheduling.  相似文献   

11.
A 4-year field experiment was conducted in a semi-arid area to evaluate the response of each furrow and alternate furrow irrigation in wheat-cotton system using irrigation waters of different qualities in a calcareous soil. Irrigation was applied to each and alternate furrow of bed-planted wheat followed by ridge-planted cotton for comparison with standard check-basin method of irrigation to both the crops. These methods of irrigation were evaluated under three water qualities namely good quality canal water (CW), poor quality tube well water (TW) and pre-sowing irrigation to each crop with CW and all subsequent irrigations with TW (CWpsi + TW). The pooled results over 4 years revealed that wheat grain yield was not affected significantly with quality of irrigation water, but significant yield reduction was observed in alternate bed irrigation under canal water and tube well water irrigations. In cotton, poor quality tube well water significantly reduced the seed cotton yield in all the three methods of planting. The pre-sowing irrigation with canal water and all subsequent irrigations with tube well water improved the seed cotton yield when compared with tube well water alone. However, this yield increase was significant only in alternate furrow irrigation, and the yield obtained was on a par with yield under alternate furrow in CW. When compared to check-basin irrigation, each furrow and alternate furrow irrigation resulted in a saving of 30 and 49% of irrigation water in bed-planted wheat, whereas the corresponding savings in ridge-planted cotton were 20 and 42%, respectively. Reduced use of irrigation water under alternate furrow, without any significant reduction in yield, resulted in 28.1, 23.9 and 43.2% higher water use efficiency in wheat under CW, TW and CWpsi + TW, respectively. The corresponding increase under cotton was 8.2, 2.1 and 19.5%. The implementation of alternate furrow irrigation improved the water use efficiency without any loss in yield, thus reduced use of irrigation water especially under poor quality irrigation water with pre-sowing irrigation with canal water reduced the deteriorating effects on yield and soil under these calcareous soils.  相似文献   

12.
Summary Development of a ploughpan has been reported in Bangladesh for almost all ploughed soils which are puddled for transplanted rice cultivation. Field information on the water requirement of dryland crops such as wheat and the effects of loosening the dense layer on crop yield and water use efficiency are very limited. Field experiments were, therefore, conducted in the grey floodplain soil of Sonatala series (Aeric Haplaquept) to study the irrigation and tillage effects on the yield and water relations of wheat (Triticum aestivum L. cv. Sonalika). The split plot design experiment comprised four irrigation treatments in the mainplots viz. W0 = no irrigation, W1 = irrigation of 5 cm at 4 weeks after planting, W2-W1 + irrigation(s) of 5 cm each at irrigation water to cummulative pan evaporation (IW/CPE) ratio of 0.75 and W3- W1 + irrigation(s) of 5 cm eacht at IW/CPE ratio of 0.50. The sub-plot tillage depth treatments were: A-7.5 cm (traditional), B-15 cm, C-22.5 cm, D-22.5 cm practised in alternate wheat seasons. Measurements were made of grain and straw yield, soil water depletion and water expense efficiency.Irrigation had no effect on grain or straw yield. Tillage to 15 cm increased wheat yield by about 15% over traditional depth to ploughing. In general, deep tillage coupled with one irrigation at four weeks after planting produced the largest wheat yield.Soil water depletion (SWD) in the 0–90 cm profile was greatest in the treatment receiving two irrigations, one at 4 weeks and again at IW/CPE ratio of 0.50. The average SWD in this treatment was 113 in 1982–83 and 82 mm in 1983–84. Plots receiving traditional tillage (7.5 cm) had the greatest SWD. Total water expense were the greatest in treatments receiving three irrigations. The maximum water expense efficiency (WEE) of wheat was observed in the non-irrigated plots in 1982–83 and 1983–84, respectively. Deep tillage treatments, in general, had significantly greater WEE than those under traditional ploughing. Intensive irrigation and efficient soil and water management are important factors in enhancing crop productivity. The former not only permits judicious water use but also better utilization of other production factors thereby leading to increased crop yield which, in turn, helps stabilize the farming economy. The best way to meet increasing demand for water is to adopt efficient water management practices to increase water use efficiency.Irrigation should aim at restoring the soil water in the root zone to a level at which the crop can fully meet its evapo-transpiration (ET) requirement. The amount of water to be applied at each irrigation and how often a soil should be irrigated depend, however, on several factors such as the degree of soil water deficit before irrigation, soil types, crops, and climatic conditions (Chaudhury and Gupta 1980).Knowledge of movement of water through the soil is imperative to efficient water management and utilization. The presence of a dense pan impedes water movement into the sub-soil. As a result, the top soil becomes saturated by irrigation and sensitive dryland crops can fail as this plough layer impedes the penetration of roots into deeper soil layers and decreases water extraction. Crops growing in these soils often undergo severe water stress within 5–8 days after rainfall or irrigation (Lowry et al. 1970). Due to decrease rates of water flow, the lower soil layer may remain unsaturated and as a result, the recharge and soil water storage in the profile are considerably decreased (Sur et al. 1981).In Bangladesh, ploughpans develop to varying degree in almost all ploughed soils (Brammer 1980). They are particularly marked in soils which are puddled for transplanted rice cultivation where the pan is usually only 8–10 cm below the soil surface and 3–5 cm thick. Its presence is generally regarded as advantageous for cultivation of transplanted rice in that it prevents excessive deep percolation losses of water. But in the same soil this cultivation for a subsequent dryland crop would adversely affect yield. A slight modification of the plough layer could enable good yields of both rice and a dryland crop to be obtained in the same soil in different seasons (Brammer 1980). The sub soils have a good bearing capacity, both when wet and dry and the pan can easily be reformed, if desired, for cultivating transplanted rice after a dryland crop like wheat.Professor of Soil Science, Dhaka University, Dhaka, Bangladesh  相似文献   

13.
在对灌区来水、作物产量和作物需水量尺度分析的基础上,研究了灌区尺度作物水分利用效率指标,结果表明,冬小麦、夏玉米、棉花不同的生育期对采用哪种水分利用效率指标有直接影响;灌溉、降雨、地下水补给等资料较全时,3种作物都采用WUEET;无降雨资料时,冬小麦可选用WUEi近似代替WUEET;正常年份,夏玉米的WUEP0就是WUEET,干旱年份且需夏灌时,夏玉米WUEET由有效降雨量与灌溉量共同产生;棉花不能用WUEi或WUEP0中的任何一种指标反映其真实的水分利用效率,而只能用WUEET确定。  相似文献   

14.
In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots. During the experiment we also estimated the water productivity of teff taking into account long-term rainfall probability scenarios and different levels of farmers’ skills. During the experimental seasons (2008 and 2009), the average potential evapotranspiration of teff ranged from 260 to 317 mm. The total seasonal water requirement of teff was found to lower in contrast to the assumptions of regional agronomists that teff water requirement is comparable to that of wheat and barley (375 mm). The average single crop coefficient values (kc) for the initial, mid and late season stages of teff were 0.8-1, 0.95-1.1 and 0.4-0.5, respectively. The seasonal yield response to water stress was 1.04, which indicates that teff exhibits a moderately sensitive and linear response to water stress. The results suggest that teff is likely to give significantly higher grain yield when a nearly optimal water supply is provided. The study showed that, in locations where standard equipment is not affordably available, indicative (rough) crop evapotranspiration values can be obtained by using field plots and employing locally made lysimeters. The difference in economic water productivity (EWP) and the crop water productivity (CWP) for teff were assessed under very wet, wet, normal, dry and very dry scenarios. In addition two groups of farmers were evaluated, a moderately (I) and a highly skilled (II) group. The results showed that higher EWP and CWP were obtained under very wet scenario than very dry scenario. There was also a 22% increase in EWP and CWP under group II compared to group I farmers. The increase was due to a 22% reduction in unwanted water losses achieved through use of improved technology and better irrigation skills. Both EWP and CWP can be used to evaluate the pond irrigation water productivity (IWP) for a given climate, crop and soil type, and skill and technology level of the farmer. For special crops like teff extra criteria may be needed in order to properly evaluate the pond irrigation water productivity. During the experimental seasons, a high IWP for teff was attained when about 90% of the optimal water need of the crop was met. IWP can be used as an indicator as how much supplementary irrigation has to be applied in relation to the rainfall and other sources of water supply in order to assure greatest yield from a total area. However, the supplemental irrigation requirement of the crops may vary with season due to seasonal rainfall variability.  相似文献   

15.
Irrigation scheduling based on the daily historical crop evapotranspiration (ETh) data was theoretically and experimentally assessed for the major soil-grown greenhouse horticultural crops on the Almería coast in order to improve irrigation efficiency. Overall, the simulated seasonal ETh values for different crop cycles from 41 greenhouses were not significantly different from the corresponding values of real-time crop evapotranspiration (ETc). Additionally, for the main greenhouse crops on the Almería coast, the simulated values of the maximum cumulative soil water deficit in each of the 15 consecutive growth cycles (1988–2002) were determined using simple soil-water balances comparing daily ETh and ETc values to schedule irrigation. In most cases, no soil-water deficits affecting greenhouse crop productivity were detected, but the few cases found led us to also assess experimentally the use of ETh for irrigation scheduling of greenhouse horticultural crops. The response of five greenhouse crops to water applications scheduled with daily estimates of ETh and ETc was evaluated in a typical enarenado soil. In tomato, fruit yield did not differ statistically between irrigation treatments, but the spring green bean irrigated using the ETh data presented lower yield than that irrigated using the ETc data. In the remaining experiments, the irrigation-management method based on ETh data was modified to consider the standard deviation of the inter-annual greenhouse reference ET. No differences between irrigation treatments were found for productivity of pepper, zucchini and melon crops.  相似文献   

16.
A field experiment was conducted for 3 years to evaluate the effect of deficit irrigation under different soil management practices on biomass production, grain yield, yield components and water productivity of spring wheat (Triticum estivum L.). Soil management practices consisted of tillage (conventional and deep tillage) and Farmyard manure (0 and 10 t ha?1 FYM). Line source sprinkler laterals were used to generate one full- (ETm) and four deficit irrigation treatments that were 88, 75, 62 and 46 % of ETm, and designated as ETd1, ETd2, ETd3, and ETd4. Deep tillage significantly enhanced grain yield (14–18 %) and water productivity (1.27–1.34 kg m?3) over conventional tillage. Similarly, application of FYM at 10 t ha?1 significantly improved grain yield (10–13 %) and water productivity (1.25–1.31 kg m?3) in comparison with no FYM. Grain yield response to irrigation varied significantly (5,281–2,704 kg ha?1) due to differences in soil water contents. Water productivity varied from 1.05 to 1.34 kg m?3, among the treatments in 3 years. The interactive effect of irrigation × tillage practices and irrigation × FYM on grain yield was significant. Yield performance proved that deficit irrigation (ETd2) subjected to 75 % soil water deficit had the smallest yield decline with significant water saving would be the most appropriate irrigation level for wheat production in arid regions.  相似文献   

17.
A field experiment was conducted for 3 consecutive years to study the effects of water deficit on yield, water productivity and net return of wheat. Yield attributes were affected by deficit irrigation treatments although they are not statistically different in all cases. The grain and straw yields were significantly affected by treatments. The highest grain yield was obtained with the no-deficit treatment. Differences in grain and straw yield among the partial- (single- or two-stage deficit) and no-deficit treatments are small and statistically insignificant in most cases. The highest water productivity and productivity of irrigation water were obtained in the alternate deficit treatment (T7), where deficits were imposed at maximum tillering (jointing to shooting) and flowering to soft dough stages of growth period, followed by single irrigation at crown root initiation stage. Under both land- and water-limiting conditions, the alternate deficit strategy (T7) showed maximum net financial return. The results will be helpful in policy planning regarding irrigation management for maximizing net financial returns from limited land and water resources.  相似文献   

18.
We assessed the basin-scale crop water productivity (CWP) on staple grain crops, i.e. rice, wheat, maize, soybean, at major breadbasket basins of China over time periods of 1997-2004. The multiple-year average CWP was 1.06 kg m−3 for the selected basins (equivalents of 946 m3 water consumption in producing 1 metric ton of crop economic yield), varying from 0.97 kg m−3 to 1.18 kg m−3. Of all the water consumed in crop production, irrigation water contributes 28-41%, while soil-stored precipitation contributes 59-72%, confirming the crucial yet hitherto under-estimated role played by green water in total crop yield formation. The blue water depletion rate ranges from 0.48 to 0.87, with most of the basins exceeding 0.50, while the green water depletion rate from 0.39 to 0.85, with the majority of basins being beyond 0.60. We conclude that both blue and green water shortage will contribute to water scarcity in grain crop production. The mission of ensuring China's food security will entail multiple trade-offs among water security, ecosystem conservation, environment protection, and human development with increasing challenges in the years to come. However, increasing water productivity through research innovation and technological upgrades at river basin scale is a key to mitigating water stress that may be caused by increasing food production in the coming decades.  相似文献   

19.
Field studies were conducted to determine the yield performance of a semi-dwarf high yielding variety of wheat (Triticum aestivum L., cv. ‘Sonalika’) in response to irrigation provided at various critical stages of growth. Determination of an irrigation schedule for most efficient water management was attempted. The study, conducted on a calcareous brown flood plain soil, comprised a randomized block design experiment with eight irrigation treatments applied at critical growth stages.The yield of wheat was the highest and the irrigation efficiency maximum, when two irrigations, totalling 9.5 cm, were given at tillering and booting stages. The quantity of irrigation water applied was calculated on the basis of deficit from field capacity level of soil water content. The lowest grain yields were obtained in treatments receiving either no irrigation or only one irrigation at the grain-filling stage. The percent increase over control (no irrigation) in grain yield, due to various irrigation treatments, ranged from 21 to 92%. The data revealed that the depletion of soil water increased as the amount of irrigation water increased.The results indicate that the present yield levels of wheat in Bangladesh can easily be increased by 50–100% by irrigating with only one-third to one-half of the water currently being used, provided it is scheduled and managed efficiently, keeping in view the need of the crops as well as the soils.  相似文献   

20.
Experiments were undertaken at CCS Haryana Agricultural University Farm, Sirsa (India) to estimate the optimum irrigation schedule for cotton resulting in minimum percolation losses. The sprinkler line source technique was adopted for creating various irrigation regimes at different crop growth stages. The SWASALT (Simulation of Water And SALT) model after calibration and validation provided water balance components. The wa-ter management response indicators (WMRI's) such as transpiration efficiency Et/(Irr + P), relative transpiration Et/Etp, evapotranspiration efficiency ET/(Irr + P), soil moisture storage change ΔW/Wint (deficit/excess) and percolation loss Perc/(Irr. + P) were evaluated using water balance components as estimated by the simulation study. Under limited water supply conditions, the optimum irrigation depth was found to be 57 mm at crop growth stages with pre-sowing and 1st irrigation of 120 mm and 80 mm respectively for sandy clay loam underlain by sandy loam soil (Type I). The corresponding values of relative transpiration, transpiration efficiency and evapotranspiration efficiency were 0.65, 0.65 and 0.89 respectively. The crop yield varied linearly with increasing irrigation depth which was evident from increase in relative transpiration with increasing depth of water application. However, increased depth of irrigation resulted in less moisture utilisation from soil storage (20% depletion at 40 mm depth and 4.4% moisture built up at 100 mm depth). The extended simulation study for sandy soil underlain by loamy sand (Type II) indicated that two pre-sowing irrigations each 40 mm and subsequent irrigations of 40 mm at an interval of 20 days depending upon rainfall were optimum. This irrigation scenario resulted in zero percolation loss accompanied by 74% relative transpiration and 14 per cent soil moisture depletion. Received: 20 November 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号