首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Artifactual changes in blood may occur as a consequence of delayed analysis and may complicate interpretation of CBC data. OBJECTIVE: The aim of this study was to characterize artifactual changes in canine blood, due to storage, using the ADVIA 120 hematology analyzer. METHODS: Blood samples were collected into EDTA from 5 clinically healthy dogs. Within 1 hour after blood sample collection and at 12, 24, 36 and 48 hours after storage of the samples at either 4 degrees C or room temperature (approximately 24 degrees C), a CBC was done using the ADVIA 120 and multispecies software. A linear mixed model was used to statistically evaluate significant differences in values over time, compared with initial values. RESULTS: The HCT and MCV were increased significantly after 12 hours of collection at both 4 degrees C and 24 degrees C, and continued to increase through 48 hours. The MCHC initially decreased significantly at 12-24 hours and then continued to decrease through 48 hours at both temperatures. Changes in HCT, MCV, and MCHC were greater at 24 degrees C than at 4 degrees C at all time points. A significant increase in MPV and a decrease in mean platelet component concentration were observed at all time points at 24 degrees C. Samples stored at 24 degrees C for 48 hours had significantly higher percentages of normocytic-hypochromic RBCs, and macrocytic-normochromic RBCs, and lower platelet and total WBC counts. CONCLUSIONS: Delayed analysis of canine blood samples produces artifactual changes in CBC results, mainly in RBC morphology and platelet parameters, that are readily detected using the ADVIA 120. Refrigeration of specimens, even after 24 hours of storage at room temperature, is recommended to improve the accuracy of CBC results for canine blood samples.  相似文献   

2.
BACKGROUND: The ADVIA 120 is an automated laser cell counter widely used in veterinary medicine. Although specific software for equine samples is available and validated, only a few reports have been published comparing the ADVIA 120 with other methods for equine hemogram evaluation. OBJECTIVES: The purpose of this study was to compare the hematologic values and reference intervals obtained on the ADVIA 120 with those obtained on an impedance cell counter and manual differential counts in healthy horses. METHODS: EDTA-anticoagulated blood samples were obtained from 114 clinically healthy horses of various breeds, both sexes, and 2-6 years of age. Samples were stored for up to 12 hours at 4 degrees C and then analyzed on the ADVIA 120 and the Hemat 8. A 100-cell to 200-cell differential leukocyte count was performed by 3 independent observers on May-Grünwald-Giemsa-stained smears. Intra-assay precision of the ADVIA 120 was determined by analyzing 5 replicates each of 10 of the blood samples. RESULTS: Results from the ADVIA were significantly higher than those from the impedance counter for RBC count, total WBC count, hemoglobin concentration, red cell distribution width, MCH, and MCHC, and significantly lower for HCT and platelet count. Significantly higher neutrophil and basophil counts and significantly lower lymphocyte counts were obtained with the ADVIA 120 compared with manual counts. Based on Passing-Bablok regression analysis, RBC and platelet counts were in good agreement between the 2 analyzers; a constant and proportional bias was present for other values. Coefficients of variation for erythrocyte parameters on the ADVIA were <1%, but were higher for platelet (6%), total WBC (2%), differential WBC (4%-30%), and reticulocyte (75%) counts. CONCLUSIONS: Results obtained with equine samples on the ADVIA 120 were comparable with those obtained on an impedance counter; reference intervals differed statistically but overlapped. The ADVIA had poor precision for reticulocyte and differential leukocyte counts such that the latter should always be verified on smears.  相似文献   

3.
BACKGROUND: Conventional techniques for canine cerebrospinal fluid (CSF) analysis require large sample volumes and are labor intensive and subject to operator variability. Objective: The purpose of this study was to evaluate the ADVIA120 CSF assay for analysis of canine CSF samples. METHODS: CSF samples collected from 36 healthy control dogs and 17 dogs with neurologic disease were processed in parallel using the automated assay and established manual methods using a hemocytometer and cytocentrifugation. Results for WBC (total nucleated cell) count, RBC count, and differential nucleated cell percentages were compared using Spearman rank correlation coefficients and Bland-Altman bias plots. RESULTS: Correlation coefficients for WBC and RBC counts were 0.57 and 0.83 for controls, and 0.92 and 0.94 for ill dogs, respectively. Coefficients for the percentages of neutrophils, lymphocytes, and monocytes were 0.53, 0.26, and 0.12 for controls and 0.77, 0.92, and 0.70 for dogs with neurologic disease. When data were combined (n=53), correlation coefficients were 0.86 and 0.91 for WBC and RBC counts, and 0.63, 0.43, and 0.30 for neutrophil, lymphocyte, and monocyte percentages. A 9.5% positive bias and 7.0% negative bias were obtained for the ADVIA 120 CSF assay for lymphocytes and macrophages in dogs with neurologic disease with Bland-Altman analysis. A 12.2% positive bias was found for lymphocyte percentage in dogs with neurologic disease. CONCLUSIONS: Manual and automated CSF assays had moderate to excellent correlation for WBC and RBC concentrations, but results were more variable for differential cell percentages. The ADVIA assay may be more useful for assessment of canine CSF with adjustment of cell differentiation algorithms.  相似文献   

4.
5.
6.
Background: Analysis of body fluids includes an estimate of total nucleated cell count (TNCC). Automated methods may enhance the accuracy and timeliness of TNCC results. Objective: The purpose of this report was to assess the ability of the ADVIA 120 hematology analyzer to accurately count nucleated cells in pleural and peritoneal fluids from animals, compared with manual counts. Methods: Pleural and peritoneal fluids submitted in EDTA tubes to our laboratory over a 17‐month period were used in the study. TNCC/μL was determined by a manual method, using a hemocytometer, and by an automated method, using the ADVIA 120. Correlation of results was determined by Passing‐Bablok regression, Bland–Altman plots, and Pearson correlation analysis. Results: Samples from dogs (n=36), cats (n=36), horses (n=59), and alpacas (n=11) were analyzed. High correlation in TNCC between methods was found for peritoneal fluid (n=93, r=.959), pleural fluid (n=49, r=.966), and all fluids combined (n=142, r=.960) (P<.001). Variation between methods was greater in samples with TNCCs<1000/μL (r=.62, P<.001). The ADVIA systematically overestimated the number of cells in all fluid samples by 95 cells/μL (confidence interval=19.2–190.5/μL). Conclusion: The ADVIA 120 reliably determines TNCC in pleural and peritoneal effusions and can be recommended for routine veterinary laboratory analysis.  相似文献   

7.
BACKGROUND: The use of cell-free hemoglobin (Hgb) solutions, such as Oxyglobin (Biopure Corp, Cambridge, MA, USA), as a blood substitute for the treatment of acute anemias is increasing in veterinary medicine. These solutions interfere with colorimetric tests, which do not discriminate between cellular Hgb (Hgb-cell) from the patient and extracellular Hgb (Hgb-delta) from the Oxyglobin, and therefore make the monitoring of anemia, based on Hgb concentration, difficult. The ADVIA 120 hematology analyzer (Bayer Diagnostics, Tarrytown, NY, USA) evaluates Hgb by 2 methods, a standard cyanmethemoglobin colorimetric method and flow cytometry, and therefore might provide the means to differentiate extracellular and intracellular Hgb. OBJECTIVE: The objective of this study was to determine the accuracy and precision of the ADVIA 120 in differentiating extracellular from intracellular Hgb. METHODS: Anticoagulated whole blood samples from 10 healthy dogs were analyzed in triplicate on the ADVIA 120. Hgb-delta concentration was determined by adding Oxyglobin (13 g/dL) to the whole blood samples at dilutions of 1:1, 1:2, 1:4, 1:8, 1:16, and 1:32. Hgb-cell and Hgb-total values were calculated and compared with actual values by linear regression. Analyses were done in triplicate and repeated 9 consecutive times to evaluate intra-assay precision of Hgb-total and Hgb-cell determinations. RESULTS: Correlation between Hgb values obtained by colorimetric (Hb-total) and flow cytometric (Hgb-cell) methods on whole blood samples was high (R(2) = .99; n = 10) with a slope of 0.96 and intercept of 0. Correlation between actual and predicted Hgb-cell values also was high (R(2) = .99), with a small positive bias (0.289 +/- 0.185; n = 60). Intra-assay precisions were high, with most coefficients of variation <2%. CONCLUSION: The ADVIA 120 is capable of differentiating Hgb-cell from Hgb-delta. The flow cytometric method is accurate and precise when compared with the cyanmethemoglobin method. A small bias between the results is unlikely to be clinically significant but may affect the ability of the ADVIA to differentiate small quantities (<0.3 g/dL) of Hgb-delta.  相似文献   

8.
A semiautomatic electronic blood cell counter (Sysmex F-800:Toa Medical Electronics Europa Gmbh, Hamburg, Germany) was evaluated using canine and feline blood, following the International Committee for Standardization in Hematology protocol (ICSH, 1984). Precision and overall reproducibility were acceptable for all the parameters studied except for the feline platelet count, in which overlapping of erythrocyte and platelet populations prohibited determination of an accurate platelet count. Since carry-over from canine hematocrit values and platelet counts and from feline hematocrit values was unsatisfactory, the use of a blank diluent sample between different analyses was necessary. Linearity of the analyzer was acceptable in the studied range. Thirty canine and feline blood samples were analyzed using the Sysmex F-800 and a manual method. Correlations between both methods were acceptable for all the parameters, except for feline platelet count and erythrocyte indices for both species. In the storage study, red blood cell count and hemoglobin concentration were the parameters with the longest stability (72 hours at 4 degrees C and 25 degrees C) in both species. A statistically significant increase in MCV was obtained at 12 hours post-extraction in canine samples stored at 25 degrees C and at 24 hours in refrigerated samples. Feline leucocyte counts showed a downward trend at 12 hours post-extraction at both temperatures. Canine platelet count decreased significantly at 6 hours post-extraction in samples stored at 4 degrees C. During the evaluation period, Sysmex F-800 was user friendly and appeared well suited for routine canine and feline blood cell analysis.  相似文献   

9.
Background: The CBC is an essential test for assessing the health of rats used in drug development studies. Because of limited blood volume, estimates of cell counts from a blood smear would be valuable when other analytical methods of enumerating cells are not possible or available. Objective: The purpose of this study was to develop a statistical model to accurately estimate WBC, platelet (PLT), and RBC counts in blood smears from rats. Method: Blood smears and quantitative cell counts were obtained from vehicle‐treated male and female Fischer 344 rats (n=65) involved in a variety of studies. The numbers of WBCs, PLTs, and RBCs were estimated in 10 fields in the monolayer of smears using × 20 (WBC) or × 100 (PLT, RBC) objectives. Using a statistical model and the quantitative cell counts obtained on an ADVIA 120 hematology analyzer, formulas were developed to predict the quantitative counts from the estimates. Results: Data were log‐transformed before analysis. A formula was derived using the slope and intercept of the regression line between cell estimates and ADVIA counts to predict WBC, PLT, and RBC counts based only on estimates. A second formula was developed for situations in which limited quantitative analyses may be available, and resulted in even more accurately predicted counts from smear estimates. Conclusion: The formulas developed in this study can be a valuable tool in estimating cell counts from a blood smear when cell counting instruments are not available or when an instrument cell count needs to be verified. These formulas may be useful in the assessment of rat blood in discovery and lead optimization studies.  相似文献   

10.
11.
Background: With more use of bench‐top in‐office hematology analyzers, the accuracy of reported values is increasingly important. Instruments use varied methods for cell counting and differentiation, and blood smears may not always be examined. Objective: The purpose of this study was to compare canine CBC results using 4 bench‐top instruments (Hemavet 950, Heska CBC‐Diff, IDEXX LaserCyte, and IDEXX VetAutoread) with ADVIA 120 and manual leukocyte counts. Methods: EDTA‐anticoagulated canine blood samples (n=100) were analyzed on each instrument. Manual differentials were based on 100‐cell counts. Linear regression, difference plots, paired t‐tests, and estimation of diagnostic equivalence were used to analyze results. Results: Correlations of HCT, WBC, and platelet counts were very good to excellent between all in‐office instruments and the ADVIA 120, but results varied in accuracy (comparability). Hemavet 950 and Heska CBC‐Diff results compared best with ADVIA results and manual leukocyte differentials. HCT and platelet counts on the IDEXX VetAutoread compared well with those from the ADVIA. Except for neutrophil counts, leukocyte differentials from all instruments compared poorly with ADVIA and manual counts. Reticulocyte counts on the LaserCyte and VetAutoread compared poorly with those from the ADVIA. Conclusions: The Hemavet 950 and Heska CBC‐Diff performed best of the 4 analyzers we compared. HCT, WBC, and platelet counts on the LaserCyte had minimally sufficient comparability for diagnostic use. Except for neutrophils (granulocytes), leukocyte differential counts were unreliable on all in‐office analyzers. Instruments with a 5‐part leukocyte differential provided no added benefit over a 3‐part differential. Assessment of erythrocyte regeneration on the LaserCyte and VetAutoread was unreliable compared with the ADVIA 120.  相似文献   

12.
13.
Background: A CBC is an integral part of the assessment of health and disease in companion animals. While in the past newer technologies for CBC analysis were limited to large clinical pathology laboratories, several smaller and affordable automated hematology analyzers have been developed for in‐clinic use. Objectives: The purpose of this study was to compare CBC results generated by 7 in‐clinic laser‐ and impedance‐based hematology instruments and 2 commercial laboratory analyzers. Methods: Over a 3‐month period, fresh EDTA‐anticoagulated blood samples from healthy and diseased dogs (n=260) and cats (n=110) were analyzed on the LaserCyte, ForCyte, MS45, Heska CBC, Scil Vet ABC, VetScan HMT, QBC Vet Autoread, CELL‐DYN 3500, and ADVIA 120 analyzers. Results were compared by regression correlation (linear, Deming, Passing‐Bablok) and Bland–Altman bias plots using the ADVIA as the criterion standard for all analytes except HCT, which was compared with manual PCV. Precision, linearity, and carryover also were evaluated. Results: For most analytes, the in‐clinic analyzers and the CELL‐DYN performed similarly and correlated well with the ADVIA. The biases ranged from ?0.6 to 2.4 × 109/L for WBC count, 0 to 0.9 × 1012/L for RBC count, ?1.5 to 0.7 g/dL for hemoglobin concentration, ?4.3 to 8.3 fL for MCV, and ?69.3 to 77.2 × 109/L for platelet count. Compared with PCV, the HCT on most analyzers had a bias from 0.1% to 7.2%. Canine reticulocyte counts on the LaserCyte and ForCyte correlated but had a negative bias compared with those on the ADVIA. Precision, linearity, and carryover results were excellent for most analyzers. Conclusions: Total WBC and RBC counts were acceptable on all in‐clinic hematology instruments studied, with limitations for some RBC parameters and platelet counts. Together with evaluation of a blood film, these in‐clinic instruments can provide useful information on canine and feline patients in veterinary practices.  相似文献   

14.
BACKGROUND: Serum biochemical and hematologic parameters are important in the management of game species in Iran, such as Persian squirrels. OBJECTIVE: The purpose of this study was to establish baseline serum chemistry and hematology values in Persian squirrels (Sciurus anomalus) and describe blood cell morphology and the electrophoretic pattern of hemoglobin. METHODS: Blood samples were collected from 30 Persian squirrels (Sciurus anomalus) maintained in captivity in the Tehran Zoo. Blood was placed into EDTA and serum clot tubes and analyzed using standard manual hematology and biochemical techniques. Hemoglobin electrophoresis was done on cellulose acetate paper strips. RESULTS: Minimum, maximum, and median values were obtained for 11 hematologic and 12 serum chemistry parameters. Hypersegmented neutrophils were observed frequently. We did not find basophils or band neutrophils. Hemoglobin electophoresis resulted in a band slightly anodal to that of human hemoglobin A. CONCLUSION: Biochemical and hematologic values in Persian squirrels were comparable to those of related species, and may be used as a standard profile for healthy Persian squirrels kept in captivity.  相似文献   

15.
16.
17.
Background: The Sysmex XT‐2000iV is a hematology analyzer that combines laser and impedance technology. Its usefulness for determining cell counts in canine and feline intracavitary effusions has not yet been studied. Objectives: The objectives of this study were to evaluate the analytical performance of the Sysmex XT‐2000iV for cell counts in effusions from dogs and cats, and to assess correlation with an impedance counter and concordance with diagnoses based on cytologic findings. Methods: Effusions (43 pleural, 23 peritoneal, 6 pericardial) were analyzed from 32 dogs and 34 cats. Total nucleated cell count (TNCC), HCT, and RBC count were determined on the Sysmex and compared with those obtained on an impedance counter (Hemat 8, SEAC). Imprecision, linearity, and limit of detection were determined for the Sysmex. An algorithm was designed using quantitative and qualitative data from the Sysmex to classify the effusions and the results were compared with diagnoses based on cytologic findings. Results: Intra‐assay and interassay coefficients of variation on the Sysmex were variable. Linearity of TNCC was ≥0.993 for dogs and cats, with the exception of effusions from cats with feline infectious peritonitis, which had delta (Δ) TNC values >3.0. In comparison with the Hemat 8, a proportional error was found for TNCC on the Sysmex. Effusion classification based on the algorithm was concordant with that obtained by cytologic examination in 43/72 (60%) samples. Discordant results usually were due to the misclassification of cells with similar morphology (such as mesothelial and carcinoma cells) in Sysmex scattergrams. Conclusion: The Sysmex XT‐2000iV provides a precise and accurate TNCC and has moderate concordance with cytologic findings for classifying canine and feline effusions. Although microscopic examination of effusions is necessary to achieve an accurate diagnosis, the Sysmex can provide preliminary information that may be helpful to cytopathologists.  相似文献   

18.

Background

Repeat patient testing‐based quality control (RPT‐QC) is a potential method for veterinary laboratories (eg, that have a limited budget for quality commercial control material [QCM] or that wish to use material with a species‐specific matrix).

Objectives

To determine whether total error (TEa), probability of error detection (Ped), and probability of false rejection (Pfr) similar to that achievable with QC materials can be controlled using RPT‐QC

Methods

Control limits (WBC, RBC, HGB, HCT, MCV, and PLT) for the Advia 120 (n = 23) and scil Vet ABC (n = 22) were calculated using data from normal canine specimens from a routine caseload. Specimens were measured at accession and again after 24 hours. Control limits were validated using 23 additional canine specimens tested similarly. Achievable TEa, Ped, and Pfr were investigated using the Westgard EZRules3 and compared to those achievable with commercial QCM.

Results

Theoretical performance of RPT‐QC and commercial QCM‐QC are similar for 1‐3s with both n = 1 and 1‐3s with n = 2 for all measurands and both instruments. Achievable TEa values for RPT‐QC were close to ASVCP recommendations for most measurands; exceptions were PLT (both instruments) and WBC (scil Vet ABC).

Conclusions

Repeat patient testing‐based quality control advantages include a species‐specific matrix, low‐cost, and absence of QC material deterioration over time (since a fresh specimen is used each day). A potential disadvantage is daily access to normal canine specimens. A challenge is determining control limits, which has a subjective element. Further study is needed to confirm actual RPT‐QC performance and to determine if RPT‐QC with abnormal patient specimens is feasible.  相似文献   

19.
BACKGROUND: The CA530-VET is a completely automated impedance cell hematology analyzer, which yields a 16-parameter blood count including a 3-part leukocyte differential. OBJECTIVES: The aim of this study was to examine the operational potential of the CA530-VET and its value for use in veterinary practice. METHODS: The analyzer was tested for blood carry-over, precision, and accuracy. Comparison methods included the CELL-DYN 3500, microhematocrit centrifugation, manual platelet (PLT) counting for feline and equine species, and a 100-cell manual WBC differential. Blood samples for comparison of the methods were obtained from 242 dogs, 166 cats, and 144 horses. RESULTS: The carry-over ratio (K) was 0.28% for RBC, 0.59% for PLT, 0.32% for WBC, and 0.18% for hemoglobin (HGB) concentration. Coefficients of variation (CVs) for within-batch precision and duplicate measurement of blood samples were clearly within the required limits, except for duplicate platelet counts in cats (8.7%) and horses (9.5%). The WBC count was in excellent agreement for dogs and horses and RBC count was in excellent agreement for horses. The accuracy of feline WBC counts was not acceptable, with the exception of values at the high end of the range. RBC counts in dogs and cats, and HGB concentration and MCV in all 3 species were sufficiently accurate. The CA530-VET HCT results were in excellent agreement with microhematocrit results in horses but exceeded the maximum allowed inaccuracy for cats and dogs. In all species, PLT counts established mechanically and manually were not in adequate agreement. Large differences were found between the CA530-VET and the manual differential percentage for lymphocytes and "mid-sized cells" (monocytes and basophilic granulocytes). CONCLUSIONS: The CA530-VET can be considered useful for routine canine, feline, and equine blood cell analyses. It should not be considered accurate, however, for PLT counts, feline total WBC counts in the subnormal and normal range, and leukocyte differentials, except for granulocytes.  相似文献   

20.
Background: Hematologic and biochemical reference intervals depend on many factors, including environment and age. Reference intervals for Norwegian grower pigs are lacking, and previously published reference intervals for similar pigs from other countries are now outdated due to significant changes in management and breeding on the pig farms. Objectives: The aim of this study was to determine updated reference intervals for hematologic and biochemical analytes in healthy crossbred grower pigs, and to compare the results among 3 different farms. Methods: Blood samples were collected from 104 clinically healthy pigs of the most common Norwegian crossbreed (Landrace Yorkshire sow × Landrace Duroc boar). The pigs were 12–16 weeks old, weighed 30–50 kg, of both sexes, and lived on 3 farms in eastern Norway. Automated hematologic and biochemical analysis were performed using ADVIA 2120 and ADVIA 1650 analyzers. Results: Five samples were excluded because of hemolysis (1) or outliers (4). Reference intervals were calculated using parametric or nonparametric methods, depending on data distribution. Mean, median, minimum, and maximum values were tabulated. Conclusions: The reference intervals calculated in this study will be useful for the diagnosis and monitoring of disease in this widespread crossbreed pig. Compared with previously published reference values, reference intervals for total WBC count, creatine kinase and alanine aminotransferase activities, and albumin, bilirubin, and urea concentrations in this study differed notably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号