首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1998–99 and 1999–2000 six trials were conducted to evaluate the effect of fungicides on Fusarium head blight in the field, on infected kernels and deoxynivalenol (DON) concentration in grain. A single application of prochloraz, tebuconazole, epoxiconazole or bromuconazole, applied to durum wheat varieties at the manufacturer's recommended dose at the beginning of anthesis stage, provided good control of the disease when infective pressure in the field was low to medium, and when the main pathogens were F. graminearum and F. culmorum. Kresoxim-methyl showed a low efficacy at controlling the disease. Tebuconazole, prochloraz and bromuconazole were effective at controlling F. graminearum and F. culmorum, while kresoxim-methyl was not effective in reducing Fusarium infected kernels. DON concentration in grain of cultivars inoculated with F. graminearum and F. culmorum was high, averaging 4.2mgkg–1 (untreated control). Tebuconazole, prochloraz and bromuconazole reduced DON concentration by 43%, while epoxiconazole was ineffective. DON concentration in kernels of naturally infected cultivars was 1.95mgkg–1, a concentration which exceeds the 1mgkg–1 maximum level of contamination allowed in the United States. Furthermore prochloraz, bromuconazole and tebuconazole applications, in the naturally inoculated trials, reduced DON concentration from 73% to 96%, while epoxiconazole showed the lowest effectiveness. Moreover, a positive linear correlation between Fusarium infected grains and the DON concentration was observed.  相似文献   

2.
Strategies for the Control of Fusarium Head Blight in Cereals   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is a widespread and destructive disease of small grained cereals caused by a number of Fusarium species and Microdochium nivale. In addition to causing significant reductions in grain yield, FHB can result in the reduction of grain quality, either by affecting grain processing qualities or by producing a range of toxic metabolites that have adverse effects on humans and livestock. Control of FHB can be achieved by a number of cultural, biological and chemical strategies along with the exploitation of host plant resistance. In recent years, much of the research undertaken for the control of FHB has been concentrated on understanding and exploiting the genetic resistance of cereal plants to FHB-causing pathogens. Although, a brief overview of genetic resistance is presented, this review seeks to summarise the significance of FHB and review the effectiveness of cultural, biological and chemical control strategies that have been investigated for the control the disease.  相似文献   

3.
Fusarium head blight of wheat is caused by a disease complex comprised of toxigenic pathogens, predominantly Fusarium spp., and a non-toxigenic pathogen Microdochium nivale, which causes symptoms visually indistinguishable from Fusarium and is often included as a causal agent of Fusarium head blight. Four field trials are reported here, including both naturally and artificially inoculated trials in which the effect of fungicide treatments were noted on colonisation by Fusarium and Microdochium, and on the production of deoxynivalenol (DON) mycotoxin. The pathogen populations were analysed with quantitative PCR and samples were tested for the presence of the mycotoxin DON. Application of fungicides to reduce Fusarium head blight gave a differential control of these fungi. Tebuconazole selectively controlled F. culmorum and F. avenaceum and reduced levels of DON, but showed little control of M. nivale. Application of azoxystrobin, however, selectively controlled M. nivale and allowed greater colonisation by toxigenic Fusarium species. This treatment also lead to increased levels of DON detected. nobreak Azoxystrobin application two days post-inoculation increased the production of DON mycotoxin per unit of pathogen in an artificially inoculated field trial. This result indicates the potential risk of increased DON contamination of grain following treatment with azoxystrobin to control head blight in susceptible wheat cultivars. This is the first study to show differential fungicidal control of mixed natural pathogen populations and artificial inoculations in field trials.  相似文献   

4.
Fusarium head blight (FHB) is an important disease of wheat, which can result in the contamination of grains with mycotoxins such as deoxynivalenol (DON). Artificial inoculation of flowering ears with conidial suspensions is widely used to study FHB diseases. Our goal was to compare four inoculation treatments in which a conidial suspension was sprayed on flowering ears and to study the effect of the application of moisture during kernel setting and filling with a mist-irrigation system. Ten wheat genotypes were inoculated with a DON-producing Fusarium culmorum strain. Inoculation treatments varied in time of application of the inoculum (morning or evening) and in the method of controlling humidity during inoculation (bagging or mist irrigation). A wet season was simulated with a mist-irrigation system, keeping the crop canopy wet for at least 26 days after flowering. The severity of FHB symptoms (area under disease progress curve (AUDPC)), yield loss and DON contamination in the grains were determined. AUDPC data obtained with the different inoculation treatments were highly correlated (r=0.85–0.95). Mist irrigation after inoculation resulted in a higher mean disease severity, but in a overall lower toxin contamination as compared to the non-irrigated treatments. Genotypic differences in DON accumulation were present: for one wheat line toxin contamination significantly increased when irrigated, while two genotypes accumulated significantly less toxin. The closest relationships (r=0.73–0.89) between the visual symptoms and the DON content were obtained under moderate mean infection pressure. This relation between visual symptoms and the DON content deteriorated at higher infection levels.  相似文献   

5.
An in vitro detached leaf assay, involving the inoculation of detached leaves with Microdochium nivale, was further developed and used to compare with whole plant resistance ratings to Fusarium head blight (FHB) of 22 commercial cultivars and published information on 21 wheat genotypes, identified as potential sources for FHB resistance. An incubation temperature of 10 °C and isolates of M. nivale var. majus of intermediate pathogenicity were found to be the most suitable for the differential expression of several components of partial disease resistance (PDR), namely incubation period, latent period and lesion length, in wheat genotypes used in the detached leaf assay. There were highly significant differences (P < 0.001) for each component of PDR within commercial cultivars and CIMMYT genotypes. Positive correlations were found between incubation period and latent period (r = 0.606; P < 0.001 and r = 0.498; P < 0.001, respectively, for commercial cultivars and CIMMYT genotypes), inverse correlations between incubation period and lesion length (r = -0.466; P < 0.01 and r = –0.685; P < 0.001, respectively) and latent period and lesion length (r = –0.825; P < 0.001 and r = –0.848; P < 0.001, respectively). Spearman rank correlations between individual PDR components and UK 2003 recommended list ratings were significant for incubation period (rs = 0.53; P < 0.05) and latent period (rs = 0.70; P < 0.01) but not for lesion length (r s = –0.26). Commercial cultivars identified with high resistances across all three PDR components in the detached leaf assay also had high whole plant FHB resistance ratings, with the exception of cv. Tanker which is more susceptible than the results of the detached leaf assay suggested, indicating an additional susceptibility factor could be present. Agreement between resistances found in the detached leaf assay and resistance to FHB suggests resistances detected in detached leaves are under the same genetic control as much of the resistances expressed in the wheat head of the commercial cultivars evaluated. In contrast, high resistances in each of the PDR components were associated with higher susceptibility across 19 CIMMYT genotypes previously evaluated as potential breeding sources of FHB resistance (incubation period: r = 0.52; P < 0.01, latent period: r = 0.53; P < 0.01, lesion length: r = –0.49; P < 0.01). In particular, the CIMMYT genotypes E2 and E12 together with Summai #3, known to have high levels of whole plant FHB resistance, showed low levels of resistance in each PDR component in the detached leaf assay. Such whole plant resistances, which are highly effective and not detected by the detached leaf assay, do not appear to be present in Irish and UK commercial cultivars. The most resistant Irish and UK commercial cultivars were comparable to the genotype Frontana and the most resistant CIMMYT germplasm evaluated in the leaf assay.  相似文献   

6.
Fusarium head blight (FHB) of cereals is a disease complex. Fusarium graminearum is the major pathogen worldwide, while F. culmorum, F. avenaceum and F. poae are also associated with this disease. In addition to the true Fusarium species, Microdochium nivale may also cause head blight and is particularly prevalent where cooler, wetter conditions prevail. Other species such as F. sporotrichioides, F. equiseti and even F. verticillioides may also be of significance in particular situations. FHB is of particular concern because of the ability of the Fusarium species to produce mycotoxins in the grain that are harmful to human and animal consumers. The predominant mycotoxins within cereals are the trichothecenes, chiefly deoxynivalenol, nivalenol and their acetylated derivatives, along with T-2, HT-2, diacetoxyscirpenol and neosolaniol. This paper reviews the use of molecular techniques to identify the individual causal agents and to quantify their relative amounts within plant tissue. Diagnostic and quantitative polymerase chain reaction assays have been developed to detect and quantify individual fungal species within the disease complex and, where relevant, to differentiate between chemotypes within a single species. Assays to determine the type of toxin produced, or monitor the regulation of toxin production also provide valuable tools for understanding this disease. These techniques are being used to dissect the disease complex into its component parts in order to study interactions between the pathogens and their host and between the pathogens themselves as well as to determine the influence of environmental factors on the disease and the toxins produced by these fungi.  相似文献   

7.
Details of our long-term research programme concerning the epidemiology of Fusarium spp. and mycotoxin production are summarized. Evaluation of the occurrence of Fusarium spp., mainly on winter wheat (Triticum aestivum), was carried out by investigating Fusarium infection and mycotoxin contamination. Two to 15% of grains were infested during 1995–1998 at three climatologically differing localities of the Rhineland, Germany. Disease progress was accelerated by rainfall during the flowering season. The species most frequently isolated were Fusarium avenaceum, F. poae, F. culmorum and F. graminearum. The mean deoxynivalenol (DON) content varied from 19gkg–1 (1995) to 310gkg–1 (1998) and was not always correlated with disease severity. Organic farming systems showed lower rates of infection with ear blight and lower mycotoxin contamination than conventional farming systems.  相似文献   

8.
Data from a national survey were analysed to investigate whether there was interdependence among the Fusarium species, which cause the stem rot complex of wheat. About 25 wheat stems were sampled from each of 260 sites over the main wheat growing areas in the UK. Occurrence of each Fusarium species on individual stems was determined. Fusarium culmorum, F. avenaceum and Microdochium nivale were the three dominant species, detected in 248, 185 and 239 out of the 260 sites. There were no interactions among species in the distribution of the three species over the 260 sites. Several statistical tests were used to determine whether there was interdependence among the three species on the same stem within each site. Of the three species, there was only limited evidence of competition between F. culmorum and F. avenaceum.  相似文献   

9.
The Fusarium species predominantly found associated with Fusarium head blight (FHB) in wheat and other small-grain cereals all over Europe are F. graminearum, F. avenaceum and F. culmorum. Among the less frequently encountered species are several others which are less pathogenic or opportunistic, but also toxigenic. These include F. poae, F. cerealis F. equiseti F. sporotrichioides F. tricinctum and, to a lesser extent, F. acuminatum F. subglutinans F. solani F. oxysporum F. verticillioides F. semitectum and F. proliferatum. The species profile of FHB is due to several factors, primarily climatic conditions, particularly rain and the temperature at flowering stage, but also agronomic factors, such as soil cultivation, nitrogen fertilization, fungicides, crop rotation, and host genotype. The most frequently encountered Fusarium mycotoxins in FHB in Europe has proved to be deoxynivalenol and zearalenone produced by F. graminearum and F. culmorum with the former more common in southern (warmer) and the latter in northern (colder) European areas. Nivalenol was usually found associated with deoxynivalenol and its derivatives (mono-acetyldeoxynivalenols), together with fusarenone-X, formed by F. graminearum F. cerealis F. culmorum and, in northern areas, by F. poae. Moreover, from central to northern European countries, moniliformin has been consistently reported, as a consequence of the widespread distribution of F. avenaceum whereas the occurrence of T-2 toxin derivatives, such as T-2 toxin and HT-2 toxin, and diacetoxyscirpenol have been recorded in conjunction with sporadic epidemics of F. sporotrichioides and F. poae. Finally, beauvericin and various enniatins have recently been found in Finnish wheat colonized by F.avenaceum and F. poae.  相似文献   

10.
Inoculation experiments with 14 genotypes of oats (10 cultivars and 4 lines) were performed during 1996, 1997 and 1998 in Sitaniec, South-Eastern Poland. Panicles of oats were inoculated with a conidial suspension of Fusarium avenaceum, which caused a reduction in yield by 33% and in 1000 kernel weight (TKW) by 21%. During the period between inoculation and harvest, F. avenaceum was able to accumulate moniliformin (MON) in kernels at an average level of 0.13mgkg–1 (gg–1). The highest reduction of yield components caused by the F. avenaceum inoculation was found for cv. Santor, followed by lines CHD 1171, STH 2795 and cvs: Kwant and Farys, while cvs Slawko, Dukat, Borys and Komes exhibited the highest resistance to the disease in terms of TKW and yield reductions after inoculation.  相似文献   

11.
Fusarium head blight (FHB) is a complex cereal disease associated with trichothecene production; these mycotoxins are factors of aggressiveness in wheat. Six species (bread and durum wheat, triticale, rye, barley and oats) were submitted to point inoculations with two isogenic strains of Fusarium graminearum; a wild strain (Tri5 +) produced trichothecenes and the mutated strain (Tri5 –) did not. The trichothecene-producing strain was generally more aggressive than the non-producing strain, but this varied according to crop species. The difference in aggressiveness was less pronounced in rye, a very resistant species. High resistance levels were observed in oats due to the large spacing between florets. In six-row barley, despite the existence of a moderate Type II resistance, the fungus was often observed to move externally from one floret to another within the dense spike, without penetrating the rachis. Bread wheat had low resistance to the trichothecene-producing strain and good resistance to the non-producing strain. Triticale responded to the strains in a similar way but was somewhat more resistant to both: symptoms on the spikelets and rachis of the triticales were restricted to below the point of inoculation. Durum wheat was susceptible to the trichothecene-producing strain and only moderately resistant to the non-producing strain, which was able to cause serious damage only to this species. Our study confirmed that the role of trichothecenes in FHB pathogenesis differs among species. The failure of the trichothecene non-producing F. graminearum strain to spread within the inflorescence of wheat, triticale, rye and barley, and the significant reduction of spread in the durum wheat spike strongly suggested that trichothecenes are a major determinant of fungal spread and disease development in Triticeae.  相似文献   

12.
Gibberella zeae (anamorph Fusarium graminearum) is the main pathogen causing Fusarium head blight of wheat in Argentina. The objective of this study was to determine the vegetative compatibility groups (VCGs) and mycotoxin production (deoxynivalenol, nivalenol and 3-acetyl deoxynivalenol) by F. graminearum populations isolated from wheat in Argentina. VCGs were determined among 70 strains of F. graminearum isolated from three localities in Argentina, using nitrate non-utilizing (nit) mutants. Out of 367 nit mutants generated, 41% utilized both nitrite and hypoxanthine (nit1), 45% utilized hypoxanthine but not nitrite (nit3), 9% utilized nitrite but not hypoxanthine (NitM) and 5% utilized all the nitrogen sources (crn). The complementations were done by pairing the mutants on nitrate medium. Fifty-five different VCGs were identified and the overall VCG diversity (number of VCGs/number of isolates) averaged over the three locations was 0.78. Forty-eight strains were incompatible with all others, thus each of these strains constituted a unique VCG. Twenty-two strains were compatible with other isolates and were grouped in seven multimembers VCGs. Considering each population separately, the VCG diversity was 0.84, 0.81 and 1.0 for San Antonio de Areco, Alberti and Marcos Juarez, respectively. Toxin analysis revealed that of the 70 strains of F. graminearum tested, only 90% produced deoxynivalenol, 10% were able to produce deoxynivalenol and very low amounts of 3-acetyldeoxynivalenol. No isolate produced nivalenol. The results indicate a high degree of VCG diversity in the F. graminearum populations from wheat in Argentina. This diversity should be considered when screening wheat germplasm for Fusarium head blight resistance.  相似文献   

13.
Interactions between Barley yellow dwarf virus (BYDV) and Fusarium species causing Fusarium head blight (FHB) in winter wheat cvs Agent (susceptible to FHB) and Petrus (moderately resistant to FHB) were studied over three years (2001–2003) in outdoor pot experiments. FHB developed more rapidly in cv. Agent than in cv. Petrus. The spread of FHB was greater in BYDV-infected plants than in BYDV-free plants. Thousand grain weight (TGW) was reduced more in Fusarium-infected heads of cv. Agent than in cv. Petrus. A highly significant negative correlation was found between disease index and TGW in cv. Agent (r = −0.916), while in cv. Petrus the correlation was less significant (r = −0.765). Virus infection reduced TGW in cv. Petrus more than in cv. Agent. In plants with both infections, TGW reductions in cv. Petrus corresponded to those of BYDV infection, and in cv. Agent TGW was more diminished than in BYDV infection. Effects of different treatments determined over three years on ergosterol contents in grain were generally similar to effects on disease indices. Grain weight per ear and ear weight of the different treatments of both cultivars largely corresponded with the TGW results. Deoxynivalenol (DON) content in grain of cv. Agent infected with Fusarium spp. was 11–25 times higher compared to the corresponding treatments in cv. Petrus. The DON content in grain of plants of the two cultivars infected with both pathogens was higher than that of plants infected only with Fusarium over the three years.  相似文献   

14.
Carbendazim-resistant (RS) and control (CS) strains ofFusarium sporotrichioides Sherb., previously developed in our laboratory, were exposed to graded concentrations of azoxystrob in in broth media under shake-culture conditions for 2, 3, 4 and 8 days. Azoxystrobin concentrations were 0, 1, 10 and 100 mg 1-1 broth and cultures were incubated at a constant 25°C. Mycelial growth was significantly affected by strain (P<0.01), azoxystrobin concentration (P<0.001) and incubation time (P<0.001). Combined results for the four incubation times showed that CS yielded higher mycelial mass than RS (P<0.01) only in the absence of azoxystrobin. At fungicide additions of 1, 10 and 100 mg P-1 mycelial growth was reduced (P<0.001) with minimal strain differences (P>0.05) at all three doses of azoxystrobin. Significant (P<0.05 or better) strain-fungicide interactions were recorded in trichothecene production following exposure to azoxystrobin. At 4 and 8 days of incubation, the 10 mg 1-1 addition of azoxystrobin stimulated T-2 toxin synthesis (P<0.05) only in RS cultures. In contrast, T-2 toxin enhancement in CS cultures occurred only on day 8 but at a lower level of azoxystrobin (1 mg1-1). Thus, the stimulation of T-2 toxin synthesis depended upon strain and azoxystrobin level. Production of diocetoxyscirpenol (DAS) was affected by a more complex set of interactions. Overall means showed that, in comparison with initial values (on day 2 or 3), DAS output maximized significantly(P<0.05) on day 4 in RS cultures and on day 8 in CS. Marked strain effects were observed on exposure to the 10 mg 1-1 level of azoxystrobin. At this level, DAS production was enhanced in RS only after 4 (P<0.01 ) and 8 (P<0.05) days of incubation, while in contrast, CS reduced DAS production. As with T-2 toxin, DAS production in CS was stimulated (P<0.05 or better) only at low exposure levels of azoxystrobin. In the case of neosolaniol (NEO), however, the main effect of strain was significant (P<0.05), with CS producing consistently more of the mycotoxin than RS on day 4 of the experiment. At this point, the NEO:T-2 toxin ratio was also higher in CS (0.63) than in RS (0.12), a feature reported by us previously. In conclusion, the present investigation has shown for the first time that the development of resistance to one fungicide can affect trichothecene production inF. sporotrichioides on exposure to a second fungicide. These results have been incorporated into a new classification scheme for fungicide efficacy which is also presented in this paper. http://www.phytoparasitica.org posting Oct. 7,2001.  相似文献   

15.
The data available indicate that aggressiveness of Fusarium graminearum and F. culmorum depends on their deoxynivalenol (DON) and nivalenol-producing capacity: toxin-producing ability correlated closely with the level of aggressiveness measured. This agrees well with other literature findings. However, the resistance of a cultivar influenced DON production significantly. In the most resistant genotypes, toxin contamination remained near zero, whereas the same isolates and inoculum produced very high toxin levels in susceptible cultivars. As toxin levels were correlated with the ratio of Fusarium-damaged kernels (FDK) and this ratio is very low in highly resistant cultivars, the conclusion is that the level of resistance level is more important in governing DON accumulation in a given cultivar than is the aggressiveness of an isolate. In susceptible cultivars, DON producing ability is decisive, but in highly resistant cultivars resistance is the major factor in suppressing disease development and DON accumulation. In different years, the same FDK values were associated with different DON concentrations and this depended very much on the precipitation towards the end of May, the time of inoculation.  相似文献   

16.
Recent research on the epidemiology of Fusarium ear (or head) blight (FEB or FHB) of small-grain cereals is reviewed, focusing on inoculum, infection and disease forecasting. Both conidia and ascospores have been shown to be important for causing FEB. For Fusarium graminearum, propagules from crop debris are the main source of initial inoculum. Inoculum production is critically dependent on rainfall although the precise relationship is not clear. Recent work on understanding the effects of climatic variables on FEB development has been based on field observations. These field-based studies confirmed that warm and moist conditions during anthesis are the key factors for FEB development. Several empirical models were derived from the field data and proposed for use in disease forecasting. However, these models may not be applicable to a broader range of areas because of the limited nature of the field data. Several areas are proposed for future research, focusing on the development of more generally applicable forecasting models and on understanding the relationships between disease severity, fungal biomass and the production of associated mycotoxins.  相似文献   

17.
Screening of 51 promising safflower germplasm lines in Fusarium wilt-infested plots resulted in identification of highly wilt-resistant selections viz., 86-93-36A, 237550, VI-92-4-2 and II-13-2A, with some moderate resistance in HUS-305. Progenies from crosses made using these resistant lines were tested for their reaction to wilt. F1 progenies from 86-93-36A × 237550 and 86-93-36A × II-13-2A recorded zero wilt incidence, while 237550 × 86-93-36A was highly resistant to the Rajendranagar geographical isolate. The reaction for the three progenies showed stability for wilt resistance with no segregation until the F7 generation. Geographical isolates of Fusarium oxysporum f. sp. carthami (Foc) were collected from different safflower growing regions and tested for their pathogenic variability on six host differentials under glasshouse conditions. Based on the reaction of the differentials, the Foc isolates were grouped into four biotypes. The three resistant progenies were tested for their reaction to the four biotypes. The progeny of cross 86-93-36A × 237550 showed an immune reaction to all the biotypes, except for a highly resistant reaction to biotype 3. The progenies of the two other crosses (86-93-36A × II-13-2A and 237550 × 86-93-36A) exhibited immune reactions to biotypes 2,3 and 1,3, respectively, and were highly to moderately resistant to biotypes 1,4 and 2,4, respectively.  相似文献   

18.
The effect of temperature on the in vitro growth rates and pathogenicity of a European Fusarium collection consisting of isolates of Fusarium graminearum, F. culmorum, F. avenaceum, F. poae and Microdochium nivale was examined. Irrespective of geographic origin, the optimum temperature for the growth of F. graminearum, F. culmorum and F. poae was 25 °C, while that for F. avenaceum and M. nivale was 20 °C. In general, the growth rates of F. graminearum, F. culmorum and F. poae increased between 10 and 25 °C and those of F. avenaceum and M. nivale increased between 10 and 20 °C. Pathogenicity tests were carried out by examining the effect of the five species on the in vitro coleoptile growth rate of wheat seedlings (cv. Falstaff). Irrespective of geographic origin, the temperature at which F. avenaceum, F. culmorum and F. graminearum caused the greatest retardation in coleoptile growth ranges 20–25 °C (>89.3% reduction), whilst for F. poae and M. nivale it was 10–15 °C (>45.6% retardation), relative to uninoculated control seedlings. In general, F. culmorum and F. graminearum were the most pathogenic of the five species, causing at least a 69% reduction in coleoptile growth at 10, 15, 20 and 25 °C. General linear model analysis (GLIM) showed that species accounted for 51.3–63.4% of the variation in isolate growth and from 19.5% to 44.3% of the variation in in vitro pathogenicity. Country of origin contributed from 22.6% to 51.9% to growth rate variation and from 0.73% to 7.61% to pathogenicity variation. The only significant correlation between in vitro growth and pathogenicity was that observed for M. nivale at 15 °C (r = -0.803, P < 0.05).  相似文献   

19.
The cyclic hexadepsipeptide enniatin is known as a phytopathogenic compound from Fusaria causing necrosis and wilt. The molecule consists of three alternating residues each of a branched chain amino acid and D-hydroxyisovaleric acid (D-Hiv). Enniatins are synthesized by a 347kDa multienzyme (enniatin synthetase) via a thiol template mechanism. The corresponding gene esyn1 has an open reading frame of 9393 nucleotides and harbours two modules, one responsible for D-hydroxy acid activation and one for L-amino acid activation with an integrated N-methyltransferase domain. Such methyltransferases build an homologous group among N-methyl peptide synthetases. Enniatins are synthesized by step-wise condensation of dipeptidol building blocks in an iterative manner resembling fatty acid synthesis. A key enzyme in enniatin biosynthesis is the NADPH-dependent D-2-hydroxyisovalerate dehydrogenase, that supplies enniatin synthetase with D-Hiv. Enniatins contribute to the wilt toxic character of Fusaria. Virulence was significantly reduced in F. avenaceum after disruption of the esyn1 gene.  相似文献   

20.
储存对小麦中DON毒素含量的变化规律研究   总被引:1,自引:0,他引:1  
本研究的目的是调查南京地区含有脱氧雪腐镰刀菌烯醇(Deoxynivaleno,DON,又称致吐毒素)的小麦中常温储存条件下DON毒素浓度的变化情况。采用耦联电子捕获器气谱色谱仪对小麦储存期内面粉中的DON含量逐月进行检测。小麦面粉储存前DON浓度是8.83±1.75 mg/kg,储存期DON毒素平均浓度分别为6.66、7.33、6.08、7.90、5.45、6.56、7.29、8.02、6.82和8.60 mg/kg,结果表明在储存期间小麦面粉中的DON毒素没有明显变化。研究结果揭示了在调查地区常温储存条件下,小麦中的致吐毒素没有发生显著的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号