首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to explore the potential of Dioscorea nummularia Lam. and to gather information as a prelude to its improvement by plant breeding. After a taxonomic clarification and a review of the botanical data, its geographical areas of origin and distribution are determined. A germplasm survey conducted on nine islands of Vanuatu enabled the collection of 110 accessions corresponding to 84 cultivars. These were grouped into: (1) wild forms under domestication, (2) annual types, (3) perennial-type cultivars of D. nummularia and (4) natural interspecific hybrids with D. alata L. Within each group, remarkable morphological variation exists for stem spininess, leaf shape, emerging leaf colour, tuber shape and tuber flesh colour. Selected accessions examined for ploidy had chromosome numbers ranging from 2n = 3x = 60 to 2n = 6x = 120. Chloroplast counts conducted on stomatal guard cells confirmed the variation in ploidy levels. Eight different male cultivars were studied for pollen fertility, but <5% of the pollen grains appeared to be fertile when stained with acetocarmine. However, profuse flowering and synchrony favour pollination and result in fruit set. All accessions are resistant to anthracnose. Viruses were detected but are morphologically not discernible, with no incidence on yield. Physicochemical analyses of tubers from 16 accessions revealed that D. nummularia and interspecific hybrids have high percentages of dry matter (mean of 33.11%) and starch (82.81%). The Pacific yam could be improved through conventional hybridisation or used for interspecific crosses with related economically important species. Recommendations are made for further research.  相似文献   

2.
Cyclopia (honeybush) species are widely-used in the production of a South African herbal tea and are endemic to the fynbos region of the Western and Eastern Cape Provinces. Honeybush is still one of the orphan agriculture crops and recent breeding efforts by researchers are hampered by the lack of basic genetic information e.g. basic chromosome numbers and ploidy levels. This study determined nuclear DNA content and ploidy level of various genotypes of three Cyclopia species using flow cytometry and cytological counting of chromosomes. Nuclei analysis of young leaves of C. genistoides, C. longifolia and C. subternata were done using a flow cytometer, while root tip squashes were carried out in order to correlate flow cytometry results. Flow cytometry analysis indicated differences in the nuclear DNA content among and within species whilst the DNA ploidy level only differed among species. Cyclopia genistoides had a higher DNA ploidy level (≥?10C) and DNA content (10.63 pg) than C. longifolia (6.09 pg) and C. subternata (5.99 pg), with no differences observed between the ploidy level of the latter two species (6C). The inferred ploidy level from nuclear DNA content by flow cytometry was consistent in all 30 genotypes of C. longifolia, and 24 of the 25 C. subternata and in only four of the 15 C. genistoides studied genotypes. These findings are important in breeding new cultivars with desired horticultural traits, thus improving the commercial characteristics for the sustainable production of honeybush.  相似文献   

3.
Six new amphiploids, Triticum kiharae Dorof. et Migusch. (2n?=?6x?=?42, AtAtGGDD), are described in this study. They were developed by the chromosome doubling of F1 hybrid crosses between Triticum timopheevii Zhuk. (AtAtGG) with high resistance to stripe rust and Aegilops tauschii Cosson (DD) by colchicine treatment. These amphiploids showed a high level of fertility of 68–80% and exhibited relatively normal chromosome pairing in meiotic metaphase I. Individual chromosomes of T. kiharae could be identified by multicolor fluorescence in situ hybridization using the combination of oligonucleotides probes Oligo-pSc119.2-1, Oligo-pTa535-1, and Oligo-pTa71-2. T. kiharae exhibited high resistance to predominant stripe rust races CYR34, CYR31, CYR32, CYR33, and SY11-4 both during the seedling and adult stages. However, high molecular weight glutenin subunits from Ae. tauschii parents were only partially expressed in the T. kiharae background. These T. kiharae lines provide novel materials to widen the genetic diversity of the common wheat gene pool.  相似文献   

4.
Boxwoods (Buxus L., Buxaceae) are popular woody landscape shrubs grown for their diverse forms and broad-leaved evergreen foliage. We used genic simple sequence repeat (genic-SSR) markers to assess genetic diversity and relatedness of 275 accessions from the National Boxwood Collection at the U.S. National Arboretum. Flow cytometry was conducted to determine the relative ploidy of each accession. Genic-SSR loci were highly variable among the accessions, detecting an average of 6.7 alleles per locus based on 17 primer pairs. Data were analyzed with a distance matrix based on Jaccard’s similarity index, followed by Unweighted Pair Group Method with Arithmetic Mean clustering. Two major clusters were identified, with four subclusters consisting of individual accessions from B. balearica Lam., B. bodinieri Lévl., B. harlandii Hance, B. microphylla Siebold et Zuccarini, B. sempervirens L., B. sinica (Rehd. et Wils.) M. Cheng, and their putative interspecific hybrids. The accessions generally clustered by cultivar, provenance, or species. Clustering within each group typically reflected breeding pedigrees, when known, and the clusters were supported by bootstrap results. This information will be used for breeding programs and collection management, and for identifying possible sources of disease tolerance for boxwood blight and other diseases and pests.  相似文献   

5.
Genetic diversity of 139 accessions of diploid Triticum species including Triticum urartu, Triticum boeoticum and Triticum monococcum was studied using 11 SSR (simple sequence repeats) markers. A total of 111 alleles with an average of 10 alleles per locus were detected. The polymorphism information content (PIC) of each SSR marker ranged from 0.30 to 0.90 with an average value of 0.62. Among the three Triticum species T. urartu had the highest number of total alleles (Na?=?81), private alleles (Npa?=?15) and showed higher genetic diversity (Hex?=?0.58; PIC?=?0.54). The genotypes from Turkey exhibited the highest genetic diversity (PIC?=?0.6), while the least diversity was observed among 4 Georgian accessions (PIC?=?0.11). Cluster analysis was able to distinguish 139 wheat accessions at the species level. The highest genetic similarity (GS) was noted between T. boeticum and T. monococcum (GS?=?0.84), and the lowest between T. urartu and T. monococcum (GS?=?0.46). The grouping pattern of the PCoA analysis corresponded with cluster analysis. No significant differences were found in clustering of T. urartu and T. monococcum accessions with respect to their geographic regions, while within T. boeoticum species, accessions from Iran were somewhat associated with their geographical origin and clustered as a close and separate group. The results from our study demonstrated that SSR markers were good enough for further genetic diversity analysis in einkorn wheat species.  相似文献   

6.
The high cost and supply shortage of seed yam propagules for planting are major constraints in yam production. In the water yam (Dioscorea alata L.), aerial tubers have potential as alternative sources of planting material. In this study, we investigated morphological, molecular and ploidy variation across multiple aerial tuber producing accessions of Dioscorea alata. Initial screening of over 800 accessions from the International Institute of Tropical Agriculture germplasm collection for aerial tuber production identified a subset (15 %) of accessions, which produced aerial tubers. The aerial tuber producing accessions (along with 18 non-aerial tuber accessions) were further characterized for phenotypic and ploidy variation. In addition, using SSR markers we characterized the genetic diversity amongst all of the aerial tuber producing accessions, along with six non-aerial tuber producing accessions. Multiple Correspondence Analysis (MCA) using morphological data grouped the accessions according to their aerial tuber production. The aerial tuber production characteristics of accessions were associated with phenotypic variables and ploidy levels. The MCA analysis revealed three main groups consisting of; Group 1) all non aerial tuber producing accessions (n = 15), hastate leaf shape, less or no anthocyanin pigmentation and diploid (2n = 2x = 40), Group 2) group with some aerial tuber producing accessions, different extent of anthocyanin pigmentation, sagittate leaf shape, mainly diploid (n = 44) and three triploid (2n = 3x = 60) and 3) a group where all individuals bear aerial tuber, cordate leaf shape, intermediate anthocyanin pigmentation and majority (n = 74) tetraploid (2n = 4x = 80) and three triploid individuals. Aerial tuber production may be subject to a genome dosage effect as an increase in aerial tuber production was associated with increased ploidy level. For instance, tetraploid plants produce more aerial tubers per sprout than either triploids or diploids. Principal coordinate analysis based on SSR markers using Jaccard’s coefficient also revealed distinct groups associated with the pattern of aerial tuber formation, leaf shape and anthocyanin pigmentation. Overall our study indicates the usefulness of combining SSR markers, ploidy level and phenotypic data for identification and classification of Dioscorea alata accessions according to their extent of aerial tuber production.  相似文献   

7.
Analysis of the genetic structure of Indonesian Oryza sativa and O. rufipogon using neighbour-joining trees based on single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers revealed that O. sativa in Indonesia is separated from O. rufipogon. Accessions of O. sativa in this study were differentiated into two major groups, indica and tropical japonica, excluding some varieties. SSR and SNP markers revealed the high value of differentiation (F ST) and genetic distance (D) between indica and tropical japonica and we discovered four loci by SNP markers and one locus by SSR markers that play a role in differentiation between indica and tropical japonica. Interestingly, genetic diversity (H) in O. rufipogon was lower than that in O. sativa, however H in O. rufipogon was the highest and H in tropical japonica was the lowest when O. sativa was divided into two groups. Inbreeding coefficient (Fst) showed evidences that gene flow (Nm) between species and within species might be one of the mechanisms related to the diversification and differentiation of Indonesian rice germplasm by asymmetric pattern between species and within O. sativa as revealed by SSR and SNP markers. In addition, we found evidences on stabilizing selection in Indonesian rice germplasm and they might be the reasons why Indonesian rice germplasm did not differentiate due to source location of landrace. However, we found a weak relation between SSR and SNP markers probably due to highly polymorphic in SSR and the different properties of both markers.  相似文献   

8.
Dioscorea alata L. is a highly important crop, widely distributed in the humid and semi-humid tropics. Flow cytometry was used to determine the ploidy levels of 74 D. alata genotypes collected mainly from West African countries. Sixty three of the genotypes were found to be tetraploid, one was hexaploid and ten were octoploid. The high percentage of tetraploids together with the small percentage of hexaploid individuals and the absence of diploid individuals gives us some more clues on the possible origin of these species. No association between ploidy level and place of cultivation was found for the tested material. The obtained results represent important knowledge for enhancing the breeding methodologies and optimize germplasm management of this species. It also offers further insights to the phylogeny and evolution of Dioscorea species.  相似文献   

9.
Erianthus rockii, a wild relative of sugarcane, is drought and cold tolerant, and both are potentially important agronomic traits to the sugarcane industry worldwide. As such it is of interest as a source of parental germplasm to sugarcane breeders and is currently being used in sugarcane introgression programs in both China and Australia. To date morphological characters have been used to verify the putative hybrids produced. Two crosses were generated between two different Saccharum species and two E. rockii accessions. Over 400 AFLP markers were used to identify the intergeneric hybrid progeny as well as determine hybrid diversity. Both crosses generated hybrids but efficiency levels were very different and are probably related to the different Saccharum parent used in each cross. Cross 1 was between a Saccharum officinarum and E. rockii and generated 100% hybrid progeny. Cross 2, however, was between a sugarcane hybrid (S. officinarum × Saccharum spontaneum) and E. rockii and only 10% of the progeny were intergeneric hybrids. Inheritance of markers in the progeny was analysed and for both crosses there were equal numbers of markers from both parents indicating n + n transmission of chromosomes. This is the first verification of E. rockii hybrids with molecular markers. It may now be possible to exploit genes of value from E. rockii in sugarcane breeding programs.  相似文献   

10.
Crop breeding research by international agricultural research centers usually serves public sector crop breeding, but does it still have a role when research and development have shifted to the private sector? This paper explores this question for vegetables in India using data from 27 private companies and 9 public organizations. We focus on tomato (Solanum lycopersicum L.) and chili pepper (Capsicum annuum L.)—two of India’s most important vegetables, and the role of international germplasm received from the World Vegetable Center. Results show that as the role of the private sector in vegetable breeding increased, and with it the share of hybrids in the market, the role of international agricultural research shifted from the provision of ready-made varieties to the provision of specific resistance traits. Still, international germplasm continued to be used in varietal development with 11.6 t (14 % of the total market) of hybrid tomato seed and 15.0 t (13 %) of hybrid chili pepper seed sold in 2014 containing international germplasm in its pedigree. We estimate that over half a million farmers use such seed. We conclude that for tomato and chili pepper, international breeding needs to focus on pre-breeding research, capacity strengthening of smaller seed companies, and the delivery of open-pollinated varieties for marginal environments.  相似文献   

11.
Yam bean [Pachyrhizus DC.] is a legume genus of the subtribe Glycininae with three root crop species [P. erosus (L.) Urban, P. tuberosus (Lam.) Spreng., and P. ahipa (Wedd.) Parodi]. Two of the four cultivar groups found in P. tuberosus were studied: the roots of ‘Ashipa’ cultivars with low root dry matter (DM) content similar to P. erosus and P. ahipa are traditionally consumed raw as fruits, whereas ‘Chuin’ cultivars with high root DM content are cooked and consumed like manioc roots. Interspecific hybrids between yam bean species are generally completely fertile. This study examines the genetic diversity of the three crop species, their potentials for breeding and the identification of useful traits to differentiate among yam bean genotypes and accessions. In total, 34 entries (genotypes and accessions) were grown during 2000?2001 at two locations in Benin, West Africa, and 75 morphological and agronomical traits, encompassing 50 quantitative and 25 qualitative characters were measured. Diversity between entries was analyzed using principal component analysis, cluster analysis, multivariate analysis of variance and discriminant function analysis. Furthermore, phenotypic variation within and among species was investigated. Intra- and interspecific phenotypic diversity was quantified using the Shannon–Weaver diversity index. A character discard was tested by variance component estimations and multiple regression analysis. Quantitative trait variation ranged from 0.81 (for total harvest index) to 49.35% (for no. of storage roots per plant). Interspecific phenotypic variation was higher than intraspecific for quantitative traits in contrast to qualitative characters. Phenotypic variation was higher in overall for quantitative than qualitative traits. In general, intraspecific phenotypic variation ranged from 0.00 to 82.61%, and from 0.00 to 80.03% for quantitative and qualitative traits, respectively. Interspecific phenotypic variation ranged from 0.00 to 95.02%, and 0.00?81.58% for the two trait types, respectively. The Shannon–Weaver diversity index (H′) was in general high and over 0.80 for most of the trait. Diversity within P. tuberosus was higher than within P. erosus and P. ahipa. Across the 50 quantitative and 25 qualitative traits, the Shannon–Weaver diversity index of intra- and interspecific variation was around 0.83 and 0.51, respectively and was lower for qualitative than for quantitative traits. Monomorphism was observed in eight qualitative traits and one quantitative character. The first, second and third principal components explained, respectively, 39.1, 21.3 and 8.3% of the total variation in all traits. Pachyrhizus erosus, P. ahipa, and P. tuberosus (‘Chuin’ and ‘Ashipa’) were clearly separated from each other by these analyses. Multivariate analysis of variance indicates significant differences between Pachyrhizus species for all individual or grouped traits. Discriminant function analysis revealed that the first two discriminant functions were almost significant. Biases due to unbalanced sample size used per species were small. Within each species a similar amount of diversity was observed and was determinable to 70% by only ten traits. We conclude that the cultivated yam bean species represent distinct genepools and each exhibits similarly large amounts of genetic diversity.  相似文献   

12.
Forty-four Asparagus officinalis cultivars, gene bank accessions and breeding lines as well as thirty-four accessions of wild relatives of Asparagus were evaluated for resistance to Asparagus virus 1. Three different test strategies were developed for the assessment of individual plants: (1) natural infection under field conditions, or two vector-mediated infection assays using the green peach aphid Myzus persicae (2) in an insect-proof gauze cage or (3) in a climate chamber. The AV-1 infections were verified by DAS-ELISA and RT-PCR approaches. All tested 660 individual plants of A. officinalis germplasm were susceptible to AV-1 infection. In contrast, in 276 plants of 29 Asparagus wild accessions no virus infection could be detected. These resistant accessions comprised of nineteen diploid, tetraploid and hexaploid species of both the Eurasian clade and the African clade of the asparagus germplasm. Data of the AV-1 resistance evaluation are discussed in relation to the genetic distance of the resistance carrier and potential application in breeding.  相似文献   

13.
For breeding programs of the tetraploid potato (Solanum tuberosum), both wild and cultivated diploid relatives are valuable sources of genetic diversity. While both types of germplasm are used in breeding programs, there are several advantages to using wild relatives. Diploid relatives are typically crossed with haploids (2n = 2x = 24) from tetraploid S. tuberosum to improve daylength adaptation. Most haploids are male sterile, so they are typically used as female parents. Cultivated diploids, such as members of the Phureja Group, produce male sterile hybrids when crossed as females to haploids; wild relatives, such as S. tarijense, often produce male fertile hybrids. Tuber yield following crosses of haploids to cultivated or wild relatives is often high. However, cultivated relatives generally produce hybrids with a high set of small tubers; hybrids from wild relatives are variable, but many are similar to cultivars in tuber size and set. While tubers of hybrids from cultivated relatives are typically rough, with deep eyes and raised internodes, those from wild relatives are often smooth. Tuber dormancy in hybrids with cultivated relatives is generally short, while that in hybrids with wild species is longer, allowing for storage over winter. Finally, resistance to several major diseases and stresses has been found in wild species and their hybrids with S. tuberosum haploids. The desirable traits in hybrids are transmitted to tetraploids via unilateral sexual polyploidization (4x × 2x or 2x × 4x crosses in which the diploid parent produces 2n gametes). Wild Solanum species are recommended for use in potato breeding programs as sources of genetic diversity that can be adapted easily following hybridization with S. tuberosum haploids.  相似文献   

14.
A perennial version of grain sorghum [S. bicolor (L.) Moench] would create opportunities for greatly reducing tillage and preventing soil degradation. Efforts to select for perenniality and grain production among progeny of hybrids between S. bicolor (2n = 20) and the weedy tetraploid perennial S. halepense (L.) Pers. (2n = 40) are complicated in that F1 hybrids produced by diploid × tetraploid sorghum crosses are usually tetraploid. In 2013, a set of random pollinations between 19 diploid cytoplasmic male-sterile inbred lines and 43 tetraploid perennial plants produced 165 F1 hybrid plants, more than 75% of which had highly atypical plant, panicle, and seed phenotypes. Phenotypic segregation in F2 populations derived from atypical hybrids was also anomalous. Examination of mitotic metaphase cells in F1 or F2 root tips revealed that 129 of the 165 hybrids were diploid. Parentage of the diploid progenies was confirmed using simple-sequence repeat analysis. The mechanism by which diploid hybrids arise from diploid × tetraploid crosses is unknown, but it may involve either production of monohaploid (n = 10) pollen by the tetraploid parent or chromosome elimination during early cell divisions following formation of the triploid zygote. The ability to produce diploid germplasm segregating for S. bicolor and S. halepense alleles could have great utility, both for the development of perennial sorghum and for the improvement of conventional grain sorghum.  相似文献   

15.
Lemon balm (Melissa officinalis L.) is used since ancient times because of its sedative, spasmolytic and antiviral effects. Its therapeutic impact is due to the content of essential oil and rosmarinic acid. A set of 68 M. officinalis genotypes was evaluated for content and composition of essential oil and the content of rosmarinic acid. For all genotypes the level of ploidy was determined. The 68 genotypes were clone plants grown and evaluated for two years at Quedlinburg. For analysis of secondary metabolites distillation, gas chromatography and high performance liquid chromatography was used. The content of essential oil varied in this study in ranges from 0.03 to 0.33% for the second cut 2010 and 0.01–0.35% for the second cut 2011. The rosmarinic acid content ranged in the year 2010 from 3.67 to 7.55% and in the year 2011 from 4.92 to 8.07%. Via statistical analyses two chemotypes of essential oil were found: chemotype citral and chemotype β-caryophyllene oxide. Ploidy was determined for all genotypes and two cytotypes were found: diploid 2n = 2x = 32 (62 of 68 genotypes) and triploid 2n = 3x = 48 (6 of 68 genotypes).  相似文献   

16.
Dihydrochalcones, beneficial phenolic compounds, are abundant in Malus Mill. species, particularly in vegetative tissues and seeds. Phloridzin (phloretin 2′-O-glucoside) is the primary dihydrochalcone in most Malus species including cultivated apple, Malus?×?domestica Borkh. A few species contain sieboldin (3-hydroxyphloretin 4′-O-glucoside) or trilobatin (phloretin 4′-O-glucoside) in place of phloridzin, and interspecific hybrids may contain combinations of phloridzin, sieboldin, and trilobatin. Proposed health benefits of phloridzin include anti-cancer, antioxidant, and anti-diabetic properties, suggesting the potential to breed apples for nutritional improvement. Sieboldin and trilobatin are being investigated for nutritional value and unique chemical properties. Although some of the biosynthetic steps of dihydrochalcones are known, little is known about the extent of variation within Malus germplasm. This research explores the genetic diversity of leaf dihydrochalcone content and composition in Malus germplasm. Dihydrochalcone content was measured using high performance liquid chromatography (HPLC) from leaf samples of 377 accessions, representing 50 species and interspecific hybrids from the USDA-Agricultural Research Service (ARS) National Plant Germplasm System Malus collection. Within the accessions sampled, 284 accessions contained phloridzin as the primary dihydrochalcone, one had only trilobatin, two had phloridzin and trilobatin, 36 had sieboldin and trilobatin, and 54 had all three. Leaf phloridzin content ranged from 17.3 to 113.7 mg/g with a heritability of 0.76 across all accessions. Beyond the potential of dihydrochalcones for breeding purposes, dihydrochalcone composition may be indicative of hybridization or species misclassification.  相似文献   

17.
Aegilops geniculata Roth, a wild relative of wheat (2n = 4x = 28, genome UUMM), is distributed over the Mediterranean basin and nearby areas. The species consists of two subspecies, subsp. geniculata and subsp. gibberosa (Zhuk.) Hammer. The former is distributed over the whole species area and has been genetically analyzed, and the latter is endemic to Spain and North Africa and has not been genetically evaluated. In this study, to clarify the genetic variation and delineation of the two subspecies from a biosystematic viewpoint, morphological variation among 23 accessions of subsp. geniculata and three of subsp. gibberosa and chromosome pairing at meiosis and fertility in their intra- and inter-subspecific F1 hybrids were examined. A principal component analysis based on the 11 spike characteristics clearly divided the 26 accessions into two groups representing the two subspecies. The inter-subspecific F1 hybrids showed significantly lower frequencies of chromosome pairing, significantly higher frequencies of multivalents, and significantly lower fertilities relative to those of the intra-subspecific F1 hybrids. It was concluded that wide-ranging cytogenetic variation is included in subsp. geniculata, that subsp. gibberosa, the intra-subspecific variation of which is small, is morphologically and cytogenetically differentiated from subsp. geniculata beyond the range of the intra-subspecific variation of subsp. geniculata, and that the two subspecies are effectively isolated reproductively by hybrid sterility. The results strongly suggested that western North Africa is one of the important diversity centers of Ae. geniculata, where two subspecies were differentiated in the past and grow together in the present.  相似文献   

18.
Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at Osmanthus fragrans with little work to develop markers for other species and cultivars. The objectives of this study were to (1) determine cross-transferability of O. fragrans and Chionanthus retusus derived SSRs in diverse Osmanthus taxa, (2) quantify the influence of locus-specific factors on cross-transferability, and (3) determine the genetic relationships between accessions. We tested 70 SSR markers derived from O. fragrans and C. retusus in 24 accessions of Osmanthus. Sixty-seven markers showed transfer to at least one other Osmanthus species with an overall transfer rate of 84% of loci across taxa. Genotyping with 42 microsatellite markers yielded a total of 367 loci. Number of alleles per locus ranged from 2 to 17 with a mean of 8.7 ± 4.8. Mean observed and expected heterozygosities were 0.560 ± 0.225 and 0.688 ± 0.230, respectively. Percent of polymorphic loci ranged from 40% in Osmanthus delavayi to 100% in O. fragrans. Osmanthus fragrans had the highest mean number of alleles per locus (4.2) while O. delavayi had the lowest (1.1). A reduced suite of eight-markers can distinguish between accessions with non-exclusion probabilities of identity from 3.91E?04 to 2.90E?07. The SSR markers described herein will be immediately useful to characterize germplasm, identify hybrids, and aid in understanding the level of genetic diversity and relationships within the cultivated germplasm.  相似文献   

19.
Banana (Musa spp.) is one of the most consumed fruits worldwide. Production is based mainly on triploid cultivars, and most genetic improvement programs aim to generate tetraploid hybrids obtained from the crossing of established triploid cultivars with a diploid parent genotype, improved or wild, exhibiting the trait of interest, normally resistance to biotic factors. Microsatellites were used to investigate the genetic variability and relationships between 58 Musa genotypes, including 49 diploids and nine triploid cultivars maintained at the Musa germplasm collection of the Brazilian dessert banana breeding program. Thirty-three primer pairs developed for banana were tested, and nine amplified reproducible and discrete fragments, producing a total of 115 alleles. The average number of alleles amplified per primer was 12.8, ranging from 10 to 15. The diploid genotypes presented the largest genetic variability, demonstrated by the large number of alleles detected, and the low similarity between the clones. The phenetic analysis clustered the triploid cultivars in a separated group, with the exception of the Nanica and Gros Michel cultivars, which showed high similarity with the diploid cultivar Mambee Thu. It was not possible to separate the wild diploid genotypes from the cultivated ones, indicating a common origin of these genotypes. A high proportion of duplicated alleles and/or loci was observed for diploid and triploid genotypes. The information gathered about the similarity between diploid and triploid accessions will help to define potential crosses to maximize the recovery of the typical fruit qualities required in Brazil (AAB, Pome and Silk dessert banana).  相似文献   

20.
Wild species representatives from Northwestern, Central and Southern Florida, and neighboring U.S. states were collected in multiple United States Department of Agriculture (USDA) exploration expeditions and are being preserved at the USDA, Agricultural Research Service, National Clonal Germplasm Repository in Corvallis, Oregon. Germplasm from these southeastern regions of North America is particularly vulnerable to loss in the wild due to encroachment of human development in key habitats and biotic and abiotic stresses from climate change. Fourteen simple sequence repeats (SSRs), previously developed from the highbush blueberry (Vaccinium corymbosum) cultivar ‘Bluecrop’, were used to estimate genetic diversity and genetic differentiation of 67 diploid individuals from three species, including 19 V. elliottii, 12 V. fuscatum, and 35 V. darrowii accessions collected throughout the species’ ranges. Results from our analyses indicated that the samples from each species could be reliably resolved using genetic distance measures with ordination and neighbor joining approaches. In addition, we estimated admixture among these species by using Bayesian assignment tests, and were able to identify a mis-labeled accession of V. darrowii ‘Johnblue’, two mis-classified accessions (CVAC 735.001 and CVAC 1223.001), and four accessions of previously undescribed hybrid origin (CVAC 734.001, CVAC 1721.001, CVAC 1741.001, and Florida 4B CVAC 1790). Allele composition at the 14 SSRs confirmed that Florida 4B CVAC 1790, the donor of low chilling for the southern highbush blueberry, was the critical parent of US 74. Genetic diversity assessment and identification of these wild accessions are crucial for optimal germplasm management and expand opportunities to utilize natural variation in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号