首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Recent advances in next generation sequencing technologies make genotyping-by-sequencing (GBS) more feasible for molecular characterization of plant germplasm with complex and unsequenced genomes. Here we applied the GBS technology to assess the genetic diversity of 275 hexaploid oat wild relative (Avena sterilis) plants collected from 24 natural populations in Jordan. Total genomic DNAs were extracted and digested with restriction enzymes PstI and MspI. Three Illumina MiSeq sequencing runs generated 556 paired-end FASTQ files with 127,128,438 raw sequences. Bioinformatics analysis identified an informative matrix of 275 samples × 12,999 SNP markers. Analysis revealed 52.4% of SNP variation residing among 24 populations and eight major genetic clusters of the samples. Most samples were grouped together within their original populations. A significant association of pairwise population genetic distances was found with latitudinal or longitudinal differences. Two natural populations were highly differentiated from the others, and 30 highly distinct A. sterilis samples were identified from seven populations. These findings are useful for understanding genetic variability and conservation of natural A. sterilis populations, and they demonstrate the advances of the GBS application for germplasm characterization of crop wild relatives with complex genomes.  相似文献   

2.
Here, two Punica species, viz., P. protopunica Balf. fil., reported as native to Socotra, and P. granatum L., were compared for the first time. Analysis of one P. protopunica and eleven P. granatum accessions was performed using three molecular markers, i.e., sequence related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), and intron targeted amplified polymorphism (ITAP), along with analysis of pgWD40 sequences, a gene involved in anthocyanin biosynthesis. All markers revealed the relationship between the two species and placed them at 33% similarity. SRAP, TRAP, and ITAP generated a total of 299, 260, and 160 bands, respectively. Of these, 78, 74, and 41 bands were specific for P. protopunica, and 92, 85, and 57 bands, respectively, were shared between both species. Sequence analysis of pgWD40~870 bp amplicons exhibited 100% identity among P. granatum accessions and 98% identity to that of P. protopunica. Phylogenetic analysis of WD40 sequences from monocot and dicot species, including both Punica species confirmed the relation between P. protopunica and P. granatum, supporting earlier reports that P. protopunica could be an ancestral species of P. granatum. Furthermore, the genetic diversity among and within P. granatum accessions from Egypt (3), Mexico (5), and Yemen (3) was assessed. Molecular marker-based relationships among region-bulked accessions was approximately the same (~90% similarity), whereas the degree of genetic variation was altered within each region. Specific bands (alleles) for accessions of each region along with those shared among them were identified. Thus, these bands could be used for pomegranate genotyping and breeding programs.  相似文献   

3.
Genetic diversity of 139 accessions of diploid Triticum species including Triticum urartu, Triticum boeoticum and Triticum monococcum was studied using 11 SSR (simple sequence repeats) markers. A total of 111 alleles with an average of 10 alleles per locus were detected. The polymorphism information content (PIC) of each SSR marker ranged from 0.30 to 0.90 with an average value of 0.62. Among the three Triticum species T. urartu had the highest number of total alleles (Na?=?81), private alleles (Npa?=?15) and showed higher genetic diversity (Hex?=?0.58; PIC?=?0.54). The genotypes from Turkey exhibited the highest genetic diversity (PIC?=?0.6), while the least diversity was observed among 4 Georgian accessions (PIC?=?0.11). Cluster analysis was able to distinguish 139 wheat accessions at the species level. The highest genetic similarity (GS) was noted between T. boeticum and T. monococcum (GS?=?0.84), and the lowest between T. urartu and T. monococcum (GS?=?0.46). The grouping pattern of the PCoA analysis corresponded with cluster analysis. No significant differences were found in clustering of T. urartu and T. monococcum accessions with respect to their geographic regions, while within T. boeoticum species, accessions from Iran were somewhat associated with their geographical origin and clustered as a close and separate group. The results from our study demonstrated that SSR markers were good enough for further genetic diversity analysis in einkorn wheat species.  相似文献   

4.
5.
Avocado (Persea americana Mill.) is a subtropical domesticated fruit tree indigenous to Mesoamerica. It is a member of the Lauraceae family and is separated into three horticultural races (Guatemalan, Mexican, and West Indian) mainly corresponding to their ecological adaptation, botanical, and physiological traits. Main objectives of this study were to characterize the population structure, genetic diversity, and horticultural race of a total of 354 Persea spp. trees whose origin is as follow: 221 trees [P. americana, (218), P. nubigena (2) and P. krugii (1)] from the USDA-ARS-Subtropical Horticultural Research Station, Miami; 105 trees from the Fairchild Farm [P. americana (104) and P. schiedeana (1)], and 28 trees collected in Mexico [P. schiedeana (23) and P. americana (5)]. The complexity of their interracial admixture; as well as mislabeling frequency was also evaluated. Molecular marker analysis utilizing a set of 55 simple sequence repeat (SSR) markers amplified a total of 869 alleles with a mean number of alleles per locus of 15.8 and average polymorphism information content value of 0.71, indicating a high variability in the allele frequency for the collection. Significant deviations from Hardy–Weinberg equilibrium were identified after Bonferroni correction for a large number of loci (48; 87%) due to the presence of null alleles. The main source of variation for this population was found to be within individuals (66.84%), with 19.30% variation among populations, and 13.86% variation among individuals within populations. Moreover, population specific inbreeding indices (F IS ) were calculated for West Indian, Guatemalan, and Mexican [(0.1918; p value 0.0000), (0.1879; p-value 0.0000), (0.0925; p-value 0.0022)], respectively. Bayesian analysis divided the individual genotypes into groups associated with the Guatemalan, Mexican, West Indian races; interracial admixture; complex hybrids and P. schiedeana species. Also, results of the multivariate clustering method (PCA) and genetic distance analyses calculated among all possible individual combinations within the SSR diversity data agreed with Bayesian or Structure analyses results. The 55 SSRs provided complete resolution of all individuals and the estimated mislabeling error was approximately 0.28%.  相似文献   

6.
Stylosanthes Sw. is considered one of the economically most important tropical forage legumes. The genus is essentially Neotropical, and Brazil, Venezuela and Mesoamerica are the main centres of species diversification. In view of its importance, an extensive review of Venezuelan Stylosanthes genetic resources was carried out. Firstly, the known natural distributions of all 11 species based on herbarium specimens were georeferenced and mapped and, by comparing them with information of germplasm (=seed) collection site distributions, for each species regions were identified which in terms of collecting and safeguarding genetic resources of Stylosanthes had not been explored yet. Secondly, the actual status of the Stylosanthes collection in Venezuela in terms of collected seed samples and available germplasm is discussed, as is the need for further explorations, including targeting ecologically important locations. Finally, the different Stylosanthes species in Venezuela are grouped according to their perceived agronomic value and potential as forage for animal production systems, and recommendations are given regarding research, collection and preservation needs. Overall, this study compiled baseline information for future considerations of an important genetic resource in Venezuela. The endangerment of the three endemic species, Stylosanthes falconensis Calles et Schultze-Kr., Stylosanthes sericeiceps S.F. Blake and Stylosanthes venezuelensis Calles et Schultze-Kr. should be a major concern and warrants priority considerations for preservation.  相似文献   

7.
Potentilla alba L. is a valuable medicinal plant widely used in folk and traditional medicine and particularly promising in complex treatment of thyroid pathology. Natural resources of this species are insufficient due to ever-growing use in contemporary medicine. Comprehensive investigations of different P. alba populations are essential for the successful extension of P. alba plantings. Aiming for a better understanding of karyotype structure, chromosome behaviour in meiosis and developing new diagnostic characters, we performed molecular cytogenetic characterization and leaf structure and ultrastructure analyses of two introduced P. alba samples originating from different habitats. Based on chromosome morphology, distribution of 45S/5S rDNA and DAPI-banding patterns, all chromosomes in the karyotypes were identified and the P. alba chromosomal idiogram was constructed. Our findings confirmed P. alba karyotype stability and also revealed several diagnostic characters of this species: the features of cells of upper and lower leaf epidermis, the presence of calcium oxalate druses and three types of leaf indumentum, essential for evaluation of genetic diversity in different populations, validation of raw materials and further selection progress. The meiotic abnormalities were detected probably related to low pollen activity and indicated the advantages of vegetative propagation in the development of a P. alba plantation system.  相似文献   

8.
China is known throughout the world as one of the most diverse centres of wild Tulipa L. resources. There are 17 wild Tulipa species distributed in China, and 12 species are only distributed in Xinjiang Province. In this paper, total 83 accessions were collected from Xinjiang, Liaoning and several other provinces. Their distribution, collection, classification and evaluation were described. According to morphological characteristics, they were classified into eight species, which included T. sinkiangensis Z. M. Mao, T. altaica Pall. ex Spreng., T. iliensis Regel, T. heterophylla Baker, T. buhseana Boiss., T. thianschanica Regel, T. schrenkii Regel and T. edulis (Miq.) Baker. Their phenotypic genetic relationships were analysed and showed that the eight Tulipa species were divided into two groups: Group I included one species T. edulis, and Group II included the other seven species. Bulb renewal was observed in eight wild Tulipa species; T. iliensis and T. edulis showed that one or more long fleshy stolons formed horizontally or vertically at the basal plate of the mother bulbs, new bulblets (dropper) appeared at the top of each fleshy stolon, and the mother bulbs eventually disappeared. The analytic hierarchy process was used to evaluate the ornamental value, utilization potential and ecological adaptability of the eight identified species. The results showed that T. iliensis, T. buhseana and T. thianschanica had better ornamental value and utilization potential than any other species. The distribution, collection, classification, and evaluation of wild Tulipa species could be helpful in creating novel tulip germplasms in China.  相似文献   

9.
The present study investigated genetic diversity, structure and hybridization in a collection of the endangered wild pear species Pyrus pyraster (L.) Burgd. A total of 278 putative ‘true type’ P. pyraster trees originating from seven populations in the federal state of Saxony in Germany were analyzed along with 35 pear cultivars commonly cultivated in Saxony. The genetic analysis was performed using nine nuclear microsatellite markers (ncSSR) and two paternally inherited chloroplast marker (cpDNA) amplifying in the intergenic spacer region trnQrps16 and the intron region rps16. On basis of the ncSSR dataset after STRUCTURE analysis 80 % of the wild pear individuals were assigned as ‘true type’ P. pyraster genotypes. The cpDNA analysis showed shared haplotypes in P. pyraster and P. communis but with an unequal frequency in both species. The analysis of molecular variance resulted in a moderate (ncSSR) and great (cpDNA) variation among ‘true type’ P. pyraster and the pear cultivars. The genetic diversity in the ‘true type’ P. pyraster populations was still high and the genetic structure between the populations low (ncSSR and cpDNA) indicating a genetic exchange between the populations by pollen and seeds. The clear discrimination between the P. pyraster and P. communis confirms our expectation of the existence of ‘true type’ P. pyraster individuals in the study area. The existing genetic integrity and the high genetic diversity argue for the implementation of preservation measures in P. pyraster.  相似文献   

10.
Populations of wild Beta L. species exist as weeds in commercial sugar beet (Beta vulgaris L. subspecies vulgaris) fields in the Imperial Valley, California. Significant losses to sugar yield and quality result if these wild plants are not removed. In cases of extreme infestation, fields are abandoned without harvest. No selective chemicals are available to differentiate conventional sugar beet from wild relatives and hand removal is labor intensive and expensive. Planting sugar beet varieties with tolerance to glyphosate is a potential solution for infested fields, but risk of gene flow to adjacent wild relatives must be determined. Previous research identified these populations as either Beta vulgaris L. subspecies maritima (L.) Arcang. or Beta macrocarpa Guss. This distinction is critical because B. v. subsp. maritima will readily cross hybridize with cultivated sugar beet while B. macrocarpa rarely will. In April 2011, we collected herbarium samples, mature seed, and leaf tissue from wild Beta populations in 25 infested sugar beet fields throughout the Imperial Valley. Bolting cultivated beets were identified at two locations. Taxonomy of whole plant herbarium samples was unclear due to wild beet stem elongation when under competition with sugar beet plants for canopy light. Morphology of plants from collected seed grown in non-competitive conditions assigned taxonomy of these populations to B. macrocarpa. We used molecular tools to determine the genetic structure of wild Beta populations throughout the Imperial Valley. Extracted DNA was genotyped with 22 simple sequence repeat molecular markers and evaluated for population structure. The bolting beet samples were clearly separated from the majority of B. macrocarpa samples, except for two. The remaining wild populations were further divided into two subgroups suggesting exchange of genetic information or a common ancestor.  相似文献   

11.
In the subgenus Prunophora of the genus Prunus, many transitional traits presented in interspecific hybrids, the so-called ‘new species’, were frequently named due to the complicated botanical classification system. In this study, we used 16 nuclear simple sequence repeats (nSSRs) and 10 chloroplast simple sequence repeats (cpSSRs) to evaluate genetic relationships among 42 accessions, which included 15 putative interspecific hybrids, and then to reveal the speciation and differentiation in the subgenus Prunophora. In total, 231 and 27 alleles were observed in nSSRs and cpSSRs respectively; and with cpSSRs 20 haplotypes were revealed among the accessions. Furthermore, the haplotype and genetic structure analysis implied that (1) Prunus simonii Carr. might be a subspecies or a forma of Prunus salicina L., rather than an interspecific hybrid between P. salicina and Prunus armeniaca L., (2) Prunus limeixing Zhang et Wang was derived from a natural hybrid with P. salicina as its maternal progenitor and P. armeniaca as the female parent, and (3) Prunus cathayana Fu et al. (or kernel-using apricot) was an interspecific hybridization species of P. armeniaca (maternal parent) and Prunus sibirica L. (female parent). These results will be useful for clarifying the problems in the botanical classification, and facilitate the conservation and management of plum and apricot genetic resources in the Chinese National Germplasm Repository for Plums and Apricots.  相似文献   

12.
Yam bean [Pachyrhizus DC.] is a legume genus of the subtribe Glycininae with three root crop species [P. erosus (L.) Urban, P. tuberosus (Lam.) Spreng., and P. ahipa (Wedd.) Parodi]. Two of the four cultivar groups found in P. tuberosus were studied: the roots of ‘Ashipa’ cultivars with low root dry matter (DM) content similar to P. erosus and P. ahipa are traditionally consumed raw as fruits, whereas ‘Chuin’ cultivars with high root DM content are cooked and consumed like manioc roots. Interspecific hybrids between yam bean species are generally completely fertile. This study examines the genetic diversity of the three crop species, their potentials for breeding and the identification of useful traits to differentiate among yam bean genotypes and accessions. In total, 34 entries (genotypes and accessions) were grown during 2000?2001 at two locations in Benin, West Africa, and 75 morphological and agronomical traits, encompassing 50 quantitative and 25 qualitative characters were measured. Diversity between entries was analyzed using principal component analysis, cluster analysis, multivariate analysis of variance and discriminant function analysis. Furthermore, phenotypic variation within and among species was investigated. Intra- and interspecific phenotypic diversity was quantified using the Shannon–Weaver diversity index. A character discard was tested by variance component estimations and multiple regression analysis. Quantitative trait variation ranged from 0.81 (for total harvest index) to 49.35% (for no. of storage roots per plant). Interspecific phenotypic variation was higher than intraspecific for quantitative traits in contrast to qualitative characters. Phenotypic variation was higher in overall for quantitative than qualitative traits. In general, intraspecific phenotypic variation ranged from 0.00 to 82.61%, and from 0.00 to 80.03% for quantitative and qualitative traits, respectively. Interspecific phenotypic variation ranged from 0.00 to 95.02%, and 0.00?81.58% for the two trait types, respectively. The Shannon–Weaver diversity index (H′) was in general high and over 0.80 for most of the trait. Diversity within P. tuberosus was higher than within P. erosus and P. ahipa. Across the 50 quantitative and 25 qualitative traits, the Shannon–Weaver diversity index of intra- and interspecific variation was around 0.83 and 0.51, respectively and was lower for qualitative than for quantitative traits. Monomorphism was observed in eight qualitative traits and one quantitative character. The first, second and third principal components explained, respectively, 39.1, 21.3 and 8.3% of the total variation in all traits. Pachyrhizus erosus, P. ahipa, and P. tuberosus (‘Chuin’ and ‘Ashipa’) were clearly separated from each other by these analyses. Multivariate analysis of variance indicates significant differences between Pachyrhizus species for all individual or grouped traits. Discriminant function analysis revealed that the first two discriminant functions were almost significant. Biases due to unbalanced sample size used per species were small. Within each species a similar amount of diversity was observed and was determinable to 70% by only ten traits. We conclude that the cultivated yam bean species represent distinct genepools and each exhibits similarly large amounts of genetic diversity.  相似文献   

13.
Plants of the Pilocarpus genus (Rutaceae) are popularly known as jaborandi and are the only source of pilocarpine, an imidazole alkaloid used in eye-drops for the treatment of glaucoma as well as for the stimulation of sweat and lachrymal glands. Alkaloid extracts from leaf samples of seven species of Pilocarpus, from the states of São Paulo and Maranhão in Brazil, were analyzed using HPLC–ESI–MS/MS. The samples contained between 0.88 ± 0.04 and 1.00 ± 0.14% of alkaloids in relation to the dry weight of their leaves, with significant differences in results (P ≤ 0.05) found only between Pilocarpus microphyllus planted in the state of Maranhão and Pilocarpus spicatus, Pilocarpus trachyllophus, Pilocarpus pennatifolius and Pilocarpus jaborandi; as well as between Pilocarpus spicatus and Pilocarpus racemosus. Pilocarpine was not found in P. spicatus, whereas in the other species it ranged from 2.6 ± 0.1 to 70.8 ± 1.2% of total alkaloids. P. microphyllus planted in the state of Maranhão for pilocarpine extraction had the highest total alkaloid content, but it had only 35% of pilocarpine in relation to total alkaloids. Three other species contained more pilocarpine in relation to total alkaloids: P. jaborandi (70.8%), P. racemosus (45.6%) and P. trachyllophus (38.7%); and could be candidates for pilocarpine extraction. Differences in alkaloid content were significant for all these samples (P ≤ 0.05). Imidazole alkaloids were observed and partially characterized based on their retention times and high resolution mass. The seven species analyzed had different imidazole alkaloid profiles, but only one did not present quantifiable pilocarpine contents in its leaves. The Pilocarpus genus shows potential for the prospection of novel alkaloids.  相似文献   

14.
Motherwort (Leonurus cardiaca L.) is a medicinal plant indigenous to the Mediterranean regions in Europe and Asia. The objective of this study is to apply inter-primer binding site (iPBS) markers to assess the molecular variation and genetic relationships of 89 genotypes of motherwort to assist the genetic improvement of this species. The genotypes comprised 79 from Iran and 10 collected in Australia and 15 additional accessions of two related species (L. heterophyllus Sweet and L. sibiricus L.) collected in Australia, were also included. PCR of 7 iPBS primers (dominant markers) produced a total of 191 bands ranging from 180 to 4000 bp and the mean PIC for primers ranged from 0.2213 to 0.3206 with a mean value 0.2921. The mean expected heterozygosity (0.134), the mean unbiased expected heterozygosity (0.140) and Shannon’s information index (0.213) indicated a high level of inbreeding among the accessions tested. Ordination and cluster analysis showed that the genetic relationships among all accessions could be separated into three major groups—L. cardiaca, L. heterophyllus and L. sibiricus. However, among the 89 accessions of L. cardiaca, genotypes collected from the same geographic region tended to cluster together thus indicating greater genetic similarity. The Motherwort accessions originating in Iran are highly divergent and possess abundant genetic diversity and clearly provide a basis for selection and breeding. The iPBS PCR-based genome fingerprinting technology used in this study is low-cost and effective in differentiating accessions of motherwort and their related species.  相似文献   

15.
Genetic diversity and relationships within and among nine species of Coffea, one species of Psilanthus and the Piatã hybrid from the Coffee Germplasm Collection of Instituto Agronômico de Campinas (IAC), Brazil were assessed using RAPD markers. Genetic diversity and relationships were evaluated by proportion of polymorphic loci (P), Shannon’s genetic index (H′ and GST) and clustering analysis. The overall RAPD variation among all accessions was mostly partitioned between rather than within species. However, C. canephora and C. liberica showed a high genetic diversity within the species (\({\underline{\hbox{H}'}} \) sp = 0.414 and \({\underline{\hbox{H}'}} \) sp = 0.380, respectively) and this was highly structured (high \({\underline{\hbox{G}'}} \) ST). Genetic diversity from C. congensis and C. arabica was also structured, but with lower levels of genetic diversity (\({\underline{\hbox{H}'}} \) sp = 0.218 and \({\underline{\hbox{H}'}} \) sp = 0.126, respectively). The results were consistent with agronomic and molecular studies and demonstrated that the IAC Coffea Collection is representative of the phylogenetic structure observed in the genera. This study devises sampling strategies for coffee germplasm collections and provides genetic diversity parameters for future comparisons among them.  相似文献   

16.
Xanthosoma sagittifolium (L.) Schott originated from the American tropics. Domestication may have occurred in various places as this Araceae species is an important food source. It has been cultivated for many decades. In this study, Amplified Fragments Length Polymorphism (AFLP) markers were used to analyze the genetic relationships among 78 Ethiopian X. sagittifolium accessions, for conservation purpose. Cormels were collected from Bench-Maji, Kefa, Dawuro and Wolaita zones, representing four populations. The accessions belonged to either green (G) or purple (P) colored leaf and petiole accessions. Three different AFLP primer combinations resulted in 478 scorable bands, of which 99.2% were polymorphic. The mean Nei’s gene diversity (He) within populations was 0.35 while the G accessions featured higher He (0.38) than the P ones (0.35). The Nei’s gene diversity (He) at entire collection level was 0.38. The detected high genetic diversity may indicate the X. sagittifolium plants growing in the country may derive from diverse parental genotype stock elsewhere and/or there may be multiple introductions to the country. Low levels of genetic differentiation were detected among populations (Gst?=?0.07) and between the G and P accessions (Gst?=?0.02). Insignificant genetic and geographic correlation was revealed by Mantel test. Clustering analysis grouped 91% of the accessions together. Conservation and management of X. sagittifolium in the country should concentrate on maintaining high level genetic diversity within each population as well as at entire collection level through both ex situ and in situ conservation actions.  相似文献   

17.
The genus Crataegus known as hawthorns, is the largest genus among the Maloideae, which comprises 265 species. Turkey is one of the genetic centers of Crataegus and there are more than 20 species found in Turkey. The fruits of Crataegus are used as food and have high flavonoid, vitamin C, glycoside, anthocyanidin, saponin, tannin, and antioxidant levels. In this study, we attempted to characterize 15 Crataegus accessions sampled from Hatay, located in Eastern Mediterranean region of Turkey. The accessions belonged to several species; C. aronia (L.) DC. var. aronia, C. aronia var. dentata Browicz, C. aronia var. minuta Browicz, C. monogyna Jacq. subsp. azarella (Griseb.) Franco, and C. orientalis Pall. ex M. Bieb. var. orientalis. Fruit characteristics of the accessions exhibited considerable variation. The multivariate, principle component and cluster analyses indicated that the accessions belonged to three groups: (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accessions; and, (3) C. monogyna subsp. azarella and C. orientalis var. orientalis accessions. The principle component analysis results also revealed that the first three components explained 46, 21, and 14% of the variation, comprising a total of 81%. The fruit length and width, leaf area, and soluble solids contents were highly correlated characteristics for the first three components. The 19 RAPD primers generated a total of 107 bands, where 76 of these were polymorphic. The molecular data analyses by principle coordinate and clustering showed similar results to those of pomological characteristics. There were three groups, (1) C. aronia var. arona accessions; (2) C. aronia var. dentata accession; and, (3) C. monogyna subsp. azarella. C. orientalis var. orientalis accession grouped with C. aronia var. arona accessions. Therefore, it can be concluded that, overall, the diversity patterns of pomological and molecular data, generated by RAPD, for Crataegus are in good agreement and the accessions of C. aronia var. aronia, C. aronia var. minuta, C. monogyna subsp. azarella and C. orientalis var. orientalis accessions.  相似文献   

18.
Analysis of the genetic structure of Indonesian Oryza sativa and O. rufipogon using neighbour-joining trees based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers revealed that O. sativa in Indonesia is separated from O. rufipogon. Accessions of O. sativa in this study were differentiated into two major groups, indica and tropical japonica, excluding some varieties. SSR and SNP markers revealed the high value of differentiation (F ST) and genetic distance (D) between indica and tropical japonica and we discovered four loci by SNP markers and one locus by SSR markers that play a role in differentiation between indica and tropical japonica. Interestingly, genetic diversity (H) in O. rufipogon was lower than that in O. sativa, however H in O. rufipogon was the highest and H in tropical japonica was the lowest when O. sativa was divided into two groups. Inbreeding coefficient (Fst) showed evidences that gene flow (Nm) between species and within species might be one of the mechanisms related to the diversification and differentiation of Indonesian rice germplasm by asymmetric pattern between species and within O. sativa as revealed by SSR and SNP markers. In addition, we found evidences on stabilizing selection in Indonesian rice germplasm and they might be the reasons why Indonesian rice germplasm did not differentiate due to source location of landrace. However, we found a weak relation between SSR and SNP markers probably due to highly polymorphic in SSR and the different properties of both markers.  相似文献   

19.
There were 15 species and two variants of wild Iris recorded in Liaoning Province, where is a primary distribution area of Iris in China. According to the division of distribution area for wild plants in Liaoning, twenty-eight sites were selected for investigating wild Iris resources in Liaoning. Distribution, habitat and main accompanying plants of each Iris species were recorded. Fifty-three accessions were collected during the investigation and introduced to suitable environment. Morphological characteristics of each accession were observed. According to previous literatures and specimens, all accessions were identified and classified into 12 species and two variants. The analytic hierarchy process (AHP) was used to perform a comprehensive assessment on the ornamental value of 11 Iris species. The results showed that Iris tigridia Bunge and Iris ensata Thunb. had better ornamental value than the other species. Some suggestions for revision and classification were discussed on several Iris species.  相似文献   

20.
Wild species representatives from Northwestern, Central and Southern Florida, and neighboring U.S. states were collected in multiple United States Department of Agriculture (USDA) exploration expeditions and are being preserved at the USDA, Agricultural Research Service, National Clonal Germplasm Repository in Corvallis, Oregon. Germplasm from these southeastern regions of North America is particularly vulnerable to loss in the wild due to encroachment of human development in key habitats and biotic and abiotic stresses from climate change. Fourteen simple sequence repeats (SSRs), previously developed from the highbush blueberry (Vaccinium corymbosum) cultivar ‘Bluecrop’, were used to estimate genetic diversity and genetic differentiation of 67 diploid individuals from three species, including 19 V. elliottii, 12 V. fuscatum, and 35 V. darrowii accessions collected throughout the species’ ranges. Results from our analyses indicated that the samples from each species could be reliably resolved using genetic distance measures with ordination and neighbor joining approaches. In addition, we estimated admixture among these species by using Bayesian assignment tests, and were able to identify a mis-labeled accession of V. darrowii ‘Johnblue’, two mis-classified accessions (CVAC 735.001 and CVAC 1223.001), and four accessions of previously undescribed hybrid origin (CVAC 734.001, CVAC 1721.001, CVAC 1741.001, and Florida 4B CVAC 1790). Allele composition at the 14 SSRs confirmed that Florida 4B CVAC 1790, the donor of low chilling for the southern highbush blueberry, was the critical parent of US 74. Genetic diversity assessment and identification of these wild accessions are crucial for optimal germplasm management and expand opportunities to utilize natural variation in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号