首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
监测并分析了单独或组合加入光合细菌、益生菌(酵母与乳杆菌)和芽孢杆菌后,对虾养殖池凌晨水体中氨氮和亚硝酸氮的变化。试验分为6组,即3个单独添加组(益生菌组、芽孢杆菌组、光合细菌组)和3个组合添加组(光合细菌与芽孢杆菌组、益生菌与芽孢杆菌组、光合细菌与益生菌组)。结果表明,添加微生物制剂后,益生菌组、芽孢杆菌组、光合细菌与芽孢杆菌组、益生菌与芽孢杆菌组池塘水体中总氨氮水平提高了41%~99.8%;而光合细菌组、光合细菌与益生菌组无显著性变化,但亚硝酸氮水平有所升高(107%~210%)。单独添加组水体中总氨氮水平的变化强弱顺序为芽孢杆菌>益生菌>光合细菌,组合添加组为芽孢杆菌与益生菌组>芽孢杆菌与光合细菌组>益生菌与光合细菌组。试验期间各组养殖池中总氨氮浓度为0.51~1.94 mg/L、亚硝酸氮水平为0.016~0.096 mg/L,均在安全浓度以下,说明添加微生物制剂未引起池塘氨氮和亚硝酸氮的毒性问题。  相似文献   

2.
枯草芽孢杆菌与腐植酸钠合剂净水效果的研究   总被引:1,自引:0,他引:1  
养殖水体中高含量氨氮和亚硝酸盐对水产动物有害。试验通过不同配比腐植酸钠与枯草芽孢杆菌(Bacillus subtili)混合剂处理模拟养殖污水,结果表明养殖水体投入10 mg/L腐植酸钠与1.2×10~3 cfu/mL枯草芽孢杆菌混合剂对水体中氨氮和亚硝酸盐的处理效果较好。  相似文献   

3.
四联活菌制剂对养殖水体中氨氮及亚硝酸盐的降解   总被引:3,自引:0,他引:3  
利用四联活菌制剂,在室内进行了对养殖池塘水体中氨氮及亚硝酸盐的降解试验.结果表明,光合细菌、纳豆芽孢杆菌、乳酸菌、硝化细菌具有较好的氨氮、亚硝酸盐降解性能,随着添加质量浓度的增加,氨氮、亚硝酸盐的去除率增加;各菌株氨氮降解能力依次为:乳酸菌>光合细菌>硝化细菌>纳豆芽孢杆菌;亚硝酸盐降解能力依次为:硝化细菌>纳豆芽孢杆菌>光合细菌>乳酸菌.四联活菌制剂对养殖水体中氨氮及亚硝酸盐降解试验结果表明,乳酸菌、光合细菌、硝化细菌、纳豆芽孢杆菌的协同作用对氨氮、亚硝酸盐的降解效果更显著、快速.当制剂添加量分别为1.5、3.0、4.5 kg/hm~2时,5 d氨氮的去除率分别为52%、80%、74%,亚硝酸盐的去除率接近100%,结果均显著高于添加同剂量单一菌株时的氨氮、亚硝酸盐的去除率.  相似文献   

4.
徐帅琳 《中国水产》2016,(10):112-115
正本实验研究了光合细菌、放线菌、枯草芽孢杆菌三种细菌优化配比成的复合功能菌去除养殖水体有机氮效果。结果表明,光合细菌、放线菌、枯草芽孢杆菌混合培养生态制剂能有效去除养殖水体中的有机氮,对高浓度的氨氮、亚硝酸盐氮的去除率可达99.6%和94%。  相似文献   

5.
益生菌在凡纳滨对虾育苗中的应用   总被引:5,自引:2,他引:5  
实验研究了在凡纳滨对虾育苗中添加益生菌(芽孢杆菌、光合细菌或芽孢杆菌 光合细菌)对水体中pH值、H2S、COD、NH 4N、NO-2N和幼体成活率的影响。结果表明:光合细菌对提高水体的pH值有一定作用,而芽孢杆菌对pH值无显著影响;益生菌能显著降低水体中的H2S、NH 4N和NO-2N含量,其中光合细菌去除H2S和NO-2N的效果略优于芽孢杆菌,而芽孢杆菌去除NH 4N的能力比光合细菌强;实验中COD均在较适宜范围,益生菌对COD无显著影响。5mg·L-1芽孢杆菌和1mg·L-1芽孢杆菌 10mg·L-1光合细菌能显著提高育苗成活率。在实验中,1mg·L-1芽孢杆菌 10mg·L-1光合细菌的综合效果最佳,芽孢杆菌和光合细菌具有协同作用。  相似文献   

6.
利用复合微生物降解养殖水体中亚硝酸盐的初步研究   总被引:4,自引:0,他引:4  
在养殖水体中对保存的芽孢杆菌、反硝化细菌、乳酸菌降解亚硝酸盐的能力进行比较,发现3种菌株对亚硝酸盐均能较好地降解,但降解速度不同,反硝化细菌>乳酸菌>芽孢杆菌;对3种菌株混合接种发现,具有较好净化水质效果的最佳接菌配比为芽孢杆菌∶反硝化细菌∶乳酸菌=1∶1∶2,在30℃、接种量为1%的条件下,以该配比接种亚硝酸盐,硝酸盐初始质量浓度分别为12.85、54.42mg/L的模拟养殖水体中,其亚硝酸盐、硝酸盐降解率在24h内均超99.99%,水体中的pH值显著降低,水体中的氨氮变化较小,可以实现对养殖水体的快速脱氮。  相似文献   

7.
放养密度和微生态制剂对施氏鲟养殖水质的影响   总被引:1,自引:0,他引:1  
将初始体质量(54.86±10.19)g的施氏鲟Acipenser schrenckii饲养在面积16m~2(4m×4m)、水深1.7~1.9m的陆基围隔中,密度分别为2 000尾/667m~2、3 000尾/667m~2、4 000尾/667m~2和5 000尾/667m~2,每个密度组均设3个平行,常规饲养,混合泼洒光合细菌、枯草芽孢杆菌和乳酸菌,第一次泼洒量为光合细菌50m L、枯草芽孢杆菌50g和乳酸菌50g,之后每5d泼洒第一次量的1/2,研究微生态制剂对静水土养殖池塘水质的影响。结果显示:水体中溶解氧量随养殖密度的增加逐渐降低(P0.05),氨氮、亚硝酸盐浓度随养殖密度的增加逐渐升高(P0.05)。在使用微孔增氧的条件下,泼洒微生态制剂对溶解氧量和氨氮浓度的影响不显著(P0.05),但显著降低了水体亚硝酸盐浓度(P0.05),显著增加了浮游动物生物量(P0.05)。  相似文献   

8.
固定化浓缩光合细菌对氨氮降解作用的研究   总被引:11,自引:0,他引:11       下载免费PDF全文
用光合细菌、固定化光合细菌、浓缩光合细菌、固定化浓缩光合细菌和芽孢杆菌对养殖用水进行处理,比较各种处理对养殖用水的氨氮降解效果。实验结果表明,浓缩光合细菌和固定化浓缩光合细菌对氨氮的降解作用较好,水体中的氨氮全程控制在0.60mg/L以下,达到了虾类养殖规范的要求。  相似文献   

9.
养殖水体中高效氨氮降解菌的分离与鉴定   总被引:13,自引:0,他引:13  
以(NH4)2SO4为惟一氮源的选择性培养基,从养鱼池水中分离筛选到1株高效氨氮降解菌X2。当NH4 -N初始质量浓度为50 mg/L时,该菌株在24 h内的氨氮降解率>95%,并具有硝酸还原和亚硝酸还原能力。初步鉴定该菌株为巨大芽孢杆菌(Bacillus megaterium)。  相似文献   

10.
将均重为18.0g的600尾异育银鲫鱼种(Allogygenetic crucian carp)随机分成10组,每组设2个重复,分别在其养殖水体中添加不同浓度(5×10~8、5×10~9、5×10~(10)cfu/m~3)的光合细菌、芽孢杆菌或1:1的光合细菌芽孢杆菌混合菌,饲养40d后,测定异育银鲫肠道和肝胰脏的蛋白酶、淀粉酶和脂肪酶的活性。结果表明,综合考虑芽孢杆菌和光合细菌对异育银鲫肠道和肝胰脏蛋白酶、淀粉酶和脂肪酶三者的影响,在本试验浓度范围内,浓度为5×10~9cfu/m~3的芽孢杆菌效果最好。  相似文献   

11.
为研究甘蔗渣作为载体填料用于海水曝气生物滤池中的可行性,在海水曝气生物滤池中培养生物膜,并以此为基础构建海水养殖排放水处理系统。通过监测水体总氨氮(TAN)、亚硝酸盐氮(NO2--N)等水质指标浓度变化,水体游离细菌与载体附着细菌密度变化,评价甘蔗渣载体生物滤池的降解效果。结果显示,以甘蔗渣为载体的生物滤池挂膜所需时间为26 d,挂膜完成后甘蔗渣附着可培养总菌和芽孢杆菌密度分别为3×108cfu/g和7.8×107cfu/g。在处理养殖水体时,生物滤池中水体氨氮和亚硝酸盐氮浓度分别控制在0.2 mg/L和0.05 mg/L以下,同时,水体中芽孢杆菌数量由3.3×103cfu/L增加至7×104cfu/L,弧菌数量由4.9×103cfu/L下降至3.1×101cfu/L。研究表明,以甘蔗渣为载体的海水曝气生物滤池能快速有效地完成挂膜,并在海水养殖排放水处理中取得较好效果。  相似文献   

12.
2019年春夏季在湖北省荆州市太湖农场长江大学稻虾种养基地(30°24’49"N,111°59’55"E)随机选取3个分设进、排水口的660 m2相同种养单元进行了田间试验。养殖沟(环沟)占地180 m2,进水口底部高于田面30 cm,排水口底部低于田面80 cm。4月6日开始,在养殖期设置3个处理:(1)施有机肥(OF),剂量为150kg/hm2/10d;(2)有机肥(等量)配施自制芽孢杆菌(OF+YB),剂量为30 L/hm2/10d;(3)有机肥(等量)配施自制光合细菌(OF+GH),剂量为30 L/hm2/10d,4月19日投放小龙虾(Procambarus clarkii)苗,密度为375 kg/hm2,研究芽孢杆菌与光合细菌对养虾稻田水质的调节作用。结果表明:在春季小龙虾养殖期以有机肥为底肥,配施光合细菌可有效改善水质,在养殖中后期可显著降低水体氨氮与亚硝态氮浓度;与单施有机肥相比,有机肥与芽孢杆菌和光合细菌配施均可提高小龙虾体质量24%和36...  相似文献   

13.
为探讨枯草芽孢杆菌(Bacillus subtilis)在鱼类养殖池塘中的生态作用,采用直接往养殖水体中投放该制剂的方法,研究分析微生物数量及其与环境因子的相关关系。结果显示,枯草芽孢杆菌,实验池数量为0.35×10~3~1.45×10~3cfu/m L,对照池为0.04×10~3~0.08×10~3cfu/m L;浮游植物生物量,实验池为0.094~1.521 mg/L,对照池为0.103~0.763 mg/L,实验池中枯草芽孢杆菌数量和浮游植物生物量均高于对照组。试验鱼塘中枯草芽孢杆菌与硅藻数量呈显著正相关,相关系数0.844(P0.05);当溶氧≥6 mg/L时,枯草芽孢杆菌与亚硝酸盐氮含量呈显著负相关,相关系数-0.915(P0.05)。溶氧过低(2 mg/L)时,枯草芽孢杆菌对亚硝酸盐氮、氨氮没有明显的降解作用;溶氧≥6 mg/L时,对亚硝酸盐氮、氨氮的降解作用明显。研究表明,投放适量浓度的枯草芽孢杆菌能有效改善养殖水体状况,对水质起到进一步净化作用。  相似文献   

14.
热带芽孢杆菌的筛选及对人工废水效果研究   总被引:1,自引:0,他引:1  
自海南热带海水养殖系统的底泥中筛选得到1株对人工废水净化效果明显的菌株L S‐1305,通过对菌落形态、16S rDNA、生理生化试验,鉴定该菌株为弯曲芽孢杆菌。研究了弯曲芽孢杆菌LS‐1305在人工废水中的生长特性及对凡纳滨对虾的安全性试验,并将密度为(2.5±0.3)×105 cf u/m L的弯曲芽孢杆菌L S‐1305活菌接种至化学需氧量、氨氮、亚硝酸盐初始质量浓度分别为(721.5±1.8) mg/L、(67.33±0.58) mg/L、68.56±2.08) mg/L的人工废水中,不间断充无菌空气培养48 h。最终建立了该菌株在人工废水中随时间的生长关系。试验结果表明,该菌株对凡纳滨对虾安全,该菌株对人工废水的化学需氧量、氨氮、亚硝酸盐的去除率分别为91.61%、86.21%、87.22%。弯曲芽孢杆菌L S‐1305具有显著改良海水养殖水体的潜在应用前景,为今后开发适合海南地区海水养殖环境的热带芽孢杆菌微生物制剂奠定了重要的基础。  相似文献   

15.
高原湖泊光合细菌处理水产养殖污水的初步研究   总被引:1,自引:0,他引:1  
从星云湖中分离并挑选出4株光合细菌,用于水产养殖污水的处理。实验表明:使用混合菌株和固定化混合菌株对污水的净化效果要比使用单一菌株好;且在不同环境条件下处理效果也不同,光照优于黑暗,接种量控制在1~5 mg/L时,处理效果较好;当温度低于15℃、NaC l投加量超过2 g/L、CuSO4的投加量高于0.4 mg/L时,处理效果明显下降。  相似文献   

16.
采取连续、多次等质量浓度更换抗生素的方法培养细菌,检测2株芽孢杆菌对庆大霉素、硫酸卡那霉素、盐酸四环素和氯霉素的敏感性变化.试验结果表明,抗生素质量浓度为1.0×10-4~1.0×10-12 mg/ml时,2株芽孢杆菌对4种抗生素均能产生耐药性,但在不同种类抗生素溶液中产生耐药性速度存在差异:2菌株对氯霉素产生耐药性速度较快,5次连续换药培养后细菌对该药的敏感性均降为0;在其余3种抗生素药液中变化较为接近,其中在庆大霉素中影响最小.连续使用的药物质量浓度对细菌药敏结果也会产生一定影响:培养前期,质量浓度越高,抑菌圈越大;后期抑菌圈大小趋于一致.  相似文献   

17.
养殖水体中微生物全程自养脱氮初步研究   总被引:1,自引:0,他引:1  
利用3种微生物对养殖水体的不同脱氮特性,研究了微生物对养殖水体的全自养脱氮.结果表明,水温25~30 ℃、pH 7.0~7.3及最大DO 3.5 mg/L时,光合细菌、枯草芽孢杆菌以1:1的接种水平,养殖水体中氨氮、亚硝酸盐氮的去除率分别为85.4%、89.5%,可以很好地实现对养殖水体的全自养脱氮.  相似文献   

18.
采集海水虾蟹养殖池底泥,在以(NH4)2SO4为唯一氮源的选择性培养基上分离得到17株细菌,利用纳氏试剂分光光度法测定其氨氮降解能力,筛选出降解率较高的菌株X14-1-1。该菌株在氨氮质量浓度50mg/L时,72h内使氨氮质量浓度降至1.65mg/L,降解率可达96.7%;在氨氮质量浓度5mg/L时,72h内降解率可达74.01%。采用盐酸萘乙二胺分光光度法测定其降解亚硝酸盐的能力,结果显示,菌株X14-1-1在72h对亚硝酸盐的降解率达到67.2%。该菌株为革兰氏阴性短杆菌,大小为1.47~2.54μm×0.37~0.53μm,平板菌落呈乳白色,圆形。通过形态观察、生理生化试验及16SrDNA鉴定,初步确定X14-1-1属食油假单胞菌,命名为Pseudomonas oleovorans X14-1-1。该菌株在海水养殖环境水质调节及养殖废水处理方面具有潜在的应用价值。  相似文献   

19.
自野生和养殖鱼体内分离出4株乳酸菌,分别为魏斯氏乳酸菌、植物乳杆菌、粪肠球菌和乳酸乳球菌。在水温25℃、盐度35及pH 8.3下,研究了用其单一菌株及混合菌株的菌体培养液和离心菌体去除实验室海水鱼类养殖系统水体中氨氮的效果,以不添加乳酸菌的处理为对照组。结果表明,菌体培养液和离心菌体对水体氨氮的降解效果相同。添加乳酸菌的处理组氨氮水平在24h后均比对照组显著下降,之后维持相对平稳水平。其中,魏斯氏乳酸菌处理的菌体培养和离心菌体组1~5d氨氮分别为0.13~0.10mg/L和0.15~0.10mg/L,24h降解率分别为41.48%和37.20%;植物乳杆菌处理组1~5d氨氮分别为0.15~0.08mg/L和0.16~0.08mg/L,24h降解率达35.10%和32.50%;粪肠球菌在1~5d氨氮分别为0.16~0.08mg/L和0.15~0.07mg/L,24h降解率分别为23.90%和29.27%;乳酸乳球菌在1~5d氨氮分别为0.16~0.08mg/L和0.18~0.08mg/L,24h降解率分别为29.70%和23.90%。混合菌株对氨氮降解效率总体低于单一菌株。渔源乳酸菌对养殖水体氨氮有不同程度降解作用,但菌株配伍需要根据菌株自身特性及营养源互补性进行科学配比。  相似文献   

20.
以光合细菌(Photosynthetic bacteria,P)和枯草芽孢杆菌(Bacillus subtilis,B)为实验菌种,研究两者最佳浓度配比的复合菌组对淡水养殖水质的净化作用。试验设置1个对照组(CK)和5个复合菌组(PB1、PB2、PB3、PB4、PB5),5个复合菌组浓度配比分别为(2.0×105+1.5×105)CFU/m L、(2.0×105+3.0×105)CFU/m L、(2.0×105+4.5×105)CFU/m L、(4.0×105+1.5×105)CFU/m L、(6.0×105+1.5×105)CFU/m L,分析各试验组的化学需氧量(COD)、氨氮(NH3-N)、溶解氧(DO)、p H等水质指标。结果显示:复合菌能够明显去除水体CODMn,PB2组去除率最高达,44.98%;能有效增加DO,PB2组增氧率最高,为27.9%;能明显去除氨氮,PB2组去除率最高达78%;并且能稳定p H值在8.6左右,5个复合菌组差异不显著(P0.01)。复合菌发挥最佳净化能力的时间约在6~8 d。结果表明,复合菌最佳浓度配比为(2.0×105+3.0×105)CFU/m L,该浓度组较对照组和其他试验组能够显著净化淡水养殖水质,有效改善养殖环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号