首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Abstract

Two types of soils (Brown Lowland soil and Ando soil), which were artificially enriched with different amounts of Cu, were incubated with or without pulverized orchard grass for 12 weeks at 25°C. For both soils with and without orchard grass amendment, the amount of CO2 evolved over the 12-week period of incubation decreased by the enrichment with Cu at a concentration exceeding 1,000 mg kg?1 soil. The decrease of the mineralization of added orchard grass in the Cu-enriched soil was conspicuous especially during the initial period of incubation. The amount of microbial biomass C at the end of the incubation was significantly reduced by the Cu enrichment regardless of the amendment with orchard grass. The relative decrease of the soil microbial biomass was much greater than that of the soil respiration. The amount of biomass C was negatively correlated with the amount of 0.1 M CaCl2-extractable Cu as a logarithmic function. On the other hand, the β-glucosidase activity at the end of the incubation was not significantly affected by the presence of Cu in the soils without orchard grass amendment and increased with the increase in the amount of enriched Cu in the orchard grass-amended soils.  相似文献   

2.
The aim of this work was to investigate the response of soil microbial biomass and activity to practices in organic and conventional farming systems. The study was carried out at the Irrigation District of Piauí, Brazil. Five different plots planted with “acerola” orchard (Malpighia glaba) and established at the following management were evaluated: (1) under 12 months of soil conventional management (CNV); (2) under six months of soil organic management (ORG6); (3) under 12 months of soil organic management (ORG12); (4) under 18 months of soil organic management (ORG18); and (5) under 24 months of soil organic management (ORG24). Soil microbial biomass C (Cmic), basal respiration, organic carbon (Corg), Cmic-to-Corg ratio and metabolic quotient (qCO2) were evaluated in soil samples collected at 0–10 cm depth. The highest Corg and Cmic levels occurred in organic system plots ORG18 and ORG24 compared to the conventional system. Soil respiration and Cmic-to-Corg ratio were significantly enhanced by the organic system plots. The qCO2 was greater in conventional than in organic system. These results indicate that the organic practices rapidly improved soil microbial characteristics and slowly increase soil organic C.  相似文献   

3.
4.
The following parameters were measured on seven field plots at 3 sites which had been under organic farming for different periods of time: mineral nitrogen (N min) contents, in situ net nitrogen mineralization (N net), soil microbial biomass carbon (C mic), and nitrogen (N mic) contents, and extractable organic N contents. The measurements were conducted every three weeks from spring 1995/1996 to autumn 1997. The objective was to test whether, under organic farming: 1) temporal fluctuations of Nmic contents over the course of the year are indicative for a source‐and‐sink function for plant‐available N of the soil microbial biomass, and 2) temporal variations in Nmic content can be related with in situ Nnet or plant N uptake. Nmin contents gradually increased after ploughing in autumn until late winter. During intensive plant growth in spring, values rapidly declined. In situ Nnet fluctuated only moderately and reached high values during intensive plant growth (May—July) as well as after soil cultivation in autumn. The Cmic and Nmic contents generally were low in winter, increased in spring and reached maxima in late spring or summer. In spring, the increase in Cmic contents preceded the increase in Nmic contents, resulting in elevated Cmic:Nmic ratios until shooting of winter wheat. This corresponds to an uptake of available soil nitrogen by the plants at the expense of soil micro‐organisms. The subsequent increase in Nmic contents, coinciding with high plant N uptake rates, indicates an enhanced, plant‐induced N mobilization at that time. Possible mobilization mechanisms are discussed. Soil microbial biomass exerted a source‐and‐sink function for extractable organic N on some of the field plots. Estimates of in situ Nnet measurements were neither correlated significantly with soil microbial biomass N, Nmic flux, Nmic turnover, nor with plant N uptake. Lower Nmic turnover rates on 41 years versus 3 years organically managed fields indicate a stabilizing effect of organic farming on soil microflora.  相似文献   

5.
A comprehensive comparison about microbial community (bacterial, archaeal and fungal) response to different tillage managements in Northern China remain little studied, in this study we compared no-tillage (NT) versus conventional tillage (CT) management on topsoil microbial community diversity and composition in field experiment. We found that NT practice significantly increased the soil moisture content (SMC), bulk density, stocks of soil organic carbon (SOC), total nitrogen (TN), and microbial biomass carbon and nitrogen (P < 0.05). Moreover, higher levels of bacterial and archaeal alpha diversity were observed in NT relative to CT while unexpectedly, there was no significant difference found in fungal diversity between two treatments. The most pronounced shifts in the composition of the different microbial groups were found for the archaeal community, which followed by bacterial and fungal. NT practice markedly enhanced abundances of Proteobacteria (belongs to bacteria) phyla, Thaumarchaeota phyla (belongs to archaea) and Glomeromycota phyla (belongs to fungi). Redundancy analysis revealed that the factor that most closely correlated with bacterial, archaeal and fungal composition were SMC, TN and SOC, respectively. Considering NT enhanced both microbial composition and C storage in topsoil, we suggest that NT offers significant promise to improve topsoil health in this region.  相似文献   

6.
The use of gravel–sand mulch is a traditional water-conservation technique in the semi-arid Loess Plateau of North-western China. In this study, we investigated the 16-year effects of this mulch on soil physicochemical properties (total organic C, N and P; bulk density; Ca, Cu, Fe, Mg, Mn and Zn; soil texture; pH), microbial biomass C, N and P and enzymatic activities (peroxidase, dehydrogenase, invertase, β-glucosidase, alkaline phosphomonoesterase and urease) in a field trial in China's Gaolan County. We examined how these parameters changed after 7, 11 and 16 years of mulching. After 16 years, soil bulk density and sand content increased significantly. Soil Ca and Cu contents did not change significantly during the study period, but Fe, Mg, Mn and Zn contents all decreased significantly after 16 years. The total N increased significantly after 11 years, but total C and N both decreased dramatically and significantly after 16 years (by 22% and 13%, respectively, compared to the control). The mulch significantly increased microbial biomass C (by 29% after 11 years), with similar results for N and P, but these positive effects were lost after 16 years. Enzyme activities revealed changes in the soil microbial community over time; the mulch increased enzyme activities until 11 years, followed by a significant decrease that suggested degradation of soil quality after long-term mulching. The positive effects of the mulch (increasing soil temperature) could explain the high microbial biomass and enzyme activities after 11 years. However, long-term increases in soil bulk density and sand content (caused by mixing of the mulch layer with the surface soil) and a lack of inputs of organic matter (caused by the barrier created by the mulch layer) led to degradation of the soil after 16 years.  相似文献   

7.
8.
The impact of alley cropping on post-lignite mine soils developing from quaternary deposits after 9 years of recultivation was evaluated on the basis of microbial indicators, organic C and total N contents, and the isotope characteristics of soil C. Soils were sampled at the 0 to 3, 3 to 10, and 10 to 30 cm depths under black locust (Robinia pseudoacacia L.), poplar (Populus spp.), the transition zone and in the middle of alley under rye (Secale cereale). There was no significant effect of vegetation on microbial properties presumably, due to the high variability, whereas organic C and total N contents at the 0- to 3-cm layer were significantly higher under black locust and poplar than in the transition zone and rye field. Organic C total N contents, and basal respiration, microbial biomass, and microbial quotient decreased with soil depth. Soil organic C and total N contents were more than doubled after 9 years of recultivation, with annual C and N accretion rate of 162 g C org m−2 year−1 and 6 g N t m−2 year−1. Microbial properties indicated that the soils are in early stages of development; the C isotope characteristics confirmed that the sequestered C was predominantly from C3 plants of the alley cropping.  相似文献   

9.
It is difficult to obtain non-destructive information on the seasonal dynamics of earthworms in northern forest soils. To overcome this, we used a Rhizotron facility to compile 7 years of data on the activity of anecic (Lumbricus terrestris) and endogeic (Aporrectodea caliginosa complex) earthworms in two contrasting soil/plant community types. We hypothesized that L. terrestris burrows would be used for longer than a typical L. terrestris lifetime, and that the distribution and activity pattern of the two earthworm species would respond differently to changes in soil moisture and temperature. For 7 years we recorded earthworm distribution and activity state bi-weekly to a depth of 1.5 m, tracked L. terrestris burrows using images captured annually, and measured soil temperature and moisture. Activity and vertical distribution of earthworms was closely linked to earthworm species and soil temperature in the fall, winter and spring. Lumbricus terrestris typically remained active through the winter, whereas the A. caliginosa complex was more likely to enter an aestivation period. Activity of all earthworms decreased substantially in July and August when soil temperature was at its highest and soil moisture at its lowest for the year. Most L. terrestris burrows were used continuously and moved very little during the 7-year study, likely creating spatiotemporally stable hotspots of soil resources. The different patterns of response of these species to soil temperature and moisture suggests that endogeic earthworms are more likely than anecic earthworms to adjust activity states in response to climate change mediated shifts in soil moisture and temperature.  相似文献   

10.
 This study was carried out to investigate the effect of very high cadmium concentrations (50 and 500 μg Cd g–1 soil) on some biochemical and microbiological measurements under laboratory conditions involving daily soil samplings. The data for both DTPA- and water-soluble Cd showed two distinctive patterns during soil incubation; from 0 to 4 days, values were about 50–500 and 1–100 μg g–1 dry weight soil, whereas they decreased markedly after 7 days. Both daily respiration and the ATP content but not the microbial biomass C determined by the fumigation–extraction method were lowered by high DTPA- and water-soluble Cd concentrations. Dehydrogenase and phosphatase activities as well as both enzyme activity : microbial biomass ratios were decreased by the high DTPA- and water-soluble Cd concentrations. In the first 2 days of incubation, the metabolic quotient (qCO2) was also decreased by the highest values of available Cd. The early (after 6 h) mineralization of l- but not d-glutamic acid to CO2 was inhibited during the 0–4 day incubation period by the highest Cd concentration. Possibly the l-enantiomer was used by a larger fraction of soil microorganisms than the d-enantiomer or, if they were used by the same fraction of soil microorganisms, the d-enantiomer was mineralized at a lower rate. The l- : d-glutamic acid respiration ratio was decreased by the high available Cd content because under polluted conditions soil microorganisms probably discriminated less between the two stereoisomers of glutamic acid. Received: 13 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号