首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Past metal mining has left a legacy of highly contaminated sediments representing a significant diffuse source of contamination to water bodies in the UK and worldwide. This paper presents the results of an integrated approach used to define the role of sediments in contributing to the dissolved lead (Pb) loading to surface water in a mining-impacted catchment.

Materials and methods

The Rookhope Burn catchment, northern England, UK is affected by historical mining and processing of lead ore. Quantitative geochemical loading determinations, measurements of interstitial water chemistry from the stream hyporheic zone and inundation tests of bank sediments were carried out.

Results and discussion

High concentrations of Pb in the sediments from the catchment, identified from the British Geological Survey Geochemical Baseline Survey of the Environment (GBASE) data, demonstrate both the impact of mineralisation and widespread historical mining. The results from stream water show that the stream Pb load increased in the lower part of the catchment, without any apparent or significant contribution of point sources of Pb to the stream. Relative to surface water, the interstitial water of the hyporheic zone contained high concentrations of dissolved Pb in the lower reaches of the Rookhope Burn catchment, downstream of a former mine washing plant. Concentrations of 56???g?l?1 of dissolved Pb in the interstitial water of the hyporheic zone may be a major cause of the deterioration of fish habitats in the stream and be regarded as a serious risk to the target of good ecological status as defined in the European Water Framework Directive. Inundation tests provide an indication that bank sediments have the potential to contribute dissolved Pb to surface water.

Conclusions

The determination of Pb in the interstitial water and in the inundation water, taken with water Pb mass balance and sediment Pb distribution maps at the catchment scale, implicate the contaminated sediments as a large Pb supply to surface water. Assessment of these diffuse contaminant sources is critical for the successful management of mining-impacted catchments.  相似文献   

2.

Purpose

The heavy metal lead (Pb) is toxic to living organisms. Forest soils are important sinks for heavy metals generated by human activities. The forest at Dinghushan of southern China has experienced long-term exposure to atmospheric pollutants from the Pearl River Delta (PRD). The objectives of this research were (a) to determine the vertical and temporal distribution of Pb in the forest soil at Dinghushan, (b) to determine whether dilute acid extraction could be used to identify anthropogenic sources of Pb in forest soil, and (c) to determine the main anthropogenic contributors to soil Pb.

Materials and methods

Lead concentrations and isotopes were measured in two sets of forest soil samples. One set consisted of archived samples from 0 to 20 cm depth collected annually from 1997 to 2010. The other set was collected throughout three profiles sampled at 5-cm intervals to the bedrock (85 cm depth) in 2011. The soil samples were air-dried, ground, and passed through a 100-mesh polyethylene sieve. Lead in the samples was digested with concentrated acid (HNO3?+?HClO4, 4:1?v/v) or extracted with dilute acid (1 M HCl with a soil/solution ratio of 1:10) and was measured with an inductively coupled plasma mass spectrometer.

Results and discussion

Concentrations of Pb obtained both by total digestion and dilute acid extraction decreased with soil depth in the profile samples and increased over time in the archived ones. Soils at 0–20 cm depth had Pb concentrations of more than twice of the local soil background value. In all soil samples, the 206/207Pb ratios was lower and the 206/204Pb, 207/204Pb, and 208/204Pb ratios were higher with the dilute acid extraction than with the strong-acid digestion, indicating that dilute acid extraction could be used to distinguish between anthropogenic and geogenic Pb. Comparison of the Pb isotope ratios in the samples with those in the main pollutants from the PRD indicated that coal combustion and industrial emission were the main contributors to the forest soil Pb at Dinghushan.

Conclusions

The forest soil (0–20 cm depth) at Dinghushan was contaminated by Pb. Dilute acid extraction could be used to identify anthropogenic Pb sources. From 1997 to 2010, the main contributors of anthropogenic Pb to the forest soil at Dinghushan were coal combustion and industrial emission. Measures that control Pb emission from coal combustion and industrial activity, changes in coal consumption, and re-adjustments of industry development in the PRD should reduce Pb contamination of forest soil.  相似文献   

3.

Purpose

The study area, located in Upper Silesian Industrial Region, was rich in significant amounts of ores that were classified of Mississippi Valley type. Being these ores especially rich in Pb and Zn, an intense development of mining and ore extraction industry was verified in this area. The goal of this study was to investigate how local pollution aureoles of As, Cd, Pb, and Zn were influenced by the presence of shallowly deposited ore-bearing dolomites.

Materials and methods

Very extensive sampling campaign was carried out, and over 1,000 samples were collected in the area of about 150?km2. Local aureoles of investigated metals were calculated for two soil layers. The first one covered the part of soil core from the soil surface to the depth of 20?cm and the second one from the depth of 40?cm to the depth of 60?cm. All spatial distributions of particular metals in soil were calculated by means of ordinary kriging using free softwares QGIS and SAGA.

Results and discussion

Maximum concentrations of Pb and Zn in soil in study area were very high, reaching over 24,000 and 77,000?mg/kg, respectively. Maximum concentrations of As and Cd were also very high, reaching about 1,000?mg/kg. Those maximum values were observed in the direct vicinity of the Boles?aw mine and its mine dumps. Almost all local aureoles were located within the range of ore-bearing dolomites. It was especially visible for Pb and Zn, minerals very common in ore deposits. Otherwise, local aureoles of As and Cd were more related with the vicinity of mines and other pollution sources, being more associated to the anthropogenic pollution than to the presence of ore-bearing dolomites.

Conclusions

The aureoles of Pb and Zn, and in moderate degree of As, were associated with a mineral composition of ores. Differently, the location, the shape, and spatial pattern of Cd aureoles suggest that they were mostly influenced by anthropogenic pollution. Anthropogenic factors were dominating over the lithogenic ones and masking the influence of the shallowly deposited ores.  相似文献   

4.

Purpose

The Qixia mine is one of the largest lead-zinc mines in Eastern China and has been operational for approximately 60 years. Source identification for trace element contamination of soils in the Qixia mining area has been lacking. This report details the evaluation and source identification of trace element contamination (including Cu, Zn, Pb, Cd, Hg, Cr, As, and Ni) of soils in this area.

Materials and methods

Thirty-three soil samples from roadsides and fields in the study area were collected and analyzed. The index of geo-accumulation (I geo) was employed to evaluate contamination. Methods of multivariate statistical analysis were used to determine the probable sources of the pollutants.

Results and discussion

The analysis showed that the levels of contamination ranked in the following order: Cd > Pb/Zn> > As/Cu> > Hg > Cr/Ni. In the sampling area nearest the mine, soil samples collected from roadsides showed much higher levels of contamination than those collected from fields away from the roadways. Trace element contamination decreased as the distance from the mine increased. Contamination extended to a distance of approximately 700 m from mineral transportation routes, with the area of greatest impact at 200 m or less. Multivariate statistical analysis and ore composition data suggest that the Cu, Zn, Pb, Cd, and As found in the soil samples originate from anthropogenic sources. Ni and Cr are considered to be at natural background concentrations.

Conclusions

This study distinguished between natural and anthropogenic sources of trace element contamination in the soils of the Qixia mining area. The contamination of Cu, Zn, Pb, Cd, and As is linked to the mining activities and is likely due to the transportation of ore concentrates and tailings.  相似文献   

5.

Purpose

Human exposure to particulate matter emitted from on-road motor vehicles includes complex mixtures of heavy metals from tyres, brakes, part wear, and resuspended road sediment. The purpose of this study was to determine the concentrations of 14 platinum-group and other traffic-related heavy metals in road sediment within the metropolitan area of Guangzhou, China, with a view to identifying their sources and assessing the extent of anthropogenic influence on heavy metal contamination of road sediment.

Materials and methods

Thirty-five samples of road sediment were collected. The concentrations of Cr, Mn, Ni, Cu, Zn, La, Ce, Mo, Cd, Pb, Ba, and Rh were measured by inductively coupled plasma?Cmass spectrometry. Pt and Pd were analyzed by isotopic dilution?Cinductively coupled plasma?Cmass spectrometry. Multivariate statistical analysis and enrichment factor methods were employed to identify the sources of these heavy metals and to assess anthropogenic influences on their occurrence.

Results and discussion

The mean concentrations of Pt, Pd, Rh, Cr, Mn, Ni, Cu, Zn, La, Ce, Mo, Cd, Pb, and Ba in the road sediment samples were 68.24, 93.15, 23.85, 147.5, 712.3, 47.24, 177.5, 1254, 47.50, 96.62, 4.91, 3.00, 198.1, and 641.3?ng?g?1, respectively. Very weak to significant linear positive correlations were found among the various heavy metals. The elemental composition of road sediment was dominated by five principal components. Three clusters were identified through cluster analysis, and enrichment factors were calculated relative to soils in China. The sources and degree of contamination of the heavy metals are discussed based on the results.

Conclusions

The mean concentrations of heavy metals are higher than background values, especially for Pt, Pd, Rh, Cd, and Zn. Four main sources are identified: (1) Pt, Pd, and Rh were derived from traffic sources; (2) La, Ce, Mn, and Ba were derived mainly from natural sources; (3) Cr, Ni, Cu, Mo, Cd, and Pb showed mixed traffic-industry sources; and (4) Zn originated mainly from industrial sources. Enrichment factor analysis supported this source identification and further indicated that contamination of road sediment in Guangzhou is extremely high for Pt, Pd, and Rh; moderate to very high for Cd, Zn, Pb, Cu, and Mo; and minimal for Cr, Ni, La, Ce, and Ba.  相似文献   

6.

Purpose

The metal concentrations and Pb isotopic composition in sediments and plants from the Xiangjiang River, China, were investigated to understand the contamination and potential toxicity of metals in sediments; to determine the accumulation and distribution of metals in plant tissues; and to trace the possible pollution source of Pb in sediments and plants.

Materials and methods

Sediments and plants were collected from 43 sampling sites in the study region. After sediments were air-dried and passed through a 63-??m sieve, they were acid-digested and DTPA-extracted for determination of total and bioavailable metals. The plants were separated into roots, leaves, and stems; dried; cut into pieces; and digested with HNO3?CH2O2. Metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) and Pb isotopic composition were analyzed by inductively coupled plasma-mass spectrometry.

Results and discussion

Maximum As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in sediments were 47.18, 55.81, 129.5, 161.6, 160.4, 430.7, and 1,098.8?mg?kg?1, respectively. The bioavailable fractions of As, Cd, Cu, Pb, and Zn had significant linear relationship with their corresponding total contents in sediments while no significant relationship was observed between bioavailable and total contents of Cr and Ni. In general, plant tissues showed higher As, Cd, Cu, Pb, and Zn concentrations and lower Cr and Ni concentrations compared with sediments. The 206Pb/207Pb ratios decreased in the order of total > bioavailable > stems ?? leaves > roots. A strong linear correlation was observed between the 208Pb/206Pb and 206Pb/207Pb ratios of the plant tissues, sediments, and the possible pollution sources of Pb in the Xiangjiang River.

Conclusions

As, Cd, Cu, Pb, and Zn demonstrated higher contamination levels in sediments and plants compared with Cr and Ni. Cd had highest potential ecological risk. The Pb from anthropogenic sources with low 206Pb/207Pb ratios was preferentially associated with the bioavailable fractions in sediments and accumulated in roots. The Pb in plant tissues is mainly derived from the Pb in sediment and is taken up through the sediment-to-root pathway.  相似文献   

7.

Purpose

The concentration of human activities in urban systems generally leads to urban environmental contamination. Beijing is one of ancient and biggest cities on the world. However, information is limited on Beijing’s soil contamination, especially for roadside and campus soils. Thus, the aims of this study were to investigate the contents and chemical forms of toxic heavy metals Cd, Cr, Cu, Ni, Pb, and Zn in the road-surface dust, roadside soils, and school campus soils of Beijing. In addition, enrichment and spatial variation of these toxic heavy metals in the soils and dust were assessed.

Materials and methods

Topsoil samples were collected from the schools and roadside adjacent to main ring roads, and dust samples were collected from the surface of the main ring roads of Beijing. These samples were analyzed for total contents and chemical forms of Cd, Cr, Cu, Ni, Pb, Sc, Zn, Al, and Fe. Enrichment factors (EFs, relative to the background content) were calculated to evaluate the effect of human activities on the toxic heavy metals in soils.

Results and discussion

Heavy metal contents in the road dust ranged from 0.16 to 0.80, 52.2 to 180.7, 18.4 to 182.8, 11.9 to 47.4, 23.0 to 268.3, and 85.7 to 980.9 mg kg?1 for Cd, Cr, Cu, Ni, Pb, and Zn, respectively. In the roadside soil and school soil, Cd, Cr, Cu, Ni, Pb, and Zn contents ranged from 0.13 to 0.42, 46.1 to 82.4, 22.7 to 71.6, 20.7 to 29.2, 23.2 to 180.7, and 64.5 to 217.3 mg kg?1, respectively. The average EF values of these metals were significantly higher in the dust than in the soils. In addition, the average EF values of Cd, Cu, Pb, and Zn in the soils near second ring road were significantly higher than those near third, fourth, and fifth ring roads. Anthropogenic Cd, Pb, and Zn were mainly bound to the carbonates and soil organic matter, while anthropogenic Cu was mainly bound to oxides. The mobility and bioavailability of these metals in the urban soils of Beijing generally decreased in the following order: Cd?>?Zn?>?Pb?>?Cu?>?Ni?>?Cr; while in the dust, they decreased in the following order: Zn, Cu, and Cd?>?Pb?>?Ni?>?Cr.

Conclusions

Both EF and chemical forms documented that Cr and Ni in the soils and dust mainly originated from native sources, while Cd, Cu, Pb, and Zn partially originated from anthropogenic sources. In overall, Beijing’s road dust was significantly contaminated by Cd and Cu and moderately contaminated by Cr, Pb, and Zn, while Beijing’s roadside soil and school soil were moderately contaminated by Cd and Pb. However, the maximal hazard quotients (HQs) for individual Cd, Cr, Cu, Ni, Pb, and Zn and comprehensive hazard index (HI) of these metals in the dust and soil were less than 1, indicating that the heavy metals in the dust and soil generally do not pose potential health effects to children, sensitive population.  相似文献   

8.

Purpose

Metal distribution patterns among geochemical fractions are informative for metal phytoavailability. Compost added to polluted soils may adsorb metals on the less phytoavailable fractions. A bioassay experiment was conducted to establish possible correlations between metal concentrations in different soil fractions and metal contents in edible plant parts and to investigate the influence of different compost loads on heavy metal availability to plants.

Materials and methods

Chinese cabbage plants were grown in pots with sandy and clayey soils and soils mixed with different doses of biosolid compost spiked with soluble heavy metal salts (Cd, Cu, and Pb). The metals’ distribution pattern in the soil and mixed samples was determined by sequential extraction procedure (modified BCR protocol). The studied fractions, from most to least bioavailable, were water-extractable (WE), exchangeable-adsorbed (EXC), associated with carbonates and acetic acid-soluble forms (CARB), occluded by reducible (hydro)oxides of Fe and Mn (RO), and associated with organic matter (OM) and a residual fraction (RES). Metal concentrations in soil extracts and in the digested plant tissue were measured by ICP-AES.

Results and discussion

The highest compost doses (72 and 115 Mg ha?1) enhanced cabbage yield significantly. No excessive phytoaccumulation of metals was observed in plants grown in the clayey soil or its mixtures with compost. The compost dose of 72 Mg ha?1 was optimal in decreasing Cu accumulation by plants grown in sandy soil, and 28.8 Mg ha?1 was found to be effective in reducing Cd and Pb uptake. Metals were accumulated in plants primarily from the WE, EXC, and CARB fractions, whereas other fractions decreased phytoaccumulation. Compost addition suppressed heavy metal mobility, but different fractions were active in pollutant sorption, depending on soil type and metal.

Conclusions

Compost addition increased metal proportions in the RO and OM fractions, reducing metal phytoavailability. This is especially important for sandy soils with low adsorption ability and higher vulnerability to metal pollution than clayey soils. A compost dose of 20% v/v (or 28.8 Mg ha?1) effectively reduced plant accumulation of Cd and Pb. We propose using the first three steps of the modified BCR protocol as a three-step sequential-extraction procedure for the most phytoavailable fractions of heavy metal: WE, EXC, and CARB.  相似文献   

9.

Purpose

Regional contamination of southern Moravia (SE part of the Czech Republic) by trace metals and magnetic particles during the twentieth century was quantified in fluvial sediments of the Morava River. The influence of local pollution sources on regional contamination of the river sediments and the effect of sampling site heterogeneity were studied in sediment profiles with different lithologies.

Materials and methods

Hundreds of sediment samples were obtained from regulated channel banks and naturally inundated floodplains and proxy elemental analyses were carried out by energy dispersive X-ray fluorescence spectroscopy (ED XRF) and further calibrated by inductively coupled plasma mass spectrometry (ICP MS). Magnetic susceptibility was determined as a proxy for industrial contamination. The age model for the floodplain sediments was established from 137Cs and 210Pb dating. Trace metal contamination was assessed by establishing the lithological background values from floodplain profiles and calculating enrichment factors (EF) of trace metals (i.e. Pb, Zn, Cu) and magnetic susceptibility for the entire study area.

Results and discussion

Channel sediments are unsuitable for the reconstruction of historical regional contamination due to their lithological heterogeneity and the “chaotic” influence of local sources of contamination, as well as the possibility of geochemical mobility of pollutants. On the other hand, sediments from regulated river banks qualitatively reflected the actual, local contamination of the river system.

Conclusions

This approach allowed us to distinguish the influence of local sources of contamination by comparison with more spatially averaged contamination signals from distal floodplain profiles. The studied area is weakly contaminated (EF ~1–2), while individual sediment strata from regulated channel banks reflect local sources of contamination and contain up to several times higher concentrations of trace metals.  相似文献   

10.

Purpose

The establishment of geochemical baselines is essential for accurate evaluation of the present state of surface environments. In this study, normalization procedures (NP), which can improve the explanation of the natural variation of elements, were conducted using geochemical common factors (GCF) and soil organic matter (SOM) as normalizers to define the geochemical baselines of soil trace elements.

Materials and methods

Soil samples (n?=?345) were collected in Luhe County, Jiangsu, China, a county with a complex geologic setting and intensive anthropogenic influence. Conservative elements, Al, Ca, Fe, K, Mg, Mn, Na, P, and Ti; trace elements, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn; and SOM were measured. Normalization procedures were conducted using multiple linear regressions between soil trace elements and SOM and GCFs, acquired from factor analysis of the soil major elements. Normalization procedures using univariate linear regressions between soil trace elements and conservative elements Al, Fe, and Ti were also conducted for comparison.

Results and discussion

Comparison of NPs using GCFs and SOM as normalizers with NPs, which use single conservative elements as normalizers, shows that the former is more accurate than the latter for As, Pb, and Zn and is as accurate for Cd, Cr, Cu, Hg, and Ni, when the most appropriate single conservative element is chosen. Small-scale geochemical baselines in the county are significantly different from regional-scale geochemical baselines for Jiangsu Province, China.

Conclusions

The application of regional-scale geochemical baselines at small scales may lead to estimation errors in determining anomalies and assessing environments. Baselines obtained from the NPs using GCFs and SOM as normalizers are more accurate.  相似文献   

11.

Background, aim, and scope

In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment–water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability.

Methodology

The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann–Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size.

Results and discussion

The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48–56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As.

Conclusions

The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon.

Recommendations and perspectives

These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights.  相似文献   

12.

Purpose

Almost 20 nuclear reactors are situated along the Rh?ne valley, representing Europe??s largest concentration of nuclear power plants. The fate of suspended sediments and natural and artificial particle-bound radionuclides in relation to extreme hydrological events was assessed at the lower course of the Rh?ne River, which provides the main source of water and sediment inputs to the northwestern Mediterranean Sea.

Materials and methods

We sampled water at a high frequency over the period 2001?C2008 and measured suspended particulate matter (SPM) loads and particle-bound natural and artificial radionuclide concentrations at the SORA observatory station in Arles, France. We monitored various hydrological events (either natural or anthropogenic origin) and characterize their influence on concentrations and fluxes.

Results and discussion

The relationship between SPM concentration and the very wide range of water discharges did not differ significantly from previous periods, indicating no significant shift in the average sediment delivery over the last 20?years. Unexpected hydrological events of anthropogenic origin, in particular those associated with flushing of reservoirs that are generally not captured by sampling strategies, were recorded and were shown to transfer significant additional sediment and associated contaminants towards the marine environment. Concentrations of anthropogenic radionuclides associated with sediment (i.e., 137Cs, 60Co, 54Mn, 110mAg, and Pu isotopes) varied over two to three orders of magnitude during periods of low and moderate flow due to variations in the liquid release from nuclear facilities. Except for Pu isotopes, the concentrations of the various particle-bound radionuclides generally showed a decreasing trend with increasing discharge, revealing the geochemical or anthropogenic background values, and providing a useful flood fingerprint for this large fluvial system before its entry into the marine environment.

Conclusions

Our approach produced key data on the level and fate of suspended solids and radionuclide concentrations during flood events occurring in a large river system that could be contaminated by chronic or accidental radioactive releases. These results are of fundamental importance for further interpretations of sediment dynamics at the river mouth.  相似文献   

13.
The objectives of this study are to assessδ 34S as a tracer of anthropogenic SO 4 2? in groundwater and to document geochemical interactions that take place as a result of industrial SO 4 2? loading. During four separate sampling excursions, groundwater samples were obtained from 13 piezometers which surround the elemental S storage blocks at a processing facility for sour (H2S) natural gas in Alberta, Canada. Each sample was analyzed forδ 34Ssulfate,δ 18Osulfate,δ 18Owater,δDwater, major aqueous species, alkalinity, pH, temperature and dissolved O2. Hydraulic head measurements were taken to define the groundwater flow field. In the study area, anthropogenic SO 4 2? has aδ 34S of approximately +18‰ (CDT), while natural groundwater SO 4 2? is depleted to about ?12%. Low activity of sulfate reducing bacteria in the groundwater at this site assures thatδ 34S is a conservative tracer. Groundwater SO 4 2? concentrations increase asδ 34S approaches +18‰, suggesting that elevated SO 4 2? concentrations are due to S released by sour gas processing. Acidic waters generated by the oxidation of industrial S from the gas plant are neutralized by rock-water reactions.  相似文献   

14.

Purpose

Heavy metal content in soils could be a consequence of geogenic and different anthropogenic sources. In ancient times, soils in the Mediterranean region were affected by agriculture and viticulture, whereas more recently, industry and traffic might contribute more to their pollution. The aim of the study is to determine the extent of multisource heavy metal pollution in soils within the Koper area.

Materials and methods

Along the northern Adriatic Sea coast, around the port city of Koper/Capodistria, 24 topsoil samples were collected; sets of six samples representing four possible pollution sources: intensive agriculture, viticulture, port activities and industry. The parent material of the soil is mainly derived from the Eocene flysch weathered marls and calcarenites and the soil types are eutric. The chemical composition of the samples was determined by ICP-ES for oxides and several minor elements and by ICP-MS for heavy metals. The mineral composition of the selected samples was checked using X-ray powder diffraction. Different statistical analyses were performed on the normally distributed data.

Results and discussion

The mean concentrations of all samples are: Cr 215 mg kg?1, Ni 81 mg kg?1, Zn 67 mg kg?1, Cu 44 mg kg?1 and Pb and Co 18 mg kg?1. The ANOVA showed significant differences only in CaO, C/TOT, P2O5, Co and Pb between those locations within reach of the different contamination sources. The observed average values of heavy metals are well below Slovenia’s Directive limit for Cu, Pb and Zn, close to but not above it for Co and above the action value for Cr and Ni. According to Igeo, soils from all the sampling locations are uncontaminated with Co, Ni and Pb, and uncontaminated to moderately contaminated with Cu and Zn at one port location, and with Cr at all locations.

Conclusions

The very high Cr and Ni levels could still be geogenic because soils developed on Eocene flysch rocks are enriched in both metals. Cr and Ni are not correlated because of their different levels of sorption and retention in carbonate soils. Cr was retained and concentrated in the sand fraction but Ni has been mobilised in solution. The only serious threat to the environment seems to be an illegal waste dumping area near the port.  相似文献   

15.

Purpose

Heavy metals in agricultural soils readily enter the food chain when taken up by plants, but there have been few investigations of heavy metal pressure in farming areas with low background concentrations. This study was carried out in a cultivation area of Northeast China that has undergone decades of intensive farming, with the aim of identifying the sources of accumulated heavy metals in agricultural soils using multivariate analysis and geographic information system (GIS).

Materials and methods

In 2011, concentrations of total iron (Fe), manganese (Mn), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr) and cobalt (Co), as well as soil pH and organic matter, were measured at 149 sites in arable soils in the study area. The principal component analysis (PCA) was employed to extract hidden subsets from the raw dataset in order to detect possible sources. Metal contents in soils from various croplands were further investigated using analysis of variance. With the Kriging interpolation method, GIS was used to display the PCA results spatially to explore the influence of land use on heavy metal accumulation.

Results and discussion

Most of the studied metals in arable soils of the study area were shown to have low concentrations, except for Cd (0.241 mg?kg?1). According to the results of the PCA analysis, Fe, Mn, Pb, Zn, Cd, and Co formed the first component (PC1) explaining 40.1 % of the total variance. The source of these metals was attributed to farming practices (“anthropogenic” factor). Cu, Ni, and Cr fell into the second component (PC2), heavy metals that derived from parent rock materials (“lithogetic” factor). This component describes 24.6 % of the total variance. Compared to paddy lands, soils in drylands had greater accumulations of all the metals in PC1, which can be explained by a higher rate of phosphorus fertilizer application and a longer farming history.

Conclusions

Owing to the natural low backgrounds, soils in the study area were safe from heavy metal pollution with a contamination risk of Cd the only exception. Multivariate analysis and GIS were effective means in helping to identify the sources of soil metals and addressing the land use influence on soil metals accumulation. This work can support the development of strategy and policies to aid in the prevention of widespread heavy metal contamination in area with characteristics similar to those of the study area.  相似文献   

16.

Purpose

Sugarcane waste products (boiler ash, filter cake, and vinasse) from an ethanol production plant were used as soil amendments by adding 3 % (w/w) in single and/or in combination, with a research focus towards stabilization of cadmium (Cd) and zinc (Zn) in contaminated soils. The objective of this laboratory study was to evaluate the effects of adding these sugarcane waste products on bioavailability of Cd and Zn over time (aging) in Cd- and Zn-contaminated agricultural soils of Thailand.

Materials and methods

Two agricultural contaminated soils of low (<3 mg kg?1) and high (10–15 mg kg?1) Cd concentrations were collected from Tak Province, Northwest Thailand. Fourteen treatments were sampled at 2-week intervals for 84 days for metal bioavailability using BCR extraction procedures (proposed by The Standards, Measurements and Testing Programme of the European Union, SM&T) that determined exchangeable (BCR1), reducible (BCR2), oxidizable (BCR3), and residual (BCR4) fractions, and total concentration was determined using aqua regia digestion and microwave digestion.

Results and discussion

Cd was potentially bioavailable, predominantly in exchangeable (BCR1) and reducible (BCR2) fractions, while the higher contribution of Zn was more prevalent in refractory fractions (BCR2 and BCR4). Aging had an influence on fractionation of Cd and Zn, most notably in the first two fractions (BCR1 and BCR2) of BCR sequential extraction, which resulted in reduction of exchangeable Cd during the first few weeks of incubation (T?=?0 to 28 days). At the end of pot experiment, the exchangeable Cd fraction in the low Cd (LCdS) soil was reduced from 2.3 to 4.7 % and 9.4 to 39.9 % in low and high Cd (HCdS)-contaminated soils, respectively, as compared to nonamended soils.

Conclusions

The observed reduction in exchangeable Cd (BCR1) in the amended soils at the 3 % (w/w) application rate, the low total metal concentrations, and the significant amount of essential plant nutrients (N, P, and K) within these waste products highlight the benefits of amending metal-rich soils with them.  相似文献   

17.
Lead-210 dating of peat cores is one approach that has been used to arrive at historical rates of heavy metal deposition. Despite concerns regarding the validity of210Pb dating due to Pb mobility,210Pb dating can be used if the dates are corroborated with some other independent dating technique. In this study, based on analyses of210Pb dated, pollen corroborated peat cores from two sites in the Czech Republic (Jezerní sla and Bo?í Dar Bog), we illustrate a previously unexplored problem concerning the computation of metal deposition, using Pb as an example. When peat cores are collected, sectioned into depth intervals,210Pb dated and analyzed for metal contents, the210Pb dates most appropriately correspond to the midpoint depth for each interval, whereas the metal contents correspond to the interval between the top and bottom of each section. Thus the210Pb dates and metal content values throughout the core are offset by half the distance of each depth interval. In calculating historical rates of heavy metal deposition two approaches are available for correcting for the depth interval offsets, the traditional approach of date interpolation and our newly proposed metal content interpolation. We see noa priori reason for choosing one approach over the other, and suggest simultaneous use of both date and metal content interpolation. Additionally, acid-insoluble ash (AIA), which has been proposed as a dating technique in and of itself, may be more useful as an interpretive tool which may provide insights into the nature or sources of atmospherically deposited Pb. For example, plots of Pb content per core section versus AIA content per core section for Jezerní slat, located in a relatively pristine area, reveal increased Pb content without increased AIA contents in depths shallower than 6 cm, indicating deposition of gasoline-derived Pb after its introduction in 1922. Similar plots for Bo?í Dar Bog, located in a polluted industrialized region, indicate greater inputs of Pb than would be predicted from AIA, based on the Jezerní sla analyses. We interpret the apparent excess Pb deposition at Bo?í Dar Bog as being contributed by soil-derived dust from local metal mining. Elevated rates in Pb deposition at Bo?í Dar Bog are consistent with the history of local mining known to have occurred in the vicinity. Finally, magnetic susceptibility measurements identify combustion of fossil fuels as a source of atmospheric Pb deposition at Bo?í Dar Bog, but not at Jezerní sla   相似文献   

18.

Purpose

In summer 2007, biweekly benthic fluxes of the biogenic elements carbon (C), nitrogen (N), silicon (Si), and phosphorus (P) were studied in the Se?ovlje saltern (salt-making facility) in the northern Adriatic Sea, Slovenia in order to determine the impact of stromatolite (??petola??) on the geochemical properties of saltern sediments.

Materials and methods

The brine and pore waters were analyzed for salinity, NH 4 + , NO 3 ? , PO 4 3? , SiO 4 4? , total dissolved nitrogen, total dissolved phosphorus, and fluorescent dissolved organic matter. The sediment was analyzed for organic carbon (OC), total nitrogen (TN), total and organic phosphorus (OP), and biogenic Si concentrations, as well as values of ?? 13COC and ?? 15NTN.

Results and discussion

Nutrient concentrations in brine water increased along the salinity gradient due to different processes, such as the evaporative concentrations of seawater, bacterial activity, more pronounced transformation and degradation of organic matter, and regeneration of nutrients. The petola from the Se?ovlje saltern, which is predominately composed of cyanobacterial and diatom communities, develops during the early evaporation stage and survives during high salinity and halite crystallization. Nitrogen fixation and P removal were the principal biogeochemical processes controlling dissolved inorganic N and P concentrations. At higher salinities, N limitation was more important. Microbes decomposed at higher salinities, and the remineralized N and P nutrients were released from surface pore waters to the brine. OP remineralization was also an important process influencing the distribution of PO 4 3? concentrations in pore waters deeper in the sediments. The increasing SiO 4 4? concentrations with increasing salinity in the brine waters were due to dissolution of diatom frustules, while the decrease in pore water SiO 4 4? was probably the consequence of microbial uptake.

Conclusions

This study provides a better understanding of nutrient cycling and the geochemical processes in the Se?ovlje saltern.  相似文献   

19.

Purpose

The Matylda catchment, in southern Poland, was polluted by the discharge of mine waters from a lead and zinc mine that inundated parts of a valley floor and caused the accumulation of metal-polluted sediments. After a partial reclamation of the mine site in the early 1980s, polluted sediments continue to accumulate on downstream floodplains and in fishponds. The aim of this study was to reconstruct the changes in metal dispersal during 100?years of mining and during the 40-year post-mining period and to propose a strategy for pollution mitigation in the area.

Materials and methods

Analyses of Cu, Cd, Pb, Zn, Mn, Ca, Mg and Fe concentrations, speciation of heavy metals and mineralogical analyses were undertaken on overbank sediment cores and in stream sediments. Concentrations of the same elements and macro-ions soluble in stream waters were also determined.

Results and discussion

Concentrations of Zn, Cd and Pb in the sediment profiles vary between 40,000 and 55,000, 300 and 600 and 30,000 and 50,000?mg?kg-1, respectively. Changes of metal concentrations and the stratigraphy of sediments from the floodplains, stream channels and fishponds suggest rapid changes of metal loads migrating downstream during both the mining and post-mining periods. Since the time of mine closure, fine-grained, mine-derived sediments (ca. 12?cm thick) have been the main source of pollution of post-mining sediments and surface waters. Closure of the mine was followed by a relatively short period of rapid redistribution of sediment-associated heavy metals in the stream channel. Since the 1980s, the floodplain and fishponds have received a constant supply of metals. It contrasts with the slow sediment accretion rate and a rapid decrease of metal concentrations in floodplain pools due to dilution by decomposed leaf litter. A fivefold increase of Cd content in waters over the 4.6?km reach of the Matylda stream indicates continuous leaching of this element from the contaminated valley floor.

Conclusions

Unsuccessful mine site rehabilitation is due to leaching of mine-originated sediments dispersed over the valley bottom. However, the rate of metal remobilization over the last 40?years is low because of the small thickness and widespread anoxic conditions that prevail within both recent and mine-originated sediments and the alkaline pH of stream water, which reduces metal mobility. Distribution of the contaminated layer over a large area of the valley bottom precludes cost-efficient catchment rehabilitation.  相似文献   

20.

Purpose

The main objective of this study was to evaluate the potential of a counter-current leaching process (CCLP) on 14 cycles with leachate treatment at the pilot scale for Pb, Cu, Sb, and Zn removal from the soil of a Canadian small-arms shooting range.

Materials and methods

The metal concentrations in the contaminated soil were 904?±?112 mg Cu kg–1, 8,550?±?940 mg Pb kg–1, 370?±?26 mg Sb kg–1, and 169?±?14 mg Zn kg–1. The CCLP includes three acid leaching steps (0.125 M H2SO4?+?4 M NaCl, pulp density (PD)?=?10 %, t?=?1 h, T?=?20 °C, total volume?=?20 L). The leachate treatment was performed using metal precipitation with a 5-M NaOH solution. The treated effluent was reused for the next metal leaching steps.

Results and discussion

The average metal removal yields were 80.9?±?2.3 % of Cu, 94.5?±?0.7 % of Pb, 51.1?±?4.8 % of Sb, and 43.9?±?3.9 % of Zn. Compared to a conventional leaching process, the CCLP allows a significant economy of water (24,500 L water per ton of soil), sulfuric acid (133 L H2SO4 t–1), NaCl (6,310 kg NaCl t–1), and NaOH (225 kg NaOH t–1). This corresponds to 82 %, 65 %, 90 %, and 75 % of reduction, respectively. The Toxicity Characteristic Leaching Procedure test, which was applied on the remediated soil, demonstrated a large decrease of the lead availability (0.8 mg Pb L–1) in comparison to the untreated soil (142 mg Pb L–1). The estimated total cost of this soil remediation process is 267 US$ t–1.

Conclusions

The CCLP process allows high removal yields for Pb and Cu and a significant reduction in water and chemical consumption. Further work should examine the extraction of Sb from small-arms shooting range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号