首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
With the increasing demand of fabrics for special usage areas, more complex woven structures are designed and from the structural point of view, especially the parameters which affect the comfort properties become more important. This paper reports the effect of structural parameters of double layered woven fabrics, such as number of interlacing picks, period of interlacing and number of weft skips on the basic comfort properties of the fabrics (thickness, air permeability and wicking properties) produced according to Taguchi orthogonal array design. The investigated parameters were determined before and after finishing treatment. According to the results, it is found that period of interlacing has an important effect on the thickness and air permeability of both untreated and treated fabrics whereas in terms of drying coefficient, the effect of the investigated parameters is not statistically important.  相似文献   

2.
Warp and weft knitted fabrics comprising polyethylene terephthalate/Co-PET sea-island bicomponent fibers were fabricated in this study. The knitted fabrics were treated in alkali solution to develop knitted fabrics composed of nano-scale filaments. The structural change and water transport behavior of the alkali-treated knitted fabrics were then compared. Results revealed that the filament diameters decreased from 20 µm to 850 nm after alkali treatment. The porosities of warp and weft knitted fabrics decreased by 4.8 % and 10.1 %, respectively, whereas their area densities increased by 68.8 % and 67.2 %, respectively. The wicking height and wicking rate of both types of fabric composed of microfilaments increased with prolonged alkali-treatment time. However, the water absorption properties such as absorption capacity and absorption rate of the knitted fabrics composed of nano-scale filaments significantly increased because of their low porosity and high area density.  相似文献   

3.
Moisture management behavior is a vital factor in evaluating thermal and physiological comfort of functional textiles. This research work studies functional 3 dimensional (3D) warp knitted spacer fabrics containing high-wicking materials characterized by their profiled cross section. These spacer fabrics can be used for protective vest to absorb a user’s sweat, to reduce the humidity and improve user’s thermal comfort. For this reason, different 3D warp knitted spacer fabrics were produced with functional fiber yarns in the back layer of the fabric (close to the body) and polyester in the front and middle layers (outer surface). Comfort properties such as air and water vapor permeability and wicking and other moisture management properties (MMP) of different fabric samples were measured. It is demonstrated that by using profiled fibers such as Coolmax fiber, moisture management properties of spacer fabrics can be improved, enabling them to be use as a snug-fitting shirt worn under protective vests with improved comfort.  相似文献   

4.
Nowadays, the use of nonwovens as absorbent products is increasing. One of the most important methods for the nonwoven production is spunlace. This research evaluates the effect of spunlace nonwoven structures in wicking, water retention, water vapor permeability and porosity structural parameter of nonwoven. Carded webs from polyester fibers and viscous fibers of four different basis weights (35, 40, 45, and 50 g/m2) were hydroentangled using three different water jet pressures (50, 60, and 70 bar). To study the effect of these variables on the structure of nonwovens and absorbency related properties, sample’s characteristics such as thickness and mass density were measured. An electrical resistance technique was used to study the liquid penetration into nonwovens. The results showed that with increasing water jet pressure, mass density increased and other parameters like thickness, water retention, water vapor permeability and capillary pore size decreased. Also, it was observed with increasing basis weight, the sample thickness increased. On the other hand, with increasing weight, the amount of water retention, water vapor permeability and porosity structural parameter of nonwoven were reduced. The wicking characteristic of nonwovens using the least jet pressure and weight was the best of all the samples.  相似文献   

5.
The effects of yarn number and liquid ammonia (L/A) treatment on the physical properties of woven fabrics prepared with pure hemp spun yarns were investigated. As a result of L/A treatment, the crystal structure of hemp fiber was changed from cellulose I to the mixtures of cellulose III and cellulose I and its crystallinity was slightly decreased by 13 %. The crease recovery of hemp fabric treated with L/A was improved upto 78 %. The washing shrinkage of hemp fabric treated with L/A decreased significantly to less than 0.4 %, while the washing shrinkage of hemp fabric prepared with the fined yarn was superior to that of hemp fabric prepared with the coarsed yarn. Especially, the wicking speed and drying ratio of hemp fabrics treated with L/A were higher than those of the untreated as yarn number increased. However, it was found that there is no significant effect on the UV protection of the L/A treated hemp fabrics.  相似文献   

6.
This study examined the effects of the total porosity, pore size, and cover factor on the moisture and thermal permeability of woven fabrics made from DTY (draw textured yarns) and ATY (air jet textured yarns) composite yarns with hollow PET (polyethylene terephthalate) yarns. The wicking of the hollow composite yarn fabrics was found to be superior to that of the high twisted yarn fabrics, which may be due to the high porosity in the hollow composites yarns, but this was not related to the cover factor. The drying characteristics of the hollow composite yarn fabric with high porosity were inferior compared to the high twisted yarn fabrics due to the large amounts of liquid water in the large pores, which resulted in a longer drying time of the fabric. The thermal conductivity of the hollow composite yarn fabrics decreased with increasing measured pore diameter due to the bulky yarn structure. The effects of the hollowness of the yarn on the thermal conductivity were more dominant than those of the yarn structural parameters. The air permeability increased with increasing measured pore diameter but the effects of the cover factor on the air permeability were not observed in the hollow composite yarn fabrics. The effects of porosity on the moisture and thermal permeability of the woven fabrics made from the hollow composite filaments were found to be critical, i.e., wicking and air permeability increase with increasing porosity. In addition, the drying rate increased with increasing porosity and the thermal conductivity decreased with increasing pore diameter, but were independent of the cover factor.  相似文献   

7.
The current work incorporates an experimental study on the effect of fiber cross sectional shape and fibre diameter on moisture transmission properties of the fabric. Water vapour transmission of the fabrics was measured using the PERMETEST. In plane liquid flow through the fabric was measured using a gravimetric in-plane wicking tester and vertical movement of liquid along the fibres against gravity was also observed using a vertical wicking tester. With the change in shape factor and fibre diameter, it is seen that with increase in fibre specific surface area wicking rate through fabric increases, whereas water vapour permeability of the fabric reduces.  相似文献   

8.
Synthetic fibers are generally produced with circular cross sectional shapes. Other cross sectional shaped fibers such as trilobal, triangular, hollow and pentagonal fibers are also produced to improve some properties of fibers and fabrics such as lustre, handle, wicking rate, strength, stiffness and bulkiness. In this research we aimed to investigate compressional behaviours of fabrics knitted from polypropylene fibers having three different cross sectional shapes; namely circular, trilobal and triangular. Morphological, structural and mechanical properties of produced fibers were evaluated by using scanning electron microscopy, X-ray diffractometry, differential scanning calorimetry and tensile tester, respectively. In terms of structural and mechanical properties, no significant differences were found related to fiber cross sectional shapes. Then, plain knitted farbrics were produced and compressional properties of these fabrics were investigated. Fabrics knitted from trilobal fibers showed the highest compressibility properties and it is followed by fabrics which are produced from triangular and circular fibers.  相似文献   

9.
The properties of moisture transfer and the comfort of mesh-structured fabrics with various knit compositions and properties were investigated. The comfort effects of the double knitted fabrics combined with different cross-shaped fibers composed of dyeable-polypropylene (PPd) and regular polyester (PET) double-knitted fabrics were studied. A series of PET, PPd, Coolmax® (Cm) with single knitted fabrics and PPd/Cm with double knitted fabrics were evaluated to determine the physical properties and wearing performance for comfortable clothing. To compare the structural properties involving the vapor transfer of 4 types of fabrics with different fiber compositions, fiber types, weights, and thicknesses, the surface structure and pore characteristics were evaluated by scanning electron microscopy and a capillary flow porometer. The properties of moisture transfer were tested using vertical wicking and gravimetric absorbent testing system (GATS). In addition, the comfort performance measured by the thermal insulation value (Rt) and moisture permeability index (im) with a thermal manikin in a conditioned walk-in environmental test chamber was predicted. The result showed that the PPd/Cm sample has potential applications as good comfort fabric materials.  相似文献   

10.
This paper discusses measurement and modeling of dielectric properties of polymeric materials in a three phase mixture consisting air, moisture and the polymer itself. Using nylon 6 monofilaments as base polymeric materials and assembled in simple woven fabric form, it is shown that the effective permittivity follows a quadratic curve with respect to the volume fraction. The effect of moisture absorption by the fibers on the effective volume fraction is calculated theoretically and results show negligible difference between two extreme cases of moisture adsorption. A new method of analyzing the system as a three phase system is described in this paper.  相似文献   

11.
The present paper reports the interaction effect of yarn twist, yarn count and number of plies on wicking behaviour of plied cotton yarn. A three-variable factorial design technique proposed by Box & Behnken was used to investigate the combined interaction effect of the above variables. Both the vertical as well as horizontal wicking experiments were carried out with liquids of varying surface tensions, like distilled water, saline water and petrol. Each wick samples were subjected to nine different types of wicking related tests. The yarn count and number of plies in the cotton wick was found to play major role in wicking related properties, whereas the effect of twist in plied cotton wick was not that prominent when the twist per unit length of single and plied yarns were the same and in opposite direction. The rate of vertical wicking for saline water was found to be significantly lower than that of distilled water. The rate of horizontal wicking for distilled water was less than that of vertical wicking of distilled water. Use two or three parallel strands instead of one resulted in marked increase of vertical wicking.  相似文献   

12.
We present a rapid, simple, convenient and cost-effective method for producing nanosized stable silver particles on cotton fibers with complete control of the silver loading level using a thermal reducing silver carbamate complex. Cotton gauze was coated with silver 2-ethylhexylcarbamate solution. Silver nanoparticles on the cotton gauze were characterized by energy dispersive X-ray spectroscopy and X-ray diffraction. Particle size and lattice image of the silver nanoparticles were studied by scanning electron microscopy. The antibacterial activity of the silver coated cotton gauze against Escherichia coli and Staphylococcus aureus, whole blood clotting and physical properties including vertical wicking test, water retention time and absorption of 0.9 % (w/v) saline were studied. Silver coated cotton gauze showed a faster blood clotting rate than the untreated cotton gauze. Cotton gauzes treated with two different silver concentrations (0.01 %, 0.1 %) showed slightly better saline absorption and they had better vertical wicking and water retention time than pristine cotton gauze.  相似文献   

13.
A porous complex structured woven fabric was manufactured to maximize the moisture transition ability of the prepared fabric by increasing the absorptive property of the fabric through surface modification using plasma, which is a dry modification method. Porous single and complex structured woven fabrics were produced by applying pattern, porosity, and plasma technology, including fabric patterning based on the sheath/core complex structure, the formation of porosity by removing the weft thread or warp thread, and hydrophilic surface treatment using plasma and the improvement in water absorption of different fabrics by the porous and plasma treatment was investigated. Therefore, two different types of fabrics were prepared. One is the porous single structured FAB-SINGLE fabric which was taken out in the direction of the Polyester (PET) warp thread of a general single structure to form a porous. Another is FAB-COMPLEX fabrics that the water-soluble polylactic acid (PLA) yarns with a 1.7 to 2.0 times longer absorption distance than that of PET yarns were inserted into the weft threads, and the PLA yarns were dissolved in a solvent to form the porous complex fabric. And then the physical properties and water absorption of the two types of fabric were compared after the plasma treatment. The results showed that when the FAB-SINGLE fabric, which has porosity induced by the removal of the warp threads in a certain gap, was plasma treated for 5 min, the contact angle was decreased to the extent that a measurement of the contact angle was impossible, whereas the fabric that had not undergone a plasma treatment had a contact angle of 123.6 o. The contact angle of the FABCOMPLEX with porosity caused by the dissolution of the PLA yarns was reduced from 76.8 o to 0 o after 3 minutes of a lowtemperature plasma treatment, indicating that the hydrophilic property was increased. In addition, the water absorption measurements showed that the absorption height was increased from 2.3 cm of the fabric sample that had not been treated with plasma to the highest absorption height of 8.3 cm, suggesting that the water absorption also increased with the improvements in moisture transition ability by the plasma treatment. The physical tensile strength of the fabrics was not changed by the plasma treatment, despite the changes on the fabric surface, suggesting that the combination of double complex structures and the plasma treatment helped improve the water absorption.  相似文献   

14.
Effects of enzymatic and atmospheric plasma treatments individually and their combinations on knitted PET fabrics were investigated in terms of hydrophilicity, surface modification and moisture management properties. Cutinase from Humicola Insolens, lipase from Candida SP and atmospheric plasma with air and argon gases were applied to PET fabrics. To evaluate results, moisture management tester (MMT) and scanning electron microscopy (SEM) were utilized. Wicking heights of samples were measured by wicking test method. Improved moisture management properties were observed with environmentally benign processes compared to the untreated ones. Especially combined treatments have given the same or slightly better results than those of conventional alkaline treatments. Fabrics treated with plasma and then followed by enzymatic incubations have significantly improved the wetting time, absorption rates and spreading speed results.  相似文献   

15.
The application of a degassing system to mercerization process was investigated. It was found that the physical properties of cotton fabrics mercerized in the degassed NaOH solution were superior to those mercerized in NaOH solution. The degree of penetration of the degassed water was examined by measuring wicking height. The wicking height in the degassed water without the wetting agent is higher than that of the saturated water with 0.1 % of wetting agent.  相似文献   

16.
The research on coir-polyester composites initiated the interest in the development of woven coir fiber-reinforced polyester composites. The mechanical properties of woven coir-polyester composites were evaluated as per ASTM standards and the machinability behavior was studied by conducting drilling tests in this investigation. The woven coir-polyester composites exhibited the average values of tensile, flexural and impact strength of 19.9 MPa, 31.3 MPa and 49.9 kJ/m2 respectively. The effect of NaOH treatment on the improvement of mechanical properties of woven coir-polyester composites were studied in this investigation. The 40 % increase of tensile strength, 42 % increase of flexural strength and 20 % increase of impact strength were achieved by treated woven coir fiber-reinforced polyester composites. The regression models for predicting thrust force, torque and tool wear in drilling of woven coir-polyester composites were developed and the effect of drilling parameters were analyzed.  相似文献   

17.
The effects of liquid ammonia (L/A) treatment on the mechanical properties and hand of 100 % hemp woven fabrics were investigated by the KES-FB (Kawabata Evaluation System for Fabric). Tensile energy and tensile resilience were increased by the L/A treatment. Bending and shearing values such as bending rigidity, bending moment, shear stiffness, shear hysteresis of the L/A treated fabrics were lower than those of the untreated ones. Compressional linearity and compressional energy were decreased while the compressional resilience was increased by the L/A treatment. From the hand evaluation, the primary hand values as well as total hand value of the hemp fabric were markedly increased by the L/A treatment, especially when yarn number was fine. Therefore, L/A treatment was found to be an effective method of improving the flexibility and softness of hemp woven fabrics.  相似文献   

18.
A series of water absorbent porous modified polyacrylonitrile (PAN) fibers were prepared using the blends of PAN and various molecular weight of polyethylene glycol (PEG) by wet-spinning process and water bath post-treatment. The chemical structure and morphologies of the modified PAN fibers were studied. The water transportation, water retention, moisture absorption and mechanical properties of the fibers were discussed. Results show that there is no residual PEG in modified PAN fibers after drawing process in hot water bath and post-treatment. With the increase in PEG molecular weight, the fiber surface grooves become deeper, the inner pore size increases, while the mechanical properties decrease. The water absorbing and transferring capabilities of the modified PAN fibers can be improved in varying degrees due to the different pore structures left by series molecular weight of PEG removing.  相似文献   

19.
This study examined the flame retardant, anti-static, and wear comfort properties of woven fabrics from two types of yarns composed of modacrylic, FR-rayon, cotton, and anti-static PET fibers. The FR-rayon-blended modacrylic fabric mixed with anti-static PET fibers exhibited better flame-retardant and anti-static properties than those of the cotton-blended modacrylic fabric. In addition, the absorption and drying properties of the FR-rayon-blended modacrylic fabric were superior to those of the cotton-blended modacrylic fabric. The thermal conductivity of the FR-rayon-blended fabric was lower than that of the cotton-blended one, whereas the water vapor permeability was slightly higher than that of the cotton-blended one. These wear comfort properties of the FR-rayon-blended fabric were attributed to the micro-pores and longer fiber length of the FR-rayon fibers, as well as their yarn and fabric structural parameters. This study suggests that FR-rayon-blended modacrylic fabric has better flame-retardant and anti-static properties in both twill and rip weaves with good warmth keepability, and higher water and vapor transmission properties than cotton-blended one. In addition, the FR-rayon-blended modacrylic clothing exhibited a better wear comfort feel than the cotton-blended one due to the lower microclimate humidity. This means that FR-rayon-blended modacrylic fabric makes it more comfortable to wear than cotton-blended one.  相似文献   

20.
The effect of blend percentage on comfort and handle related properties of fabrics made from polyester/viscose blended air-jet textured yarn weft were studied and the results were compared with fabrics made from polyester/viscose ring-spun yarn wefts of similar linear densities. It is observed that with increase in polyester content in the blend, the air permeability and water vapour permeability reduces whereas thermal resistance, transverse wicking and shear rigidity increases both in ring-spun yarn and textured yarn fabrics and bending rigidity increases in textured yarn fabrics. Textured yarn fabrics exhibit lower air permeability and extensibility, higher thermal resistance, relative water vapour permeability, transverse wicking values and bending rigidity as compared to the ring-spun yarn fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号