首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Canine generalised progressive retinal atrophy (gPRA) is a large and ever-increasing collection of naturally occurring, heterogeneous, progressive disorders. Most are inherited in an autosomal recessive manner and new, breed-specific forms continue to be described. The gPRAs cause photoreceptor cell death and subsequent retinal degeneration, culminating in blindness. In humans, similar inherited retinal dystrophies are recognised as retinitis pigmentosa and macular dystrophy. Molecular biological studies have revealed disease-causing mutations in several genes in humans and also in mice with retinal dystrophies. Recently, molecular genetic techniques have identified the cause of one form of gPRA in Irish setters while important candidate genes have been investigated in other breeds. Identification of mutations responsible for different forms of gPRA allows carrier and pre-degenerate animals to be detected using DNA-based tests. Such genetic tests will greatly facilitate the eradication of these diseases in different breeds.  相似文献   

2.
Glaucoma and inherited retinal degeneration/dystrophy are leading causes of blindness in veterinary patients. Currently, there is no treatment for the loss of vision that characterizes both groups of diseases. However, this reality may soon change as recent advances in understanding of the disease processes allow researchers to develop new therapies aimed at preventing blindness and restoring vision to blind patients. Elucidating the molecular mechanisms of retinal ganglion cell death in glaucoma patients has led to the development of neuroprotective drugs which protect retinal cells and their function from the disastrous effects of elevated pressure. Identification of the genetic mutation responsible for inherited degenerations and dystrophies of the outer retina has enabled researchers using gene therapy to restore vision to blind dogs. Other patients may benefit from retinal transplantation, stem cell therapy, neuroprotective drugs, nutritional supplementation and even retinal prostheses. It is possible that soon it will be possible to restore sight to some blind patients.  相似文献   

3.
Inherited retinal degenerations in the dog include generalised progressive retinal atrophy, retinal pigment epithelial dystrophy, congenital stationary night blindness and day blindness (hemeralopia). The clinical phenotype and pathology of these diseases closely resemble some types of human inherited retinal degeneration, in particular retinitis pigmentosa, one of the most common inherited causes of blindness in man. Molecular genetic investigations aim to identify the genetic mutations underlying the canine inherited retinal degenerations. Two major research strategies, candidate gene analysis and linkage analysis, have been used. To date, candidate gene analysis has definitively identified the genetic mutations underlying nine inherited retinal degenerations, each in a different breed of dog, and linkage studies have identified genetic markers for a further retinal degeneration which is found in at least six different breeds. This review outlines the research strategy behind candidate gene and linkage studies and summarises recent results in the search for genetic causes of canine inherited retinal degenerations. The aim is to increase awareness of this rapidly changing field and to show how the research can be used to develop genetic tests for these diseases and thereby reduce the incidence of inherited eye disease in dogs.  相似文献   

4.
The Jämthund is the fourth most common breed in Sweden with approximately 1600 pups registered each year. Although it has been known that some adult dogs go blind, so they cannot hunt, the Jämthund dog has historically not been screened for hereditary eye diseases. This report describes nine Swedish Jämthund dogs with retinal degeneration. These dogs represent all Jämthund dogs diagnosed with progressive retinal atrophy (PRA) by the Swedish Eye Panel and registered with the Swedish Kennel Club from January 1998 to September 2008. The dogs were examined with indirect opthalmoscopy and slitlamp biomicroscopy. Additionally, electroretinograms (ERGs) following ECVO guidelines were performed in two dogs (one affected and one normal) and the eyes from three affected dogs were examined by light‐microscopy postmortem. Typical findings were bilateral symmetric generalized retinal degeneration with tapetal hyper‐reflectivity, attenuation of blood vessels and pigment clumping in the nontapetal fundus. These retinal findings progressed with time in two dogs after re‐examination. Visual impairment, especially under dim light conditions, was observed in the affected dogs. ERG from one affected dog showed profoundly reduced rod responses, whereas cone responses were better preserved. Microscopic changes in the eyes from three dogs were characterized by a severe diffuse predominantly outer retinal degeneration and atrophy. Re‐sequencing of the prcd‐gene for eight of the nine investigated dogs revealed that none of the individuals carried disease allele that has been associated with prcd‐PRA in other breeds. In conclusion, ophthalmoscopic, electroretinographic, and light‐microscopic alterations observed in nine Jämthund dogs were compatible with PRA. The prcd mutation was excluded as a cause of this retinopathy.  相似文献   

5.
Corneal dystrophy in the dog and cat   总被引:1,自引:0,他引:1  
Two types of epithelial dystrophy have been described in dogs, one each in the Boxer and Shetland Sheepdog breeds, both of which can be associated with corneal erosions. Medical therapy is recommended when erosions or tear film abnormalities are present. Stromal dystrophies documented in dogs appear to be a primary lipid deposition in various layers of the stroma, depending on the breed. Stromal dystrophies seldom lead to loss of vision, but vision loss has been observed in middle aged Airedale Terriers and aged Siberian Huskies. Treatment is usually unnecessary. The dog demonstrates two types of endothelial dystrophy, one of which (posterior polymorphous dystrophy in the American Cocker Spaniel) does not lead to corneal edema. Endothelial dystrophy observed in the Boston Terrier, Chihuahua, and other breeds is associated with progressive corneal edema, which can lead to bullous keratopathy and corneal erosions. Stromal and endothelial dystrophies, both of which are associated with rapid progression of corneal edema, occur rarely in the cat. Treatment of dystrophies with progressive corneal edema is symptomatic and palliative.  相似文献   

6.
The aim of the study was to develop an improved test to detect the codon 616 gene mutation in the alpha cyclic GMP phosphodiesterase gene that causes progressive retinal atrophy in the Cardigan Welsh Corgi. We studied 10 control dogs of known genotype at codon 616 of the alpha cyclic GMP phosphodiesterase gene and 80 Cardigan Welsh Corgis of unknown genotype. A polymerase chain reaction (PCR) utilizing a mismatched primer was designed so that it introduced a HinfI restriction enzyme digestion site into the PCR product only if the normal gene sequence was present, the restriction site was not introduced if the codon 616 mutation was present. An additional HinfI site present in the amplified section from both normal and mutant alleles acted as a positive control for restriction enzyme digestion. The PCR reliably amplified a portion of the alpha cyclic GMP phosphodiesterase gene spanning the codon 616 mutation site. Restriction enzyme digestion with HinfI and analysis on a suitable agarose gel reliably ascertained the genotype of the control dogs and was used to identify the genotype of a further 80 test dogs. An improved DNA-based test for detection of the codon 616 mutation in the alpha cyclic GMP phosphodiesterase gene that causes progressive retinal atrophy in the Cardigan Welsh Corgi has been designed. This overcomes potential problems that could be associated with allele-specific PCR tests such as that used previously in a diagnostic test for this gene mutation.  相似文献   

7.
Clinical trials are currently underway using gene therapy to treat retinal disease such as Leber congenital amaurosis (LCA). Viral vectors that have been utilized to target retinal cells include adenoviruses, lentiviruses, and recombinant adeno-associated viruses (rAAV). Of the three classes, rAAV vectors show the greatest promise for retinal gene therapy. Recent developments in virus technology such as the development of hybrid and capsid mutant rAAV vectors mean that specific retinal cells can be targeted and faster stronger transgene expression is now possible compared to that achieved with the first generation of vectors. Gene therapy trials in dogs have been very important in the development of therapy for RPE65 LCA which is currently in phase I/II clinical trials in humans. Recent successes in using gene therapy to treat canine achromatopsia, X-linked progressive retinal atrophy (PRA) and the more severe rapid degenerations such as rod-cone dysplasia type 3 may lead also to the translation to human clinical trials. Dogs have played and continue to play an important role as animal models for proof-of-concept studies of retinal gene therapy. As modifications and improvements in gene therapy protocols are made from experience gathered from human clinical trials perhaps gene therapy for the treatment of canine clinical patients will become available to veterinary ophthalmologists.  相似文献   

8.
Objective To investigate ophthalmic and cone‐derived electrodiagnostic findings in outbred Miniature Long‐haired Dachshunds (MLHD) homozygous for a mutation in the RPGRIP1 gene previously associated with cone‐rod dystrophy 1 (cord1). Animals A total of 36 MLHD homozygous for the RPGRIP1 mutation and 23 dogs clear of the mutation (control group). Procedures The dogs underwent ophthalmic examination and photopic electroretinogram (ERG) recordings. Results None of the control dogs presented with clinical or ophthalmic signs consistent with cord1. Amongst the dogs homozygous for the mutation one presented with bilateral symmetrical total retinal atrophy. None of the other dogs in this group showed signs consistent with cord1. Photopic ERG recordings were available in 23 control dogs and 34 dogs homozygous for the mutation. Photopic a‐ and b‐waves following four light stimuli (3 cdS/m2) at a rate of 5.1 Hz were not significantly different between groups. The amplitudes of the 30 Hz flicker (128 flashes, 3 cdS/m2) response were significantly reduced in the dogs homozygous for the PRGRIP1 mutation. The difference in age between the two groups did not significantly affect the difference. Conclusion Homozygosity of the RPGRIP1 mutation does not invariably result in early onset cord1. However, cone derived ERG recordings show evidence of a reduced cone or inner retinal function in homozygous but clinically normal MLHD. Modifying genes that have yet to be identified may influence an individual dog’s risk of developing the blinding cord1 and also the age of onset and rate of progression.  相似文献   

9.
Inherited retinal degenerations (RDs) are a common cause of blindness in dogs and in humans. Over the past two decades numerous genes causally associated with these diseases have been identified and several canine models have been used to improve our understanding of the molecular mechanisms of RDs, as well as to test the proof of principle and safety of novel therapies. This review briefly summarizes the drug delivery approaches and therapeutic strategies that have been and are currently tested in dogs, with a particular emphasis on corrective gene therapy, and retinal neuroprotection.  相似文献   

10.
The most common form of muscular dystrophy in dogs and humans is caused by mutations in the dystrophin gene. The dystrophin gene is located on the X chromosome, and, therefore, disease-causing mutations in dystrophin occur most often in males. Therefore, females with dystrophin deficiency or other forms of muscular dystrophy may be undiagnosed or misdiagnosed. Immunohistochemistry was used to analyze dystrophin and a number of other muscle proteins associated with muscular dystrophy in humans, including sarcoglycans and laminin alpha2, in muscle biopsy specimens from 5 female dogs with pathologic changes consistent with muscular dystrophy. The female dogs were presented with a variety of clinical signs including generalized weakness, muscle wasting, tremors, exercise intolerance, gait abnormalities, and limb deformity. Serum creatine kinase activity was variably high. One dog had no detectable dystrophin in the muscle; another was mosaic, with some fibers normal and others partly dystrophin-deficient. A 3rd dog had normal dystrophin but no detectable laminin alpha2. Two dogs could not be classified. This study demonstrates the occurrence of dystrophin- and laminin alpha2-associated muscular dystrophy and the difficulty in clinical diagnosis of these disorders in female dogs.  相似文献   

11.
A survey to establish the UK prevalence of the gene mutation causing the rod-cone dysplasia type one (rcdl) form of generalised progressive retinal atrophy (gPRA) in Irish setters was carried out. The dogs were selected by members of two Irish setter breed societies to provide examples from most of the main breeding lines in the UK. A total of 210 Irish setters were tested and one bitch was found to be a carrier of the rcdl mutation. These results show that although a confirmed case of rcdl has not been reported in Irish setters in the UK for over a decade the gene is still present in the gene pool.  相似文献   

12.
Cone‐rod dystrophy is a progressive inherited retinal degenerative disorder that occurs in humans and dogs. The deletion in the nephronophthisis 4 (NPHP4) gene was established as a causative mutation in standard wire‐haired Dachshunds. We analyzed all varieties of Dachshunds from the Czech Republic and five other dog breeds and found that the deletion in the NPHP4 (in heterozygous state) is present not only in standard‐, but also in miniature wire‐haired Dachshunds, but not in other varieties of Dachshunds or in other breeds.  相似文献   

13.
One of the most common skeletal affections in humans is achondroplasia, a short-limbed dwarfism that is, in most cases, caused by mutations in the transmembrane domain of the fibroblast growth factor receptor-3 (FGFR-3) gene. Due to the lack of sufficient radiological, genetic, and molecular studies, most types of skeletal anomalies in dogs are classified as achondroplasia. To initiate the molecular characterization of some osteochondrodysplastic dog breeds, we obtained the DNA sequence of the transmembrane domain of the FGFR-3 gene from the dachshund, basset hound, bulldog, and German shepherd dogs. All 4 breeds showed no mutation in the evaluated region. This indicates that the mutation responsible for the osteochondrodysplastic phenotype in the tested dog breeds lies either elsewhere in the FGFR-3 gene or in other ones involved in the formation and development of endochondral bone.  相似文献   

14.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited myocardial disease seen in dogs, cats, and humans. A common entity in Boxers and the related English bulldog, the disease is characterized by fatty or fibrofatty replacement of the myocardium, ventricular arrhythmias, and the potential for syncope or sudden death. In some individuals, concomitant left ventricular involvement results in systolic dysfunction and a progression to congestive heart failure. The clinical and pathological characteristics of ARVC share many similarities in dogs and humans, and Boxers serve as an important spontaneous model of the disease.Although multiple mechanisms have been implicated in the pathogenesis of ARVC, the disease is ultimately considered to be a disorder of the desmosome. Multiple causal genetic mutations have been identified in people, and over 50% of affected humans have an identifiable mutation in desmosomal proteins. To date, only a single genetic mutation has been associated with ARVC in Boxer dogs. Other as-yet-undiscovered genetic mutations and epigenetic modifiers of the disease are likely. Treatment of ARVC in dogs is focused on controlling ventricular arrhythmias and associated clinical signs. This article will review the pathophysiology, clinical diagnosis, treatment, and prognosis of ARVC in the dog.  相似文献   

15.
Myoclonus is a sudden brief, involuntary muscle jerk. Of all the movement disorders, myoclonus is the most difficult to encapsulate into any simple framework. On the one hand, a classification system is required that is clinically useful to aid in guiding diagnosis and treatment. On the other hand, there is need for a system that organizes current knowledge regarding biological mechanisms to guide scientific research. These 2 needs are distinct, making it challenging to develop a robust classification system suitable for all purposes. We attempt to classify myoclonus as “epileptic” and “nonepileptic” based on its association with epileptic seizures. Myotonia in people may be divided into 2 clinically and molecularly defined forms: (1) nondystrophic myotonias and (2) myotonic dystrophies. The former are a group of skeletal muscle channelopathies characterized by delayed skeletal muscle relaxation. Many distinct clinical phenotypes are recognized in people, the majority relating to mutations in skeletal muscle voltage‐gated chloride (CLCN1) and sodium channel (SCN4A) genes. In dogs, myotonia is associated with mutations in CLCN1. The myotonic dystrophies are considered a multisystem clinical syndrome in people encompassing 2 clinically and molecularly defined forms designated myotonic dystrophy types 1 and 2. No mutation has been linked to veterinary muscular dystrophies. We detail veterinary examples of myotonia and attempt classification according to guidelines used in humans. This more precise categorization of myoclonus and myotonia aims to promote the search for molecular markers contributing to the phenotypic spectrum of disease. Our work aimed to assist recognition for these 2 enigmatic conditions.  相似文献   

16.
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are described in several species. In humans and dogs they have many similarities: the excessive catecholamine release in hormonally active PCC causes similar clinical signs, the frequency of metastasis is similar, and they are histopathologically almost identical. Surgery is curative when PCC and PGL have not metastasized, while only palliative treatment is possible for patients with metastatic disease. Mutations in succinate dehydrogenase subunit B (SDHB) are associated with metastatic behaviour in human PCC/PGL and the same mutation has been described in dogs. The dog might therefore be a suitable model for study of the pathogenesis of metastatic PCC and PGL in humans. Further molecular studies of common tumourigenic pathways and comparative studies of histopathology of human and canine PCC and PGL are warranted.  相似文献   

17.
Electroretinography (ERG) is a commonly used technique to study retinal function in both clinical and research ophthalmology. ERG responses can be divided into component waveforms, analysis of which can provide insight into the health and function of different types and populations of retinal cells. In dogs, ERG has been used in the characterization of normal retinal function, as well as the diagnosis of retinal diseases and measuring effects of treatment. While many components of the recorded waveform are similar across species, dogs have several notable features that should be differentiated from the responses in humans and other animals. Additionally, modifications of standard protocols, such as changing flash frequency and stimulus color, and mathematical models of ERG waveforms have been used in studies of human retinal function but have been infrequently applied to visual electrophysiology in dogs. This review provides an overview of the origins and applications of ERG in addition to potential avenues for further characterization of responses in the dog.  相似文献   

18.
Four Irish setters were diagnosed with bilateral retinal degeneration and cataracts at an age ranging from six to 11 years. In three of these dogs, progressive night blindness was reported from an age of eight to 11 years. In the fourth dog, aged six, no signs of visual impairment had been noticed. In all four dogs, the rod-cone dysplasia type 1 (rcd1) mutation was excluded as a cause, using an allele-specific PCR. From their three-generation pedigrees, a familial relationship was detected in three out of four dogs, which were also related to four additional Irish setter dogs with a history and clinical signs suggestive of late-onset progressive retinal degeneration. These results suggest the existence of a possibly hereditary, late-onset, progressive retinal atrophy in the Irish setter breed, that is distinct from rcd1.  相似文献   

19.
Diabetes mellitus is a common endocrinopathy in companion animals, characterised by hyperglycaemia, glycosuria and weight loss, resulting from an absolute or relative deficiency in the pancreatic hormone insulin. There are breed differences in susceptibility to diabetes mellitus in dogs, with the Samoyed breed being overrepresented, while Boxers are relatively absent in the UK population of diabetic dogs, suggesting that genetic factors play an important role in determining susceptibility to the disease. A number of genes, linked with susceptibility to diabetes mellitus in humans, are associated with an increased risk of diabetes mellitus in dogs, some of which appear to be relatively breed-specific. Diabetes mellitus in dogs has been associated with major histocompatibility complex (MHC) class II genes (dog leucocyte antigen; DLA), with similar haplotypes and genotypes being identified in the most susceptible breeds. A region containing a variable number of tandem repeats (VNTR) and several polymorphisms have been identified in the canine insulin gene, with some alleles associated with susceptibility or resistance to diabetes mellitus in a breed-specific manner. Polymorphisms in the canine CTLA4 promoter and in other immune response genes are associated with susceptibility to diabetes mellitus in a number of pedigree breeds. Genome wide association studies are currently underway that should shed further light on the genetic factors responsible for the breed profile seen in the diabetic dog population.  相似文献   

20.
Histopathology of the eye is an essential part of ocular toxicity evaluation. There are structural variations of the eye among several laboratory animals commonly used in toxicity studies, and many cases of ocular lesions in these animals are related to anatomical and physiological characteristics of the eye. Since albino rats have no melanin in the eye, findings of the fundus can be observed clearly by ophthalmoscopy. Retinal atrophy is observed as a hyper-reflective lesion in the fundus and is usually observed as degeneration of the retina in histopathology. Albino rats are sensitive to light, and light-induced retinal degeneration is commonly observed because there is no melanin in the eye. Therefore, it is important to differentiate the causes of retinal degeneration because the lesion occurs spontaneously and is induced by several drugs or by lighting. In dogs, the tapetum lucidum, a multilayered reflective tissue of the choroid, is one of unique structures of the eye. Since tapetal cells contain reflecting crystals in which a high level of zinc has been demonstrated chemically, drug-induced tapetum degeneration is possibly related to zinc chelation. The eye of the monkey has a macula similar to that of humans. The macula consists only of cones with a high density, and light falls directly on the macula that plays an important role in visual acuity. Macular degeneration occurring in monkeys resembles histopathologically that of humans. Hence, the eye of the monkey is a suitable model to investigate macular degeneration and to assess drug-induced macular lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号