首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
The ecophysiological, morphological, and growth characteristics of 14 poplar clones were studied during 37 days of flooding and a 13-day recovery period. Cuttings were subjected to three soil water regimes, viz. drained (control), shallow flooding to 10 cm above the soil, and deep flooding to a depth of 120 cm. All hybrids modified their ecophysiological and morphological patterns to decrease carbon loss and maintain water balance. In response to flooding, all 14 hybrids reduced their expansion and initiation of new leaves, reduced height and root collar growth, and reduced the number of leaves. For shallowly flooded plants, adventitious roots developed by day 14, and their number increased with flooding duration; net photosynthesis, stomatal conductance, and growth decreased significantly compared with the control; dry weights of roots, leaves, and total biomass decreased and the allocation of growth to shoots and roots changed. After flooding ended, net photosynthesis recovered, but stomatal conductance recovered before net CO2 assimilation since photosynthesis was limited by stomatal factor at the initial stage of stress and it was limited by non-stomatal factors over relatively long periods of stress. Transpiration and the amount of water obtained from the roots both decreased. In the deeply flooded plants, similar but often more severe changes were observed. Based on our results, we classified the hybrids into three types using hierarchical cluster analysis. Clones 15-29, 196-522, 184-411, 306-45, 59-289, DN-2, DN-182, DN-17, DN-14274, NE-222, DTAC-7, and R-270 were flood-tolerant, clone NM-6 was flood-susceptible, and clone 328-162 was moderately flood-tolerant.  相似文献   

2.
The present study deals with effects of flooding depth on growth, morphology and photosynthesis in Alnus japonica species thorough one field study and two controlled experiments. In the field study performed in Kushiro Mire, Hokkaido Island, Japan, tree heights and stem diameters decreased with an increase in water depth accompanied with the reduction of soil redox potential. In contrast, the rate of multiple stems per individual tree increased. In the controlled experiments for seedlings flooding suppressed the shoot elongation and biomass increment in roots. However, diameter increment around water levels, epicormic shoot development and adventitious root formation were enhanced in flooded seedlings. The photosynthetic rate and stomatal conductance of flooded seedlings also were lowered with an increase in flooding depth. The recovery of the reduced photosynthetic rate and stomatal conductance occurred simultaneously with the advancement of adventitious root formation in the flooded seedlings. These results indicate the importance of a series of morphological changes occurring on stems around water levels in flood tolerance in A. japonica species.  相似文献   

3.
The objective of this study was to evaluate the effect of nursery shading on the Yellow-ipe seedling (Tabebuia chrysotricha) growth, photosynthesis, and photosynthetic acclimation after being transferred into direct sunlight. The Yellow-ipe seedlings were grown under 0, 50, 70 and 95% shade. At the 134th day of sowing, leaf gas exchange and chlorophyll were measured under current growth shading, after exposure to 15 min and two day full sunlight. With the increase of shading, the Yellow-ipe seedlings allocated more biomass to the stem and leaves and less to the roots, and there was an increase in the leaf area ratio and specific leaf area. In relation to 0% of shading there was a increase of 211% in stem, 116% in leaf, and a reduction of 200% in roots biomass when seedling were grown under 95% of shading. The total biomass accumulation had a high correlation with collar diameter (r = 0.96). More than 70% of the shading reduced the photosynthesis, and after transferring the seedlings into full sunlight, more than 50% of the shading induced a reduction in chlorophyll, stomatal conductance, photosynthesis and instantaneous carboxylation efficiency, suggesting the presence of a photoinhibition process. The Yellow-ipe seedling growth under nursery conditions should not be done under more than 50% shading, which may result in the lower seedling quality and poorer acclimation to transplantation, particularly to severe degraded areas with direct sunlight. The species can be used for recovering from totally devastated forest areas to initial recovery when full canopy are forming.  相似文献   

4.
The effects of salinity and waterlogging on stomatal conductance, net photosynthesis and transpiration of 3-month-old Eucalyptus camaldulensis Dehnh. and Eucalyptus lesouefii Maiden seedlings were studied under greenhouse conditions. Under non-saline conditions, waterlogging induced stomatal closure in both species. However, the stomata of E. camaldulensis reopened after five weeks, when adventitious roots were produced. Relative to that of controls, height growth of waterlogged seedlings was greater in E. camaldulensis than in E. lesouefii, as were rates of photosynthesis and transpiration. In a freely drained medium, high salinity reduced rates of seedling height growth and photosynthesis, relative to those in controls, less in E. lesouefii than in E. camaldulensis. In both species, height growth, stomatal conductance and photosynthetic rate were lowest under conditions of saline waterlogging.  相似文献   

5.
D. S. Thomas 《New Forests》2009,38(3):245-259
Forestry requires low mortality of transplanted seedlings. Mortality shortly after planting is often associated with inadequate hydration of transplants. Seedlings can be hardened to the drought conditions they may experience after transplanting by exposing them to controlled drought conditions in the nursery. Eucalyptus pilularis Sm. seedlings were drought hardened by providing nil (severe treatment) or half (mild treatment) the daily irrigation routinely received (control treatment) for up to two non-consecutive days per week during the last 4 weeks of growth in the nursery. Drought hardening reduced stem diameter, seedling leaf area, leaf area per root biomass and seedling quality measured by the Dickson quality index, but increased root:shoot ratio. Hardened seedlings had lower stomatal conductance and leaf water potential on the days they received less irrigation that the control treatment. Hardened seedlings had greater stomatal conductance and were less water stressed than seedlings experiencing drought for the first time indicating hardened seedlings had adjusted physiologically to drought. Survival after transplanting in the controlled drought environment in a glasshouse was enhanced by the hardening treatments. Non hardened seedlings that had had their upper leaves manually removed immediately prior to transplanting to reduce leaf area (top-clipped) had similar survival to hardened seedlings. Stomatal conductance and leaf water potential after transplanting were higher in hardened and top-clipped seedlings than unhardened control seedlings or vegetative cuttings. Survival in the field trial was over 95% for all treatments, possibly as rain fell within 4 days of planting and follow-up rain occurred in the subsequent weeks. Neither the hardened or top-clipped seedlings planted in the field trial had reduced growth, increased propensity to form double leaders or worse stem form than control seedlings when measured at age 3 years.  相似文献   

6.
Container-grown black spruce (Picea mariana (Mill.) B.S.P.) seedlings were planted in trays containing a sand and peat mixture, and placed in a climate-controlled greenhouse. One group of seedlings was kept well-watered, and another group was subjected to three cycles of drought. Gas exchange analysis showed that mesophyll photosynthetic function was largely unimpaired by drought. In contrast, stomatal conductance was sensitive to drought, although it became less sensitive with each drought cycle. Both stomatal and mesophyll conductances increased with time in control and drought-stressed seedlings, but mesophyll conductance increased with time more rapidly than did stomatal conductance. Limitation of photosynthetic rate was dominated by the mesophyll. In control seedlings, relative stomatal limitation increased from 6 to 16% by the end of the experiment. In drought-stressed seedlings, relative stomatal limitation of photosynthesis reached 40% during the first drought, but decreased to near control values immediately after rewatering. Because the third, most severe drought had only a minor effect on stomatal conductance, relative stomatal limitation of photosynthesis was similar to that in control seedlings by the end of the experiment. Inhibition of ontogenetic change during drought stress may be responsible for the apparent acclimation of mesophyll photosynthetic processes. We conclude that it would be more effective to select for high photosynthetic capacity than for reduced stomatal sensitivity when breeding for increased drought resistance in black spruce seedlings.  相似文献   

7.
The effects of flooding on Gmelina arborea Roxb. seedlings and cuttings of the same parent stock were compared to determine their suitability as transplanting stock. Flooding caused reductions in stomatal conductance, xylem pressure potential and dry matter accumulation in both groups of plants. In seedlings, flooding induced formation of hypertrophied lenticels, stem hypertrophy and production of short, thick, adventitious roots in seedlings, whereas in cuttings, only thin roots and numerous smaller lenticels were induced. For 8 days after the flooding treatment ended, the flooded seedlings grew faster than control seedlings, whereas in cuttings, post-flooding growth was similar to that of control plants. It is suggested that seedlings may perform better than cuttings in very wet or saturated soil.  相似文献   

8.
Effects of short-term (32 days) flooding on photosynthesis, stomatal conductance, relative growth rate and tissue starch concentrations of flood-intolerant Quercus alba L. (white oak), bottomland Quercus nigra L. (water oak), bottomland Fraxinus pennsylvanica Marshall. (green ash) and flood-tolerant Nyssa aquatica L. (water tupelo) seedlings were studied under controlled conditions. Net photosynthetic rates of flooded N. aquatica seedlings were reduced by 25% throughout the 32-day flooding period. Net photosynthetic rates of flooded Q. alba seedlings fell rapidly to 25% of those of the control seedlings by Day 4 of the flooding treatment and to 5% by Day 16. In F. pennsylvanica and Q. nigra, net photosynthetic rates were reduced to 50% of control values by Day 8 but remained at approximately 30 and 23%, respectively, of control values by Day 32. Leaves of flooded Q. alba seedlings accumulated approximately twice as much starch as leaves of non-flooded control plants, whereas root starch concentrations decreased to 67% of those of control plants by the end of the 32-day flooding treatment. In contrast, flooding caused only a small increase in leaf starch concentrations of N. aquatica plants, but it increased root starch concentrations to 119% of those of the control plants by the end of the experiment. The co-occurring bottomland species, Fraxinus pennsylvanica and Q. nigra, differed from each other in their patterns of stomatal conductance and root starch concentrations. We conclude that the maintenance of low leaf starch concentrations, and high pre-flood root tissue starch concentrations are important characteristics allowing flood-tolerant species to survive in flooded soils.  相似文献   

9.
Root tips of intact willow (Salix dasyclados Wimm., Clone 81-090) plants were partially dried by exposure to ambient greenhouse air and then kept in water-vapor-saturated air for up to 3 days. The drying treatment increased abscisic acid (ABA) concentrations in both the root tips subjected to drying and in the xylem sap, while it reduced leaf stomatal conductance and leaf extension rate. Despite the decrease in stomatal conductance, leaf water potentials were unaffected by the root drying treatment, indicating that the treatment reduced hydraulic conductivity between roots and foliage. After roots subjected to drying were returned to a nutrient solution or excised, ABA concentrations in the remaining roots and in the xylem sap, stomatal conductance of mature leaves and extension rate of unfolding leaves all returned to values observed in control plants. The 4-fold increase in xylem sap ABA concentration following the root drying treatment was not solely the result of reduced sap flow, and thus may be considered a potential cause, not merely a consequence, of the observed reduction in stomatal conductance.  相似文献   

10.
We compared the photosynthetic and photoassimilate transport responses of Melaleuca cajuputi Powell seedlings to root hypoxia with those of Eucalyptus camaldulensis Dehnh. Control and hypoxia treated roots were maintained in a nutrient solution through which air or nitrogen was bubbled. Under root hypoxic conditions, seedlings of M. cajuputi, a flood-tolerant species, maintained height growth, whereas seedlings of E. camaldulensis, a moderately flood-tolerant species, showed markedly decreased height growth compared with control seedlings. Root hypoxia caused decreases in whole-plant biomass, photosynthetic rate and stomatal conductance in E. camaldulensis, but not in M. cajuputi. Photoassimilate transport to roots decreased significantly in E. camaldulensis seedlings 4 days after treatment and starch accumulated in mature leaves. Photoassimilate supply to hypoxic roots of E. camaldulensis seedlings was, thus, limited by reduced photoassimilate transport rather than by reduced photosynthesis. In contrast, M. cajuputi seedlings showed sustained photoassimilate transport to hypoxic roots and persistent photosynthesis, which together provided a substantial photoassimilate supply to the roots. Sucrose accumulated in hypoxic E. camaldulensis roots, but not in hypoxic M. cajuputi roots. A stable, low sucrose concentration in hypoxic roots would let M. cajuputi seedlings prolong photoassimilate transport to the roots. Photoassimilate partitioning among the water-soluble carbohydrates, starch and structural carbohydrates within the roots was unaffected by root hypoxia in E. camaldulensis, but in M. cajuputi, partitioning was shifted somewhat from structural carbohydrates to water-soluble carbohydrates. This suggests that M. cajuputi seedlings are able to increase photoassimilate utilization in metabolism and sustain energy production under root hypoxic conditions.  相似文献   

11.
Tolerance to flooding is crucial when thinking in promissory species for restoration of ecosystems prone to suffer soil water excess. In this study, we tested the flooding tolerance of two-years-old seedlings of Chestnut-leaved oak (Quercus castaneifolia C.A.Mey.) to determine whether it can be recommended for use in wetland restoration programs. Seedlings of Q. castaneifolia were subjected to three treatments: (1) control (C), (2) flooding for 60 days followed by a 42-day recovery period (F?+?R) and (3) continuous flooding for 102 days (F). Physiological performance, plant morphological changes and biomass accumulation were assessed. Results showed that, although net photosynthetic rates, stomatal conductance and transpiration decreased with prolonged flooding, when flood waters were removed, plants were able to recover their physiological activity (49–80% compared to controls). By contrast, when plants were continually flooded, their physiological activity decreased as well as the leaves experienced precocious senescence and wilting. Biomass responses paralleled physiological responses: leaf and root biomass were 42–49% higher under F?+?R treatment than under continuous flooding, and all plants under the F?+?R survived. Therefore, Q. castaneifolia appears as a promising species to be further studied when thinking re-vegetation of riverine areas and other temporarily flooded wetlands.  相似文献   

12.
Liu Z  Dickmann DI 《Tree physiology》1992,11(2):109-122
Cuttings of hybrid Populus clones Tristis and Eugenei growing in pots in a greenhouse were treated with nitrogen fertilizer at two rates and subjected to repeated soil flooding or drying. Periodically, gas exchange measurements and radioimmunoassays, to determine abscisic acid (ABA) concentrations, were made on recently mature leaves.In both clones, photosynthesis and stomatal conductance were depressed five days after flooding, but leaf ABA concentrations remained relatively constant. In contrast, an initial, 9-day period of soil drying resulted in substantial ABA accumulation in leaves, which closely correlated with declines in photosynthesis and conductance. A second soil drying cycle of up to 9 days was less effective in modifying gas exchange and leaf ABA concentrations. High-N supply stimulated leaf ABA production as the soil dried. On the resumption of watering, gas exchange in Tristis recovered fully and rapidly and leaf ABA concentrations quickly returned to control values, whereas gas exchange in Eugenei recovered slowly and leaf ABA concentrations remained high for longer.Gas exchange in Eugenei was unaffected by soil drying until leaf ABA concentrations exceeded 100 ng g(dw) (-1), whereas Tristis showed a reduction in stomatal conductance and photosynthesis at leaf ABA concentrations of only 10 ng g(dw) (-1). A rise in internal CO(2) concentrations was associated with increased leaf ABA concentrations in Tristis, but not in Eugenei. Clonal differences in the relationship between gas exchange and leaf ABA concentration suggest contrasting physiological strategies for survival under prolonged drying conditions.  相似文献   

13.
The biochemically based leaf photosynthesis model proposed by Farquhar et al. (1980) and the stomatal conductance model proposed by Jarvis (1976) were parameterized for walnut. Responses of photosynthesis to CO(2) and irradiance were used to determine the key parameters of the photosynthesis model. Concurrently, stomatal conductance responses to leaf irradiance (Q), leaf temperature (T(l)), water vapor pressure deficit at the leaf surface (D), and air CO(2) concentration at the leaf surface (C(s)) were used to parameterize the stomatal conductance model. To test the generality of the model parameters, measurements were made on leaves from a 20-year-old tree growing in the field, and from sunlit and shaded greenhouse-grown seedlings. The three key parameters of the photosynthesis model (maximum carboxylation rate V(cmax), electron transport capacity J(max), and dark respiration rate R(d)) and the key parameter of the conductance model (reference stomatal conductance, g(sref)) were linearly correlated with the amount of leaf nitrogen per unit leaf area. Unique relationships could be used to describe nitrogen effects on these parameters for leaves from both the tree and the seedlings. Our data allowed separation of the effects of increasing total photosynthetic apparatus per unit leaf area from the effects of partitioning nitrogen among different pools of this apparatus for foliage acclimation to leaf irradiance. Strong correlations were found between stomatal conductance g(s) and Q, D and C(s), whereas the relationship between g(s) and T(l) was weak. Based on these parameterizations, the model adequately predicted leaf photosynthesis and stomatal conductance when tested with an independent set of data obtained for the tree and seedlings. Total light-driven electron flows derived from chlorophyll fluorescence data obtained at different leaf temperatures were consistent with values computed by the model. The model was also tested with branch bag data acquired from a three-year-old potted walnut tree. Despite a relatively large variance between observed and simulated values, the model predicted stomatal conductance and photosynthesis reasonably well at the branch scale. The results indicate that the photosynthesis-conductance model developed here is robust and can be applied to walnut trees and seedlings under various environmental conditions where water is non-limiting.  相似文献   

14.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

15.
Joly RJ  Hahn DT 《Tree physiology》1991,9(3):415-424
Overnight exposure of cacao (Theobroma cacao L.) seedlings to chilling temperatures between 4.7 and 15.8 degrees C reduced net CO(2) assimilation rate (A) and stomatal conductance to water vapor (g(s)), with temperatures below 10 degrees C causing severe inhibition. Net CO(2) assimilation rates of chilled seedlings recovered to those of nonchilled plants within 7 days. No differences in daytime intercellular CO(2) concentration (c(i)) with overnight temperature were observed on the first day after the chilling treatment, which indicates that the reduction in photosynthesis was not caused by the reduction in stomatal conductance. However, c(i) of chilled plants was much less than that of nonchilled plants on the second day after treatment, which suggests that chilling caused a change in stomatal response to CO(2) concentration. Even 7 days after treatment, when A had recovered to control values, g(s) of chilled leaves was only approximately 70% that of controls. Chilling did not inhibit A through an effect on leaf water potential, which was higher in chilled plants than in unchilled plants.  相似文献   

16.
Black spruce (Picea mariana (Mill.) BSP) and tamarack (Larix laricina (Du Roi) K. Koch) are the predominant tree species in the boreal peatlands of Alberta, Canada, where low nutrient availability, low soil temperature and a high water table limit their growth. Effects of flooding for 28 days on morphological and physiological responses were investigated in greenhouse-grown black spruce and tamarack seedlings in a growth chamber. Flooding reduced root hydraulic conductance, net assimilation rate and stomatal conductance, and increased water-use efficiency (WUE) and needle electrolyte leakage in both species. Although flooded black spruce seedlings maintained higher net assimilation rates and stomatal conductance than flooded tamarack seedlings, flooded tamarack seedlings were able to maintain higher root hydraulic conductance than flooded black spruce seedlings. Needles of flooded black spruce developed tip necrosis and electrolyte leakage after 14 days of flooding, and these symptoms were subsequently more prominent than in needles of flooded tamarack seedlings. Flooded tamarack seedlings exhibited no visible injury symptoms and developed hypertrophied lenticels at their stem base. Application of exogenous ethylene resulted in a significant reduction in net assimilation, stomatal conductance and root respiration, whereas root hydraulic conductivity increased in both species. Thus, although flooded black spruce seedlings maintained a higher stomatal conductance and net assimilation rate than tamarack seedlings, black spruce did not cope with the deleterious effects of prolonged soil flooding and exogenous ethylene as well as tamarack.  相似文献   

17.
We conducted field and pot experiments to investigate the effects of brassinolide on 1-year-old Robinia pseudoacacia L. seedlings. In the field experiment, seedling roots were soaked in brassinolide solutions containing 0–0.4 mg/l pure brassinolide before planting. Survival and growth of the seedlings were determined 8 months later. The results showed that soaking roots in brassinolide prior to planting significantly increased the survival and growth of seedlings. The best results were in the 0.2 mg/l brassinolide treatment. In the pot experiment, roots were soaked in 0–0.4 mg/l brassinolide before planting followed by a foliar application of brassinolide when the seedlings leafed out. After the seedlings were established, the soil water content in the pots was regulated to simulate drought conditions and various physiological parameters were measured. The results showed that treatment with 0.2 mg/l brassinolide decreased the transpiration rate, stomatal conductance and malondialdehyde (MDA) content of seedlings growing under moderate or severe water stress compared to untreated seedlings. Leaf water content, predawn water potential, soluble sugar content, free proline content, and superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities were all greater in water-stressed seedlings in the 0.2 mg/l brassinolide treatment compared to the control. The results indicate that the application of brassinolide can ameliorate the effects of water stress and enhance drought resistance of Robinia seedlings. Treatment of seedlings with brassinolide may be a useful management tool for afforestation projects in arid and semiarid areas.  相似文献   

18.
The aim of this research was to study the changes in net photosynthesis and stomatal conductance values in 3‐year‐old cork oak and holm oak seedlings growing in natural conditions and inoculated with Apiognomonia quercina, Biscogniauxia mediterranea, Botryosphaeria corticola and Pleurophoma cava. Throughout the 4‐month experimental period, the evolution of visual external symptoms and the values of physiological variables were periodically recorded. All pathogens caused stem lesions around the infection point; however, the lesions caused by B. corticola were longer in both oak species. On cork oak seedlings, all pathogens induced a significant and gradual reduction in net photosynthesis and stomatal conductance values, whereas other physiological disturbances were induced only by B. corticola infections on holm oak seedlings.  相似文献   

19.
《Southern Forests》2013,75(3):105-111
This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (g s) and stomatal density differ between the clonal hybrids across seasons and in response to water stress. Plants from one E. grandis × E. camaldulensis (GC) and two E. grandis × E. urophylla (GU1 and GU2) clones were grown for 18 months in 80 l planting bags. Plants were subjected to three watering treatments: control (100% field capacity), chronic water stress (maintained at 15% of field capacity) and acute water stress (cyclic water stress, where water was withheld until leaf wilting point, and a subsequent period of recovery followed). Stomatal conductance was measured after 6, 12 and 18 months growth. At 12 months of age, the recovery of g s 1, 2 and 7 d after rewatering (following acute water stress) was further investigated. The GC hybrid showed consistently higher g s than the GU clones at each measurement period. Stomatal conductance was 24–66% higher during winter (after 12 months growth) than during summer. The recovery of stomatal conductance from acute water stress was more rapid in the GC clone than the GU clones. Chronic water stress was shown to decrease g s in GU clones by up to 70%, but not in the GC clone. Water stress did not affect stomatal density or size. Remarkably, stomata were absent from the adaxial leaf surface of clone GU1 leaves, but not from the leaves of the other E. urophylla hybrid cross (GU2). Total biomass of the GC clone was significantly greater at 9 months growth, but after 18 months growth the GU1 clone had attained greater biomass accumulation (although not significantly). Measurement of g s, transpiration, stomatal density and total biomass in the GU1 clone indicated stomatal sensitivity to water stress, a favourable trait during periods of drought. The differing growth strategies of the GU and GC clones could be partially explained by their differences in stomatal sensitivity in response to water stress.  相似文献   

20.
Leaf conductance, water relations, growth, and abscisic acid (ABA) concentrations in xylem sap, root apices and leaves were assessed in oak seedlings (Quercus robur L.) grown with a root system divided between two compartments and subjected to one of four treatments: (a) well watered, WW; (b) half of root system exposed to soil drying and half kept well watered, WD; (c) whole root system exposed to drought, DD; and (d) half of root system severed, RE. Sharp decreases in plant stomatal conductance, leaf water potential, hydraulic conductance and leaf growth were observed during DD treatment. No significant differences in plant leaf water potential and stomatal conductance were detected between the WW and WD treatments. Nevertheless, the WD treatment resulted in inhibition of leaf expansion and stimulation of root elongation only in the well-watered compartment. Abscisic acid concentrations did not change in leaves, root tips, or xylem sap of WD- compared to WW-treated plants. Increased concentrations of ABA were observed in xylem sap from DD-treated plant roots, but the total flux of ABA to shoots was reduced compared to that in WW-treated plants, because of decreases in transpiration flux. Similar plant responses to the WD and RE treatments indicate that the responses observed in the WD-treated plants were probably not triggered by a positive signal originating from drying roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号