首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anatase TiO2 nanoparticles was in-situ formed on the cotton fabric by using tetrabutyl titanate (TBT) as a precursor through the normal pressure hydrothermal method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV visible spectra (UV-VIS), ATR-IR were used as the characterization techniques. Photocatalytic performance of TiO2 on the fabric surface was evaluated by methylene blue (MB), 4 kinds of the common living stains and three dyes under ultraviolet and visible light radiation. XRD analysis found that the TiO2 loaded on the fabric was mainly anatase crystalline phase with particle size of 6.4 nm. SEM observed that a large number of nano TiO2 particles are distributed on the fabric surface. UV-VIS test indicated that theTiO2-coated fabric possessed an obvious absorption for ultraviolet. ATR-IR analysis indicated that the nano-TiO2 possesses a strong affinity with the hydroxyl group of the cotton fabric, and the soaping tests showed that the TiO2 was firmly bonded with the fabrics. The treated fabrics have good degradation ability for MB aqueous solution, and could degrade azo, anthraquinone and phthalocyanine dyes. The order of degradation of the common life stains was: pepper oil> tea > coffee > soy sauce.  相似文献   

2.
Titanium dioxide (TiO2) is one of the excellent photocatalysts used for degradation of environmetal pollutants. In this work, 2.5, 5.0 and 7.5 wt.% of silver (Ag)-loaded TiO2 nanofibers of mean size 52–134 nm were synthesized by electrospinning method. These electrospun nanofibers were calcined at 500 °C to enable the transformation of Rutile (R) phase to Anatase (A), elimination of reaction moieties from the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading on the morphology, crystal structure, phase transformation, and band gap of these electrospun nanofibers have been characterized by scannining electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), raman spectroscopy and UV-visible spectroscopy. These nanofibers exhibited a red-shift in the absorbance edge and a significant enhancement of light absorption in the wavelength range of 250–550 nm. These electrospun nanofibers were investigated for photodecomposition of methylene blue (MB), and photocatalytic decolorization rates were determined by pseudo-first-order equation. The rate constants for the pure and those of 2.5, 5.0, and 7.5 wt% Agloaded TiO2 nanofibers were computed to be 0.1439 min-1, 0.1608 min-1, 0.1876 min-1, and 0.2251 min-1 respectively.  相似文献   

3.
Bombyx mori (B. mori) silk was modified with the nano-TiO2 and chitosan dispersion system by the crosslinking reactions of citric acid (CA) and maleic anhydride (MA). The average size of the nano-TiO2 particles in the aqueous dispersion system was 36.7 nm. The scanning electron microscopy (SEM) micrographs showed that the nano-TiO2 particles were spherical and homogeneously dispersed in the dispersion system, and the surface ofB. mori silk fiber treated with the nano-TiO2 and chitosan dispersion system was rougher than that of the untreated one. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) Spectrometry indicated that the crystallinity of theB. mori silk fiber increased after treatment. It was also found that the nano-TiO2 and chitosan contributed to significantly enhance the mechanical properties including breaking strength, breaking elongation, initial modulus, rupture work, and elastic recovery property of theB. mori silk fiber. The wrinkle-resistant performance of the treatedB. mori silk fabrics was also greatly improved.  相似文献   

4.
In this research, we fabricated a series of PVA membranes loaded with 0 wt.%, 1 wt.%, 3 wt.%, 5 wt.% ZrC and 0 wt.%, 1 wt.%, 3 wt.%, 5 wt.% TiO2 using a spiral vane electrospun machine respectively. There were 2 sizes of TiO2 nano particles: 10 nm and 200 nm. We tested sound absorption properties of needle-punched nonwovens as well as the composite of nano membranes and needle-punched nonwovens by an impedance tube at the frequency range from 500 Hz to 6500 Hz. Besides, we tested morphological characterization of nano membranes by scanning electron microscope (SEM) and crystalline properties by X-ray diffraction (XRD). We investigated the sound absorption properties of composites as well as the effect of ZrC, TiO2, nano particle sizes and cavity depth on sound absorption properties. Results showed that sound absorption properties of composites increased at the whole range of frequency compared to those of needle-punched nonwovens. When loaded with ZrC nano particles, sound absorption properties of composite shifted to a higher frequency region, and with increasing content of ZrC, sound absorption properties were better above 2500 Hz. However, when loaded with TiO2, sound absorption properties were better at lower frequency. With 3 wt.% TiO2, sound absorption coefficient reached the best at the frequency range from 500 Hz to 1500 Hz. Besides, 200 nm TiO2 was more conductive to the increase of sound absorption properties at lower frequency region compared to 10 nm TiO2. Sound absorption properties of composites with air back cavity shifted to a lower frequency region, too. SEM showed that there was nano particle aggregation when loaded TiO2 nano particles. XRD showed that ZrC nano particles loaded in PVA nano fiber retained their crystalline structure while TiO2 didn’t. It appeared from the results that nano particles had an effect on sound absorption materials, with different kinds and different sizes, sound absorption properties will improve in different ranges of frequency  相似文献   

5.
In this paper, a silane coupling agent, 3-aminopropyltriethoxysilane, was reacted with nano-TiO2 to introduce amino group onto it which was then reacted with trichlorotriazine to obtain a dichlorotriazine functionalized nano-TiO2 for the firm fixation of it on cotton fibers. The reaction process was monitored by the titration of primary and secondary amino groups, and the reaction conditions were optimized with orthogonal method accordingly. The dichlorotriazine functionalized nano-TiO2 was reacted with cotton fabric by the nucleophile substitution reaction to afford nano-TiO2 functionalized cotton fabric, the structure and surface morphology of the nano-TiO2 finished cotton fibers were studied by FT-TR and SEM. In addition, the fixation duration of the nano-TiO2 modified cotton was studied according to AATCC test method 61–2010. The results show that the washing fastness of the nano-TiO2 is excellent.  相似文献   

6.
A simple and practical strategy has been developed for preparing polyaniline(PANi)-doped TiO2/poly(l-lactide) (P@TiP-C) fibers by a combination of coaxial-electrospinning and in-situ polymerization. The TiO2/PLLA composite fibers with TiO2 located on the surface were fabricated by coaxial-electrospinning, with PLLA as the core phase and a dispersion of TiO2 particles, a well-known photocatalyst, in the sheath phase. The aniline monomers were also located in the core phase and in-situ polymerized by ammonium persulfate (APS) after electrospinning. SEM images show that TiO2 particles were located on the surface of PLLA fibers. Photocatalytic degradation tests show that the P@TiP-C fibers exhibit enhanced photocatalytic activity for degradation of methyl orange under visible light, likely due to the synergistic effect of PANi and TiO2.  相似文献   

7.
By incorporating organic-inorganic nano-hybridization into wet phase inversion coating-forming method, a novel antimicrobial polyurethane synthetic leather coating with in-situ generated nano-TiO2 (PUT) was prepared. The antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Micrococcus luteus, antifungal activity against Aspergillus niger and toxicity of this PUT coating were investigated respectively. Experimental results showed that the antimicrobial activity of the PUT coating increased with increasing nano-TiO2 concentration. Low nano-TiO2 concentration (≤0.50 wt%) resulted in negligible or limited antimicrobial activity. When the nano-TiO2 concentration increased up to 0.75 and 1.00 wt%, the antibacterial activity of the PUT coating exceeded 82 and 93 % respectively, and no Aspergillus niger growth was observed on the coating surface within 28 days. Cell culture assay indicated that the PUT coating had no detrimental effect on the morphologies and proliferation rate of normal human dermal fibroblasts, which indicated a non-toxic and skin-friendly characteristic. According to these results, the PUT coating was capable of reducing the risk of microbial contamination while remained skin-friendly to wearers. More importantly, the organic-inorganic nano-hybridization technique developed in this study was carried out simultaneously during the established wet phase inversion coating-forming method for PU leather manufacture, which promised its possible application on an industrial scale.  相似文献   

8.
The wrinkle-resistant property of cotton specimens treated by 1,2,3,4-butanetetracarboxylic acid (BTCA) and catalysed by sodium hypophosphite (SHP) in the presence of TiO2 or nano-TiO2 has been evaluated in the present study. In this study, Scanning Electron Microscopy proved the presence of TiO2 or nano-TiO2 on the fibre surface. It was also found that 0.1–0.2 % TiO2 or nano-TiO2 was the optimum concentration to enhance the wrinkle-resistance of BTCA-SHP-treated cotton fabrics. In addition, the TiO2 or nano-TiO2 added in the wrinkle-resistant treatment could act as a multi-functional finishing agent to improve the UV protection property while they are safe to human skin as proved by the cytotoxicity test. Therefore, TiO2 or nano-TiO2 was evident that they could enhance the finishing performance and minimise the side effect.  相似文献   

9.
Present paper reports a method of preparing polymer composite electrolyte nanofiber mat using polyvinyl alcohol (PVA), ammonium thiocynate (NH4SCN) salt, and aluminium oxide (Al2O3) nano particles based on electrospinning technique. Two-stage process of preparation of nanofibers, namely, preparation of nano particles filled PVA electrolyte gel solution followed by its electrospinning has been used. The so obtained nanofibers have been characterized by XRD, DSC, SEM, and Conductivity measurements. XRD patterns affirm the formation of nanocomposite while SEM pictures reveal formation of fibers on a nano scale format (300–800 nm). Fibers of the electrolytes are seen to be thermally stable. Ionic conductivity of electrolyte fiber is seen to improve in the presence of nano filler at room temperature with a maximum at 5.31×10−3 Scm−1 for 4 wt% filler concentration, which is comparable to that for corresponding dried gel electrolyte films.  相似文献   

10.
Nano-TiO2 based multilayer nanocomposite films were fabricated on cationically modified woven cotton fabrics by layer-by-layer molecular self-assembly technique. Cationization process was used to obtain cationic surface charge on cotton fabrics. Attenuated total reflectance Fourier transform infrared spectroscopy analyses were used to verify the presence of cationic surface charge and multilayer films deposited on the fabrics. Scanning electron microscope micrographs of poly(sodium 4-styrene sulfonate)/TiO2, nano polyurethane/TiO2, and TiO2/poly(diallyldimethylammonium chloride) multilayer films deposited on cotton fabrics were taken. With nano-TiO2 based multilayer film deposition, the protection of cotton fabrics against UV radiation is enhanced. The UV protection durability of the self-assembled multilayer films deposited on the cotton fabrics was analyzed after 10 and 20 washing cycles at 40 °C for 30 min. Air permeability and whiteness value analysis were performed on the untreated and multilayer film deposited cotton fabrics. The effect of layer-by-layer deposition process on tensile strength properties of the warp and weft yarns was determined.  相似文献   

11.
We report a facile approach to fabrication and characterization of cationic titanium dioxide (TiO2+) on poly (vinyl alcohol)/poly (acrylic acid) (PVA/PAA) composite electro-spun nanofibrous mat. The aim of this study is to develop a “functional electrospun nanofibrous mat” as a sustainable approach to superior photocatalytic degradation of organic colorants. For that, the PVA/PAA nanofibrous mat was prepared by electrospinning of PVA and PAA solution according to an aspect ratio of 1:1 and later water stability was induced by the thermal cross linking at an elevated temperature of 145 °C for 30 minute. By means of electrostatic layer-by-layer (LbL) assembly, cationic titanium dioxide (TiO2+, ~19 nm) was immobilized on the surface of the water stable nanofibrous mat. As functionalized composited nanofibrous mat was characterized by using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis and thermogravimetric analysis (TGA). Superior competency of the functionalized nanofibrous mat towards photocatalytic degradation of organic dye (methyl blue) in aqueous solution was observed by using UV-visible spectrophotometer with quantitative measuring method. The result indicates a complete degradation of methyl blue within 40 mins and superior reusability upto 5 cycles application. The study signifies the prospect of using electrospun nanofibers to manipulate the catalytic activity, which could be a foundation for further rational design of various composite nanofibrous materials.  相似文献   

12.
The poly(vinyl acetate) (PVAc)/zinc oxide (ZnO) microcapsule and PVAc/titanium dioxide (TiO2) microcapsule were synthesized via in-situ emulsion polymerization method. The PVAc/ZnO microcapsule and PVAc/TiO2 microcapsule were characterized by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis(TG), transmission electron microscopy (TEM), and UV-visible spectroscopy (UV-vis). Effect of PVAc/ZnO microcapsule and PVAc/TiO2 microcapsule on properties of poly(lactic acid) (PLA) was evaluated by UV-vis, SEM and mechanical properties test. The results showed that the addition of PVAc/ZnO and PVAc/TiO2 microcapsules as a UV-blocking additive could significantly enhance UV-blocking property of PLA/PVAc/ZnO microcapsule composites and PLA/PVAc/TiO2 microcapsule composites compared with pure PLA, PLA/ZnO composites and PLA/TiO2 composites. The mechanical properties of PLA/PVAc/ZnO microcapsule composites were better than those of PLA/ZnO composites due to good dispersability and compatibility of PVAc/ZnO microcapsule in PLA matrix. Also, the mechanical properties of PLA/PVAc/TiO2 microcapsule composites were better than those of pure PLA and PLA/TiO2 composites. This study demonstrates the great potentials of the intrinsically UV shield additive PVAc/ZnO and PVAc/TiO2 microcapsules in the application of high performance matrix resin and composite material.  相似文献   

13.
Cellulose acetate (CA) films containing anatase type titanium dioxide (TiO2) nanoparticles were prepared by solution casting. The film surface was modified by UV irradiation using a grid type UV irradiator. The UV irradiation caused slight increase in photodegradation of the CA films with TiO2 compared to the CA film alone. However, CA films irrespective of TiO2 content did not show a significant enzymatic degradation by a cellulase fromAspergillus niger without UV irradiation. Upon UV irradiation, the biodegradability remarkably improved even in the CA film without TiO2. The irradiation of CA films decreased both the water contact angle and the degree of substitution (DS) implying the decrease in acetyl groups of the CA film surface due to the photo-scission of the acetyl group and photooxidation, resulting in more facile biodegradation of the surface film layer. The substantial enhancement in biodegradation of the UV irradiated CA film containing TiO2 was attributed to the increased hydrophilicity, lowered DS and zeta potential due to the photoscission and the photooxidation effect of UV light. Also the increased surface area of the CA film due to the photocatalysis of TiO2 particles may encourage the facile biodegradation.  相似文献   

14.
A novel in-situ nano hybrid technique combined with industrialized wet phase inversion coating-forming process was developed for the modification of polyurethane (PU) leather coating with nano-SiO2. During the wet phase inversion process, nano-SiO2 particles were in-situ generated synchronously as polyurethane resin coagulated. Scanning electron microscope analysis indicated that when the SiO2 concentration was limited within 1.5 wt%, the size scale of in-situ generated nano-SiO2 ranged from 70 to 150 nm, which were well-separated and dispersed uniformly throughout the PU coating. After nano hybridization, extra mesopores were detected in the PU coating by nitrogen adsorption/desorption experiment. These mesopores were correlated with enhanced water vapor and gas (hydrogen, nitrogen, and oxygen) permeability, which could improve the breathability or wear comfort of PU leather. In spite of extra mesopores, the hybrid PU coating maintained comparable hydrostatic pressure to control. Nevertheless, when the SiO2 concentration was increased up to more than 1.5 wt%, micro-SiO2 particles and agglomerates dominated throughout the PU coating, which obstructed mass transportation and lowered the breathability of the coating. Without disturbing established wet phase inversion coating-forming process in PU leather industry, the novel in-situ nano hybrid technique developed in this study may be of great potential for producing PU leather with improved breathability on an industrial scale.  相似文献   

15.
Gelatin is one of the most promising biomaterials due to its excellent biocompatibility and biodegradability. In order to improve the antimicrobial activity of gelatin, gelatin nanofibers containing silver nanoparticles were prepared by electrospinning gelatin/AgNO3/formic acid system, followed by UV irradiation. They were characterized by UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. It was observed that the silver nanoparticles, which presented quasi-sphere shaped and 9–20 nm average diameters, were generated on the surface of the gelatin nanofibers. The size of the silver particles can be adjusted by changing the content of AgNO3. With increasing the amount of AgNO3, the average diameters of fibers decreased. The gelatin-Ag nanocomposites were found effective against Staphylococcus aureus and Pseudomonas aeruginosa. From these results, it is expected that the electrospun antimicrobial gelatin nanofiber mat can be used as an excellent wound dressing.  相似文献   

16.
TiO2 contents in yarns can influence color yield so that dyeing quality of industrial poly ethylene terephthalate (PET) yarns can be improved through the adjustment of TiO2 contents. To evaluate the dyeing performance of color yield, the chips which included the different TiO2 contents of 330, 550, and 1,100 ppm respectively were used to produce the yarns of different TiO2 content by a spin-draft machine. The physical and structural properties of the yarns were measured to investigate effect of the TiO2 contents on them. Dye uptake and dyeing rate were also evaluated using a colorimeter to compare the yarns having different TiO2 contents. The experimental results showed that there were no appreciable variation in physical and structural properties among the yarn samples and no difference were observed among the dyed fabric samples with regard to dyeing uptake and dyeing rate. However, the color yield of dyed fabrics increased as TiO2 contents decreased in the yarns especially when the fabric samples were dyed to pale shade. The physical reasoning could be proposed on why the yarns having low TiO2 contents appeared to have higher color yield after dyeing.  相似文献   

17.
Contaminants are often found in aquatic environments, for instance, heavy metals, dyes, parasites, pesticides, hormones and pharmaceuticals. Therefore, large amounts of these contaminants reaches wastewater via industrial and domestic effluents, causing major concern to human health. Heterogeneous photocatalysis is a technique for removing these contaminants in order to achieve better efficiency in water treatment. Then, bacterial cellulose (BC) produced in an agitated culture can form spherical bodies composed of nanofibers with high specific surface area. Moreover, Titanium dioxide (TiO2) is a semiconductor containing high photocatalytic activity capacity. Thus, the main objective in this work was to produce spherical BC/TiO2 nanocomposites for contaminants removal from wastewater by photocatalysis process. The incorporation of TiO2 nanoparticles in the spherical BC matrix was performed by ex situ and in situ methods. In addition, Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) were used as tools of morphological, chemical and thermal characterizations of the nanocomposites. Besides, photocatalysis tests were performed in order to evaluate the removal efficiency of methylene blue from aqueous solutions. The results of these tests exhibited a percentage of methylene blue removal of 70.83 and 89.58 % after 35 minutes for spherical BC/TiO2 nanocomposites both, in situ and ex situ, respectively. Therefore, these results demonstrated that BC/TiO2 to be a low cost material with high capacity of contaminants removing and a great potential for industrial applications.  相似文献   

18.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

19.
In this study, we developed optimal multifunctional electrospun wound dressings possessing an antibacterial activity and rich in iron, a vital trace element for cell growth. Therefore, synthetic ferric oxide nanoparticles (α-Fe2O3 NPs) were ultrasonically dispersed into preheated gelatin-glycerol solution. A variety of techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), in-vitro swelling-degradation studies and antibacterial tests) were used to characterize the electrospun mats. The results highlight that α-Fe2O3 NPs could be successfully dispersed into the electrospun gelatin nanofibers. The electrospun ferric oxide-gelatin-glycerol nanofibrous mats revealed free beads nanofibers with appropriated swelling-degradation behavior. It was observed that addition of α-Fe2O3 NPs enhanced the antibacterial activity of electrospun mats against positive and negative bacteria.  相似文献   

20.
As a kind of high-performance fibers, PTFE fiber has been widely used in many fields because of its unique characteristics. In this study, the poly(tetrafloroethylene) (PTFE) nanofibers manufactured by electrospinning method was reported. The gel-spinning solution of poly(tetrafluoroethylene)/poly(vinyl alcohol)/boric acid (PTFE/PVA/BA), which was prepared by the gel process of the mixture of PTFE, PVA, BA and redistilled water, was electrospun to form PTFE/PVA/BA composite nanofibers. After calcinating, the PTFE nanofibers with diameters of 200 nm to 1000 nm were obtained. The fibers before and after calcinating were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), FT-IR spectrum analysis and X-ray photoelectron spectroscopy (XPS), respectively, and the mechanical and hydrophobic properties of the fibers were also investigated. The results showed that the PTFE nanofiber membranes could be electrospun effectively used the gel-spinning solution of PTFE/PVA/BA, and may realize the applications in the fields of high-temperature filtration, catalyst supports, battery separator and so on.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号