首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
 We have estimated the production of water-soluble B vitamins by plant growth-promoting rhizobacterium Pseudomonas fluorescens strain 267 in a minimal medium with different C sources and at different pH values. In the minimal medium, strain 267 produced large amounts of niacin (0.92 μg ml–1) and pantothenic acid (0.75 μg ml–1), but also other vitamins such as biotin, thiamine, cobalamine and pyridoxine. The production of B vitamins was dependent on the C source and pH of the growth medium. By random Tn5 mutagenesis, thiamine and niacin auxotrophs were isolated from P. fluorescens strain 267 and mutants were used to evaluate the vitamin production on colonization of clover roots under controlled conditions. Red clover root colonization decreased by about 1 order of magnitude in the case of the niacin auxotroph. The vitamin auxotrophs of P. fluorescens in a mixed inoculation of clover with R. leguminosarum bv. trifolii strain 24.1 showed no plant growth-promotion activity. Received: 23 May 2000  相似文献   

2.
Monosodium glutamate wastewater (MSGW) was used as a culture medium for Azospirillum rugosum strain IMMIB AFH-6 inoculant (In) by optimizing the dilution at 2.5% and pH 7.0 ± 0.1. A. rugosum growth studies were carried out in shake flasks and subsequently tested for plant growth promotion by seed germination bioassay and greenhouse pot experiments. The highest colony-forming units (cfu) 8.58 and 8.87 log cfu mL−1, respectively, at 48 h of growth were recorded in MSGW and MSGW with yeast extract 0.04%. Seed bioassay results revealed that A. rugosum grown on MSGW stimulated the root and shoot elongation of maize (Zea mays L.) and pai tsai (Brassica chinensis L.). Pai tsai recorded significantly higher dry matter production when treated with A. rugosum and chemical fertilizers than control. The MSGW is a suitable culture medium for A. rugosum growth, and it is comparable to commercial media when tested for agricultural production.  相似文献   

3.
Water quantity and quality were monitored for 3 years in a 360-m-long wetland with riparian fences and plants in a pastoral dairy farming catchment. Concentrations of total nitrogen (TN), total phosphorus (TP) and Escherichia coli were 210–75,200 g N m−3, 12–58,200 g P m−3 and 2–20,000 most probable number (MPN)/100 ml, respectively. Average retentions (±standard error) for the wetland over 3 years were 5 ± 1%, 93 ± 13% and 65 ± 9% for TN, TP and E. coli, respectively. Retentions for nitrate–N, ammonium–N, filterable reactive P and particulate C were respectively −29 ± 5%, 32 ± 10%, −53 ± 24% and 96 ± 19%. Aerobic conditions within the wetland supported nitrification but not denitrification and it is likely that there was a high conversion rate from dissolved inputs of N and P in groundwater, to particulate N and P and refractory dissolved forms in the wetland. The wetland was notable for its capacity to promote the formation of particulate forms and retain them or to provide conditions suitable for retention (e.g. binding of phosphate to cations). Nitrogen retention was generally low because about 60% was in dissolved forms (DON and NOX–N) that were not readily trapped or removed. Specific yields for N, P and E. coli were c. 10–11 kg N ha−1 year−1, 0.2 kg P ha−1 year−1 and ≤109 MPN ha−1 year−1, respectively, and generally much less than ranges for typical dairy pasture catchments in New Zealand. Further mitigation of catchment runoff losses might be achieved if the upland wetland was coupled with a downslope wetland in which anoxic conditions would promote denitrification.  相似文献   

4.
Plant growth-promoting rhizobacteria (PGPR) play an important role in the biodegradation of natural and xenobiotic organic compounds in soil. They can also alter heavy metal bioavailability and contribute to phytoremediation in the presence or absence of synthetic metal chelating agents. In this study, the inhibitory effect of Cd2+ and Ni2+ at different concentrations of Ca2+ and Mg2+, and the influence of the widely used chelator EDTA on growth of the PGPR Pseudomonas brassicacearum in a mineral salt medium with a mixture of four main plant exudates (glucose, fructose, citrate, succinate) was investigated. Therefore, the bacteriostatic effect of Cd2+, Ni2+ and EDTA on the maximum specific growth rate and the determination of EC50 values was used to quantify inhibitory impact. At high concentrations of Ca2+ (800 μmol L-1) and Mg2+ (1,250 μmol L-1), only a small inhibitory effect of Cd2+ and Ni2+ on growth of P. brassicacearum was observed (EC50 Cd2+, 18,849 ± 80 μmol L−1; EC50 Ni2+, 3,578 ± 1,002 μmol L−1). The inhibition was much greater at low concentrations of Ca2+ (25 μmol L−1) and Mg2+ (100 μmol L−1) (EC50 Cd2+, 85 ± 0.5 μmol L−1 and EC Ni2+, 62 ± 1.8 μmol L−1). For the chosen model system, a competitive effect of the ions Cd2+ and Ca2+ on the one hand and Ni2+ and Mg2+ on the other hand can be deduced. However, the toxicity of both, Cd2+ and Ni2+, could be significantly reduced by addition of EDTA, but if this chelating agent was added in stoichiometric excess to the cations, it also exhibited an inhibitory effect on growth of P. brassicacearum.  相似文献   

5.
Perchlorate (ClO4), a thyroid hormone disruptor, is both naturally occurring and a man-made contaminant increasingly found in a variety of terrestrial environments. The environmental presence of ClO4 is considered to be the result of atmospheric formation and deposition processes. The ultimate processes, particularly heterogeneous-based reactions, leading to natural ClO4 formation are not well understood. Oxidation of chlorine species by an energetic source such as lightning is considered to be one of the potential heterogeneous sources of natural ClO4. Currently, there is very little information available on lightning-induced ClO4. We designed a laboratory electrical discharge reactor capable of evaluating ClO4 formation by the oxidation of “dry” sodium chloride (NaCl) aerosols (relative humidity (RH) <70%) in electrical discharge plasma at voltages and energies up to 24 kV and 21 kJ, respectively. Similar to other non-electrochemical ClO4 production processes, the amount of ClO4 produced (0.5–4.8 μg) was 3 orders of magnitude lower than the input Cl (7.1–60.1 mg). The amount of ClO4 generated increased with peak voltage (V) and theoretical maximum discharge energy with ΔClO4/ΔV = 0.28 × 10−3 μg V−1 (R 2 = 0.94) and ΔClO4/ΔE = 0.44 × 10−3 μg J−1 (R 2 = 0.83). The total ClO4 generated decreased with an increase in relative humidity from 2.8 ± 0.1 μg (RH ∼46%) to 0.9 ± 0.1 μg (RH ∼62%) indicating that the presence of moisture inhibits the formation of ClO4. Additional modifications to the reactor support the hypothesis of ClO4 formation due to the action of plasma on Cl aerosols as opposed to direct oxidation on the surface of the electrodes. Finally, the contribution of lightning-induced ClO4 in North America is calculated to have a wide range from 0.006 × 105 to 5 × 105 kg/year and is within the range of the measured ClO4 depositional flux in precipitation samples obtained across the USA (0.09 × 105–1.2 × 105 kg/y).  相似文献   

6.
 Phosphorus application decreased the sporulation frequency and number of sporocarps per plant in all the three Azolla species and 21 A. pinnata strains evaluated in this study. The number of megasporocarps tended to be more depressed than the number of microsporocarps. Nevertheless, the sporulation of A. caroliniana was less sensitive to P than that of A. pinnata and A. microphylla. Its sporulation frequency in the mineral medium did not decrease at 2.5 μg P ml–1 and remained unaffected between 5 and 20 μg P ml–1. The sporulation frequency and sporocarp number in this species in the soil culture also were not significantly affected by an increase in the dose of P from 10.7 to 21.4 or 21.4 to 32.1 mg pot–1. Large variations in the degree of inhibition of sporulation due to the application of P (21.4 mg pot–1) also occurred among the A. pinnata strains tested. Received: 20 October 1999  相似文献   

7.
The photochemical degradation of two widely used organophosphorothioate insecticides, fenitrothion and diazinon, was investigated in aqueous solutions containing three separate dissolved constituents commonly found in natural waters (NO3, CO32− and dissolved organic matter (DOC)). The effect of these constituents on pesticide photodegradation was compared to degradation in “constituent-free” pure water. Solutions were irradiated in an Atlas solar simulator fitted with a UV-filtered Xenon arc lamp with light irradiances (500 W m−2) measured using a spectral radiometer to allow derivation of quantum yields of degradation. Fenitrothion absorbs light within the solar UV range (λ, 295–400 nm) and underwent direct photolysis in pure water whereas diazinon (λ max ∼250 nm) showed no observable loss over the experimental period. However, photodegradation conforming to pseudo-first-order kinetics was observed for both chemicals in the presence of the dissolved constituents (at concentrations typically observed in natural waters), with the rates of photodecay observed in the order of NO3 > CO32− ≅ DOC, with the highest rates observed in the 3 mM NO3 solutions (k Fen = 0.155 ± 0.041 h−1; k Dia = 0.084 ± 0.0007 h−1). For diazinon this rate was comparable to fenitrothion photolysis in pure water (k fen 0.072 ± 0.0078 h−1), highlighting the importance of NO3 on a non-photolabile pesticide, with indirect photodegradation probably attributable to the light-induced release of aqueous hydroxyl radicals (·OH) from NO3. Suwannee river fulvic acid (serving as DOC) did not statistically affect the rate of photodecay for fenitrothion relative to its photolysis in MilliQ water, although measured rates in DOC solutions were slightly lower. However, measurable rates of photodecay were apparent for diazinon in the DOC solutions, indicating that fulvic acid, possibly in the form of “excited” triplet-state-DOC plays a role in diazinon transformation. Hydrolysis was not apparent for fenitrothion (in buffered solutions of pH 5–9) but was notable for diazinon at the lower pHs of 5 and 3 (k Dia-hyd 0.3414 h−1 at pH 3 and 0.228 h−1 at pH 5), resulting in the formation of the degradate, 2-isopropyl–6-methyl–4-pyrimidinol. This work highlights the importance of dissolved constituents on abiotic photodegradation of pesticides and it is recommended that these constituents be incorporated into laboratory-based fate-testing regimes.  相似文献   

8.
 Thirty-five Azospirillum strains (13 strains from plant roots and 22 strains from soils) were isolated from Ishigaki island, Japan, which has a subtropical climate. These strains were different from each other according to polymerase-chain-reaction band patterns obtained by using a random primer (OPT-08). Two Azospirillum strains (AZ43 and AZ92-2) were also examined for use in further experiments. Inoculation of lowland rice with these strains enhanced early growth of rice to various degrees. Inoculation of strains VIII.P1-2, AZ92-2, V.S2-2, and V.P5 in sterilized soil yielded higher shoot dry weights than the application of 90 μg N g–1 soil without inoculation. Only inoculation with strains AZ92-2 and VIII.P1-2 caused higher N uptake than the application of 90 μg N g–1 soil. Three strains were selected for the next experiment based on the results of their effect on the early growth of rice. An investigation was conducted to determine the ability of two indigenous Azospirillum strains (V.S2-2 and VIII.P1-2) and one stock strain (AZ92-2) to promote growth and nutrient-uptake of lowland rice in unsterilized soil under several levels of N application (0, 80, 160, and 240 mg N pot–1). Inoculation with these strains without N application increased shoot dry weight by 12–15% compared to the uninoculated treatment. Inoculation with Azospirillum V.S2-2 together with the application of 160 mg N pot–1 resulted in a shoot dry weight as high as that obtained in the treatment with 240 mg N pot–1 without inoculation. Thus, in this former case, the amount of N applied could be reduced by 80 mg pot–1 due to the effect of the microbial inoculum without a significant change in the high, targeted, yield.  相似文献   

9.
The response of faba bean to the application of four rates of gypsum (0, 2.5, 5.0, 10.0 t ha−1) to a non-saline, alkaline sodic soil was measured in terms of grain yield, dry matter (DM) production, N accumulation and the proportional dependence of the legume on symbiotic N2 fixation (P atm). A yield-independent, time-integrated 15N-dilution model was used to estimate symbiotic dependence. A significant decrease in the exchangeable sodium percentage and significant increases in exchangeable Ca++ and the Ca++:Mg++ ratio in the 0–10-cm soil layer were measured 30 months after application of 10 t ha−1 gypsum. Despite low and erratic rainfall during crop growth, faba bean DM and N uptake responded positively to gypsum application. The symbiotic dependence of the legume at physiological maturity was little affected by sodicity (P atm = 0.74 at zero gypsum and 0.81–0.82 at 2.5–10 t ha−1 gypsum). The increase in fixed N due to gypsum application was mainly due to increases in legume DM and total N uptake. At 10 t ha−1 of gypsum, faba bean fixed more than 200 kg N ha−1 in above-ground biomass.  相似文献   

10.
In this study, the effects of 1 h aeration, nitrogen gas N2(g) sparging (15 and 30 min) and increasing ferric ions (Fe+3) as FeSO4 (10, 20 and 50 mg L−1) and Fe3O4 nanoparticles (1, 2 and 4 g L−1) concentrations on three less hydrophobic and three more hydrophobic polycyclic aromatic hydrocarbons (PAHs) and toxicity removals from a petrochemical industry in Izmir (Turkey) were investigated in a sonicator with a power of 650 W and an ultrasound frequency of 35 kHz; 1 h aeration increased the yields in benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene PAHs (less hydrophobic) from 62% to 67% to around 95–97% after 150 min sonication at 60°C. However, 1 h aeration did not contribute to the yields of more hydrophobic PAHs (indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene). The maximum yields were obtained at acidic and alkaline pH for more and less hydrophobic PAHs, respectively, after 60 and 120 min sonication at 30°C; 30 min N2(g) sparging, 50 mg L−1 Fe+3 increased the yields of less hydropobic PAHs after 150 min sonication at 60°C. Two milligrams per liter of Fe3O4 nanoparticles increased both less (87–88%) and more (96–98%) hydrophobic PAH yields. The Daphnia magna acute toxicity test showed that the toxicity decreased significantly with an hour aeration, 30 min N2(g) sparging, 50 mg L−1 Fe+3 and 2 g L−1 Fe3O4 nanoparticles at 60°C after 120 and 150 min sonications. Vibrio fischeri was found to be more resistant to the sonicated samples than D. magna. Significant correlations were found between the physicochemical properties of sonicated PAHs and acute toxicities both organisms.  相似文献   

11.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

12.
Temporal depositional rates are important in order to understand the production and occurrence of perchlorate (ClO4) as limited information exists regarding the impact of anthropogenic production or atmospheric pollution on ClO4 deposition. Perchlorate concentrations in discrete ice core samples from the Eclipse Icefield (Yukon Territory, Canada) and Upper Fremont Glacier (Wyoming, USA) were analyzed using ion chromatography tandem mass spectrometry to evaluate temporal changes in the deposition of ClO4 in North America. The ice core samples cover a time period from 1726 to 1993 and 1970 to 2002 for the Upper Fremont Glacier (UFG) and Eclipse ice cores, respectively. The average ClO4 concentration in the Eclipse ice core for the time period from 1970 to 1973 was 0.6 ± 0.3 ng L−1, with higher values of 2.3 ± 1.7 and 2.2 ± 2.0 ng L−1 for the periods 1982–1986 and 1999–2002, respectively. All pre-1980 ice core samples from the UFG had ClO4 concentrations <0.2 ng L−1, and the post-1980 samples ranged from <0.2 ng L−1 to a maximum of 2.6 ng L−1 for the year 1992. A significant positive correlation (R = 0.75, N = 15, p < 0.001) of ClO4 with SO42− was found for the annual UFG ice core layers and of ClO4 with SO42− and NO3 in sub-annual Eclipse ice samples (R > 0.3, N = 121, p < 0.002). The estimated yearly ClO4 depositional flux for the Eclipse ice core ranged from 0.6 (1970) to 4.7 μg m−2 year−1 (1982) and the UFG from <0.1 (pre-1980) to 1.4 μg m−2 year−1 (1992). There was no consistent seasonal variation in the ClO4 depositional flux for the Eclipse ice core, in contrast to a previous study on the Arctic region. The presence of ClO4 in these ice cores might correspond to an intermittent source such as volcanic eruptions and/or any anthropogenic forcing that may directly or indirectly aid in atmospheric ClO4 formation.  相似文献   

13.
Salt-tolerant isolates Bacillus pumilus, Pseudomonas mendocina, Arthrobacter sp., Halomonas sp., and Nitrinicola lacisaponensis isolated from high saline habitats exhibited plant growth-promoting traits like P solubilization and indole acetic acid (IAA), siderophore, and ammonia production. These isolates were inoculated in wheat to assess microbe-mediated responses and plant growth promotion in salt affected soil. Maximum shoot and root length (33.8 and 13.6 cm) and shoot and root biomass (2.73 and 4.48 g dry weight) was recorded in plants inoculated with B. pumilus after 30 days. Total chlorophyll content was maximum in the leaves of the plants treated with Halomonas sp. (24.22 mg g−1 dry weight) followed by B. pumilus (23.41 mg g−1 dry weight) as compared to control (18.21 mg g−1 dry weight) after 30 days. Total protein content was maximum in Arthrobacter sp. inoculated plant leaves (3.19 mg g−1 dry weight) followed by B. pumilus (2.47 mg g−1 dry weight) as compared to control (2.15 mg g−1 dry weight) after 30 days. Total carotenoid content was maximum in plants inoculated with Halomonas sp. (1,075.45 and 1,113.29 μg g−1 dry weight) in comparison to control (837.32 and 885.85 μg g−1 dry weight) after 15 and 30 days. Inoculation of bacterial isolates increased presence of individual phenolics (gallic, caffeic, syringic, vanillic, ferulic, and cinnamic acids) and flavonoid quercetin in the rhizosphere soil. The concentration of IAA in rhizosphere soil and root exudates was also higher in all treatments than in control. Accumulation of phenolics and quercetin in the plants played a cumulative synergistic role that supported enhanced plant growth promotion of wheat in the stressed soil.  相似文献   

14.
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation.  相似文献   

15.
Bradyrhizobium japonicum strain CB 1809 was recently chosen to replace strain WB 1 in commercial soybean [Glycine max (L.) Merr.] inoculants in South Africa, the selection criterion being N2-fixing effectiveness. Nodulation competitiveness is an additional characteristic required of inoculants and was determined for CB 1809 and WB 1 as well as two other strains, USDA 110 and a Brazilian strain 965, using the gusA marker gene to identify strains. Initial experiments with plants grown in sterile sand showed that the competitive index of strain WB 1 was less than that of the other strains. Further comparisons used plants grown in five soils containing established populations of B. japonicum. When strains were applied in peat inoculum to seed at a rate of 1,000 cells per seed in a soil containing 300 rhizobia g–1, significant differences in nodule occupancy were detected and strains ranked in the order 965>CB 1809>USDA 110>WB 1. The remaining four soils each contained about 106 rhizobia g–1 and 5×106 cells were applied per seed. Nodule occupancy by inoculant strains ranged from 22% to 81% between soils. In this experiment, WB 1 was consistently the poorest performer and its competitiveness was significantly less than CB 1809. The competition results supported the recent decision to replace WB 1 with CB 1809 in commercial inoculants. Although WB 1 had been used in inoculants over a period of 19 years, this strain was detected in only one soil, where it comprised 8% of isolates. In contrast, a substantial proportion (32–78%) of isolates from the soils corresponded serologically to a former inoculant strain WB 66, which had been discontinued in 1966. This illustrates the difficulty of replacing a resident population with an introduced strain. The effect of naturalized populations on the establishment of CB 1809 in South African soils will need monitoring Received: 23 November 1999  相似文献   

16.
 Phosphate-solubilizing strains of A. chroococcum isolated from the wheat rhizosphere were evaluated for their ability to solubilize tricalcium phosphate (TCP), Mussoorie rock phosphate (MRP) and also for indole-acetic-acid (IAA) production. Strains were selected on the basis of the clearance zone on solid agar media of Pikovskaya and Jensen's media containing TCP, and phosphate solubilization in Jensen's liquid culture medium containing both TCP and MRP. Mutants of the best phosphate-solubilizing (TCP 1.52 μg ml–1 MRP 0.19 μg ml–1), IAA-producing A. chroococum strain P-4, were developed and screened for P solubilization and phytohormone production. Five mutants solubilized more P (in the range of 1.5–1.7 μg/ml–1 of TCP and 0.19–0.22 μg ml–1 of MRP) than the parent strains. In vitro growth emergence studies of three wheat varieties, viz. C-306, WH-542 and HD-2009, showed better performance with phosphate-solubilizing mutants than with the parent strain. Received: 15 October 1997  相似文献   

17.
Since swine wastewater is used by farmers for soil fertilization, evaluation of toxic compounds or micro-contaminants of separate streams is required. This paper uses the toxicity identification evaluation (TIE) procedure for the physicochemical and ecotoxicological characterization of swine wastewater. To distinguish the most important toxic compounds, a physicochemical characterization and phase I-TIE procedure were performed. The acute toxic effect of swine wastewater and treated fractions (phase II-TIE) were evaluated using Daphnia magna determining 48-h LC50. Results show a high level of conductivity (23.5 μS cm−1), which is explained as due to the concentration of ions, such as ammonium (NH4+–N 1.6 g L−1), sulfate (SO42− 397.3 mg L−1), and chlorine (Cl 1,230.0 mg L−1). The acute toxicity of the swine wastewater was evaluated on D. magna (48-h LC50 = 3.4%). Results of the different water treatments indicate that anionic exchange treatments could reduce 22.5% of swine wastewater’s acute toxicity by reducing chlorine (to around 51%) and conductivity (8.5%). On the other hand, cationic exchange treatment increased acute toxicity on D. magna (% RT = −624.4%), by reducing NH4+–N (around 100%) and total nitrogen (95.5%). This finding suggests that part of the toxicity comes from anionic compounds, such as chlorine.  相似文献   

18.
Denitrification plays an important role in N-cycling. However, information on the rates of denitrification from horticultural growing media is rare in literature. In this study, the effects of pH, N, C, and moisture contents on denitrification were investigated using four moderately decomposed peat types (oligotrophic, mesotrophic, eutrophic, and transitional). Basal and potential denitrification rates (20°C, 18 h) from the unlimed peat samples varied widely from 2.0 to 21.8 and from 118.9 to 306.6 μg (N2O + N2)–N L−1 dry peat h−1, respectively, with the highest rates from the eutrophic peat and the lowest from the transitional one. Both basal and potential denitrification rates were substantially increased by 3.6–14- and 1.4–2.3-fold, respectively, when the initial pH (4.3–4.8) was raised to 5.9–6.5 units. Emissions of (N2O + N2)–N from oligotrophic, mesotrophic, and transitional peats were markedly increased by the addition of 0.15 g NO3–N L−1 dry peat but further additions had no effect. Denitrification rates were increased by increasing glucose concentration suggesting that the activity of denitrifiers in all peat types was limited by the low availability of easily decomposable C source. Increasing moisture contents of all peats from 40 to 50% water-filled pore space (WFPS) did not significantly (p > 0.05) increase (N2O + N2)–N emissions. However, a positive effect was observed when the moisture contents were increased from 60% to 70% WFPS in the eutrophic peat, from 70% to 80% in the transitional, from 80% to 90% in the oligotrophic and from 70% to 90% in the mesotrophic peat. It can be concluded that liming, N-fertilization, availability of easily decomposable C, and moist condition above 60% WFPS could encourage denitrification from peats although the rates are greatly influenced by the peat-forming environments (eutrophic > mesotrophic > oligotrophic > transitional types).  相似文献   

19.
Consumer demand for cleaned squid generates a substantial amount of waste that must be properly disposed of, creating an economic burden on processors. A potential solution to this problem involves converting squid by-products into an organic fertilizer, for which there is growing demand. Because fertilizer application to lawns can increase the risk of nutrient contamination of groundwater, we quantified leaching of NO3–N and PO4–P from perennial ryegrass turf (Lolium perenne L.) amended with two types of fertilizer: squid-based (SQ) and synthetic (SY). Field plots were established on an Enfield silt loam, and liquid (L) and granular (G) fertilizer formulations of squid and synthetic fertilizers were applied at 0, 48, 146, and 292 kg N ha−1 year−1. Levels of NO3–N and PO4–P in soil pore water from a depth of 60 cm were determined periodically during the growing season in 2008 and 2009. Pore water NO3–N levels were not significantly different among fertilizer type or formulation within an application rate throughout the course of the study. The concentration of NO3–N remained below the maximum contaminant level (MCL) of 10 mg L−1 until midSeptember 2009, when values above the MCL were observed for SQG at all application rates, and for SYL at the high application rate. Annual mass losses of NO3–N were below the estimated inputs (10 kg N ha−1 year−1) from atmospheric deposition except for the SQG and SYL treatments applied at 292 kg N ha−1 year−1, which had losses of 13.2 and 14.9 kg N ha−1 year−1, respectively. Pore water PO4–P levels ranged from 0 to 1.5 mg P L−1 and were not significantly different among fertilizer type or formulation within an application rate. Our results indicate that N and P losses from turf amended with squid-based fertilizer do not differ from those amended with synthetic fertilizers or unfertilized turf. Although organic in nature, squid-based fertilizer does not appear to be more—or less—environmentally benign than synthetic fertilizers.  相似文献   

20.
Pot experiments were carried out over two growing periods to assay the biocontrol efficacy and rhizosphere colonization of Trichoderma harzianum SQR-T037 (SQR-T037) applied as SQR-T037 conidia suspension (TCS), SQR-T037 conidia suspension blended with organic fertilizer (TBF), or SQR-T037 fermented organic fertilizer (TFF). Each formulation had three T. harzianum numbers. In two experiments, Percent Disease Indexes (PDIs) decreased with the increase of SQR-T037 number added to soils. The TFF treatment consistently exhibited the lowest PDIs at same amendment rate of SQR-T037 and 0–8.9%, 25.6–78.9%, and 4.4–50.0% of PDIs were found in TFF, TCS, and TBF treatment, respectively. Soils treated with TFF showed the highest SQR-T037 population in rhizosphere and bulk soil. Decrease of Fusarium oxysporum population in both bulk and rhizosphere soils occurred in the treatment SQR-T037 at 105 and 106 cfug−1 soil rate. The TFF treatment at the SQR-T037 rate of 103 cfug−1 soil significantly (p < 0.05) increased SQR-T037 population within the rhizoplane but had no effect on F. oxysporum population when compared to TCS and TBF. Generally, TFF treatments were superior to TCS and TBF treatments on disease control by sustaining colonization of SQR-T037 and decreasing F. oxysporum abundance in the rhizosphere soil. We propose that TFF treatment at SQR-T037 rate of 107 cfug−1 (i.e., 105 cfug−1 soil after applied to soil) was the best formulation for controlling Fusarium wilt of cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号