首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

2.
Soil organic matter improves the physical, chemical and biological properties of soil, and crop residue recycling is an important factor influencing soil organic matter levels. We studied the impact of continuous application of rice straw compost either alone or in conjunction with inorganic fertilizers on aggregate stability and distribution of carbon (C) and nitrogen (N) in different aggregate fractions after 10 cycles of rice–wheat cropping on a sandy loam soil at Punjab Agricultural University research farm, Ludhiana, India. Changes in water stable aggregates (WSA), mean weight diameter (MWD), aggregate-associated C and N, total soil C and N, relative to control and inorganically fertilized soil were measured. Total WSA were significantly (p = 0.05) higher for soils when rice straw compost either alone or in combination with inorganic fertilizers was applied as compared to control. The application of rice straw compost either alone or in combination with inorganic fertilizers increased the macroaggregate size fractions except for 0.25–0.50 mm fraction. The MWD was significantly (p = 0.05) higher in plots receiving rice straw compost either alone at 8 tonnes ha−1 (0.51 mm at wheat harvest and 0.41 mm at rice harvest) or at 2 tonnes ha−1 in combination with inorganic fertilizers (0.43 and 0.38 mm) as compared to control (0.34 and 0.33 mm) or inorganically fertilized plots (0.33 and 0.31 mm). The macroaggregates had higher C and N density compared to microaggregates. Application of rice straw compost at 2 tonnes ha−1 along with inorganic fertilizers (IN + 2RSC) increased C and N concentration significantly over control. The C and N concentration increased further when rice straw compost at 8 tonnes ha−1 (8RSC) was added. It is concluded that soils can be rehabilitated and can sustain the soil C and N levels with the continuous application of rice straw compost either alone or in combination with inorganic fertilizers. This will also help in controlling the rising levels of atmospheric carbon dioxide.  相似文献   

3.
Cultivated soils in the Everglades are being converted to their historic use as pastures or seasonally flooded prairies as parts of restoration efforts, but long-term cultivation may have altered soil P distribution and availability which may pose eutrophication hazards upon change in land use. The objectives of this study were to determine the distribution of P in soil chemical and physical fractions for contrasting long-term land management practices. The distribution of P in labile, Fe–Al bound, Ca bound, humic–fulvic acid, and residual pools in five aggregate-size fractions were measured for fields under sugarcane (Saccharum sp.) cropping for 50 years and perennial pasture for 100 years. Both land uses were characterized by a high degree of macroaggregation, as aggregates >0.25 mm contained 76 and 83% of the total soil under cultivation and pasture, respectively. Soils under sugarcane sequestered a total of 77 kg ha−1 more P than pasture at 0–15 cm. The distribution of P in chemical fractions significantly varied between land uses as cultivation increased P sequestration in Ca-bound fractions more for sugarcane (244 kg P ha−1) than pasture (65 kg P ha−1). Pasture sequestered more P in organic pools, as storage in humic–fulvic acid and residual fractions were 26 and 25%, respectively, higher than sugarcane. Labile P was 100% higher for pasture than sugarcane, but Fe–Al bound P storage did not differ between land uses. Aggregation increased P sequestration in humic–fulvic acid and residual fractions, and P storage in organic pools increased with increasing aggregate size. In contrast, cultivation decreased aggregation and increased P accumulation in inorganic fractions. Long-term cultivation altered the distribution of soil P from organic to inorganic pools. The P stored in inorganic pools is stable under current land use, but may be unstable and pose eutrophication hazards upon onset of future land use change to the seasonally flooded prairie ecosystem.  相似文献   

4.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

5.
Crop residue retention is important for sequestering soil organic carbon (SOC), controlling soil erosion, and improving soil quality. Magnitude of residue management impacts on soil structural properties and SOC sequestration is, however, site specific. This study assessed long-term (10 year) impacts of three levels (0, 8, and 16 Mg ha−1 on a dry matter basis) of wheat (Triticum aestivum L.) straw applied annually on SOC concentration and physical properties of the bulk soil and individual 5- to 8-mm aggregates for the 0- to 50-cm soil depth under no-till (NT) on a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) in central Ohio. This study also quantified relationships between soil properties and straw-induced changes in SOC concentration. Changes in soil properties due to straw mulching were mostly confined to the upper 5 cm of the soil. Mulching increased SOC concentration, but it did not significantly change cone index (CI) and shear strength (SHEAR). Within the upper 0–5-cm soil depth, mulching decreased bulk density (ρb) by 40–50%, aggregate density (ρagg) by 30–40%, and particle density (ρs) by 10–15%, and increased tensile strength (TS) of aggregates by up to 14 times as compared to unmulched soil. At the same depth, soil with mulch retained >30% more water than soil without mulch from 0 to −1500 kPa potentials. The SOC amount was 16.0 Mg ha−1 under no straw, 25.3 Mg ha−1 under 8 Mg ha−1 straw, and 33.5 Mg ha−1 under 16 Mg ha−1 straw in the 0- to 10-cm depth. Below 10 cm, differences in SOC pool between mulched and unmulched soil were not significant. Overall, SOC from 0- to 50-cm depth was 82.5 Mg ha−1 for unmulched soil, 94.1 Mg ha−1 for 8 Mg ha−1 mulch, and 104.9 Mg ha−1 for 16 Mg ha−1. About 33% of C added with straw over the 10-year period was sequestered in soil. This means that 2/3 of the wheat straw applied was not converted to SOC and most probably was lost as emissions of CO2 and CH4. The annual rate of total C accrual was 1.2 Mg ha−1 in soil mulched with 8 Mg ha−1 and 2.2 Mg ha−1 in soil mulched with 16 Mg ha−1 of straw in the 0- to 50-cm depth. The percentage of macroaggregates (>5-mm) was six times higher under 8 Mg ha−1 of straw and 12 times higher under 16 Mg ha−1 compared to unmulched treatments. Macroaggregates contained greater SOC than microaggregates in mulched soil. The SOC concentration explained the variability in aggregate properties by as much as 96%. Overall, long-term straw mulching increased SOC concentration and improved near-surface aggregate properties.  相似文献   

6.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

7.
A field trial was conducted during the kharif (rainy) seasons of 2002 and 2003 at the Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India. The trial was carried out to study the effect of planting methods, sources and levels of nitrogen on soil properties, yield and NPK uptake by rice (Oryza sativa L.) under direct seeded condition. Planting methods significantly influenced the physical, chemical and biological properties of soil. Bulk density (1.385 g cm−3), organic carbon (0.43%) and soil moisture content (15.46%) were higher in zero till seeding plots than rotavator and conventional seeding. However, infiltration rate, soil temperature, pH and electrical conductivity showed a declining trend under this treatment and were found maximum (11.54 mm h−1, 36.21 °C at 55 DAS, 30.65 °C at harvest, 7.59 and 0.47 ds m−1) with conventional seeding. The maximum population of bacteria (25.60 × 105), fungi (14.26 × 104) and azotobactor (10.19 × 103) were found in the plot with zero till seeding while in case of actinomycetes the highest population (25.61 × 105) was found in conventional seeding. Nitrogen sources as well as levels failed to bring about any significant change in the soil properties. The highest grain (3825 kg ha−1) and straw yields (5446 kg ha−1) and N, P, K uptake were recorded in conventional seeding and were found significantly superior to zero till seeding (3144 kg ha−1) but it remained at par with rotavator seeding (3585 kg ha−1). Among the nitrogen sources, neem (Azadirachta indica) coated urea produced significantly higher grain (3761 kg ha−1) and straw yields (5396 kg ha−1) with greater NPK uptake than prilled urea and prilled urea + spent mentha. (The distillation waste of mint (Mentha arvensis) herbage is known as spent mentha.) Application of 150 kg N ha−1 produced maximum grain (3828 kg ha−1) and straw yields (5460 kg ha−1) although it remained at par with 100 kg N ha−1 (3738 and 5393 kg ha−1).  相似文献   

8.
High population pressure in the central highlands of Kenya has led to continuous cultivation of land with minimal additional inputs leading to soil nutrient depletion. Research work has reported positive results from use of manure and biomass from Tithonia, Calliandra, Leucaena, Mucuna and Crotolaria for soil fertility replenishment. An experimental field was set up in Chuka Division to test different soil nutrient replenishment treatments. The experimental design was randomised complete block with 14 treatments replicated three times. At the beginning and end of the experiment, soil was sampled at 0–15 cm depth and analysed for pH, Ca, Mg, K, C, N and P. End of the 2000/2001 short rains (SR) season and 2001 long rains (LR) season, soil samples were taken at 0–30, 30–100 and 100–150 cm for nitrate and ammonium analysis. All the treatments received an equivalent of 60 kg N ha−1, except herbaceous legume treatments, where N was determined by the amount of the biomass harvested and incorporated in soil and control treatment received no inputs. Results indicate soil fertility increased slightly in all treatments (except control) over the 2-year study period. Average maize grain yield across the treatments was 1.1, 5.4, 3.5 and 4.0 Mg ha−1 during the 2000 LR, 2000/2001 SR, 2001 LR and 2001/2002 SR, respectively. The reduced yield in 2000 LR and 2001 LR are attributed to poor rainfall distribution during the two seasons. On average, Tithonia with half recommended rate of inorganic fertilizer recorded the highest (4.8 Mg ha−1) maize yield followed by sole Tithonia (4.7 Mg ha−1). Highest average concentration (144.8 and 115.5 kg N ha−1) of mineral N was recorded at the 30–100 cm soil depth at the end of both 2000/2001 SR and LR, respectively. The lowest average concentration (67.1 kg N ha−1) was recorded in the 100–150 cm soil depth in both seasons, while during the 2001 LR, the 0–30 cm soil depth recorded the lowest concentration (52.3 kg N ha−1). The residual mineral N in the 100–150 cm soil depth doubled at the end of the LR 2001 compared to what was present and the end of the SR 2000/2001 season in all treatments. This shows that there is substantial amount of mineral N that is being leached below the rooting zone of maize in this region.  相似文献   

9.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

10.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

11.

Background

Fertilization with organic waste compost can close the nutrient cycles between urban and rural environments. However, its effect on yield and soil fertility must be investigated.

Aim

This study investigated the long-term effect of compost on soil nutrient and potentially toxic elements (PTEs) concentration, nutrient budgets, and nitrogen (N) mineralization and efficiency.

Methods

After 21 years of annual compost application (100/400 kg N ha–1 year–1 [100BC/400BC]) alone and combined with mineral fertilization, soil was analyzed for pH, organic carbon (SOC), nutrient (total N and P, Nmin, extractable CAL-P, CAL-K, and Mg), and PTE (Cu, Ni, Zn) concentrations. Yields were recorded and nutrient/PTE budgets and apparent net mineralization (ANM, only 2019) were calculated.

Results

N efficiency was the highest in maize and for mineral fertilization. Compost application led to lower N efficiencies, but increased ANM, SOC, pH, and soil N, and surpluses of N, P, and all PTEs. Higher PTE concentrations were only found in 400BC for Cu. Nutrient budgets correlated with soil nutrient concentration. A surplus of 16.1 kg P ha–1 year–1 and 19.5 kg K ha–1 year–1 resulted in 1 mg kg–1 increase in CAL-P and CAL-K over 21 years.

Conclusion

Compost application supplies nutrients to crops with a minor risk of soil-accumulation of PTEs. However, the nutrient stoichiometry provided by compost does not match crop offtakes causing imbalances. Synchronization of compost N mineralization and plant N demand does not match and limits the yield effect. In winter wheat only 65–70% of N mineralization occurred during the growth period.  相似文献   

12.
We examined the effects of various tillage intensities: no-tillage (NT), minimum tillage with chisel plow (MT), conventional tillage with mouldboard plow (CT), and zone-tillage subsoiling with a paraplow (ZT) applied in alternate years in rotation with NT, on the topsoil profile distribution (0–30 cm) of pH, soil organic carbon (SOC), organic N and available nutrients on a semi-arid soil from Central Spain. The equivalent depth approach was used to compare SOC, N and nutrient stocks in the various tillage treatments. Measurements made at the end of 5 years showed that in the 0–30 cm depth, SOC and N had increased under NT and ZT compared with MT and CT. Most dramatic changes occurred within the 0–5 cm depth where plots under NT and ZT had respectively 7.0 Mg ha−1 and 6.2 Mg ha−1 more SOC and 0.5 Mg ha−1 and 0.3 Mg ha−1 more N than under MT or CT. No-tillage and ZT plots, however, exhibited strong vertical gradients of SOC and N with concentrations decreasing from 0–5 to 20–30 cm. In the 0–20 cm layer, higher concentrations of P and K under NT and ZT than under MT or CT were also found. Soil pH under NT and ZT was 0.3 units lower than under MT or CT at a depth of 0–5 cm. This acidifying effect was restricted at the surface layer and in the 20–30 cm interval, pH values under NT and ZT were higher than in MT and CT plots. These results suggest that in the soil studied, ZT in rotation with NT maintain most advantages associated with NT, and present a definite potential for use as a partial-width rotational tillage practice.  相似文献   

13.
Soil organic carbon (SOC) and nitrogen (N) are directly influenced by tillage, residue return and N fertilization management practices. Soil samples for SOC and N analyses, obtained from a 23-year field experiment, provided an assessment of near-equilibrium SOC and N conditions. Crops included corn (Zea mays L.) and soybean [Glycine max L. (Merrill)]. Treatments of conventional and conservation tillage, residue stover (returned or harvested) and two N fertilization rates were imposed on a Waukegan silt loam (fine-silty over skeletal, mixed, superactive, mesic Typic Hapludoll) at Rosemount, MN. The surface (0–20 cm) soils with no-tillage (NT) had greater than 30% more SOC and N than moldboard plow (MB) and chisel plow (CH) tillage treatments. The trend was reversed at 20–25 cm soil depths, where significantly more SOC and N were found in MB treatments (26 and 1.5 Mg SOC and N ha−1, respectively) than with NT (13 and 1.2 Mg SOC and N ha−1, respectively), possibly due to residues buried by inversion. The summation of soil SOC over depth to 50 cm did not vary among tillage treatments; N by summation was higher in NT than MB treatments. Returned residue plots generally stored more SOC and N than in plots where residue was harvested. Nitrogen fertilization generally did not influence SOC or N at most soil depths. These results have significant implications on how specific management practices maximize SOC storage and minimize potential N losses. Our results further suggest different sampling protocols may lead to different and confusing conclusions regarding the impact of tillage systems on C sequestration.  相似文献   

14.
Integrated crop–livestock management systems (ICLS) have been increasingly recommended in Brazilian agroecosystems. However, knowledge of their effect on soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks is still limited. The study was undertaken to evaluate the effects of ICLS under two tillage and fertilization regimes on SOC and TN concentrations and stocks in the 0–30 cm soil layer, in comparison with continuous crops or pasture. The following soil management systems were studied: continuous pasture; continuous crop; 4 years’ crop followed by 4 years’ pasture and vice-versa. The adjacent native Cerrado area was used as a control. Under the rotation and continuous crop systems there were two levels of soil tillage (conventional and no-tillage) and fertility (maintenance and corrective fertility). The stock calculations were done using the equivalent soil mass approach. The land use systems had a significant effect on the concentrations of SOC and TN in the soil, but no effect was observed for the soil tillage and fertilizer regimes. For these two latter, some significant discrepancies appeared in the distribution of SOC and TN concentrations in the 0–30 cm layer. Carbon storage was 60.87 Mg ha−1 under Cerrado, and ranged from 52.21 Mg ha−1 under the ICLS rotation to 59.89 Mg ha−1 with continuous cropping. The decrease in SOC stocks was approximately 8.5 and 7.5 Mg ha−1, or 14 and 12%, for continuous pasture and ICLS respectively. No-tillage for 10 years after the conversion of conventional tillage to no-tillage under the continuous crop system, and 13 years of conventional tillage in continuous cropping did not result in significant changes in SOC stocks. The SOC and TN stocks in surface layers, using the equivalent soil mass approach rather than the equivalent depth, stress the differences induced by the calculation method. As soil compaction is the principal feature of variability of stocks determinations, the thickness should be avoid in these types of studies.  相似文献   

15.
《Soil & Tillage Research》2007,92(1-2):57-67
Tillage, organic resources and fertiliser effects on soil carbon (C) dynamics were investigated in 2000 and 2001 in Burkina Faso (West Africa). A split plot design with four replications was laid-out on a loamy-sand Ferric Lixisol with till and no-till as main treatments and fertiliser types as sub-treatments. Soil was fractionated physically into coarse (0.250–2 mm), medium (0.053–0.250 mm) and fine fractions (< 0.053 mm). Particulate organic carbon (POC) accounted for 47–53% of total soil organic carbon (SOC) concentration and particulate organic nitrogen (PON) for 30–37% of total soil nitrogen concentration. The POC decreased from 53% of total SOC in 2000 to 47% of total SOC in 2001. Tillage increased the contribution of POC to SOC. No-till led to the lowest loss in SOC in the fine fraction compared to tilled plots. Well-decomposed compost and single urea application in tilled as well as in no-till plots induced loss in POC. Crop N uptake was enhanced in tilled plots and may be up to 226 kg N ha−1 against a maximum of 146 kg N ha−1 in no-till plots. Combining crop residues and urea enhanced incorporation of new organic matter in the coarse fraction and the reduction of soil carbon mineralisation from the fine fraction. The PON and crop N uptake are strongly correlated in both till and no-till plots. Mineral-associated N is more correlated to N uptake by crop in tilled than in no-till plots. Combining recalcitrant organic resources and nitrogen fertiliser is the best option for sustaining crop production and reducing soil carbon decline in the more stabilised soil fraction in the semi-arid West Africa.  相似文献   

16.
Soil C and N contents play a crucial role in sustaining soil quality and environmental quality. The conversion of annually cultivated land to forage grasses has potential to increase C and N sequestration. The objective of this study was to investigate the short-term changes in soil organic C (SOC) and N pools after annual crops were converted to alfalfa (Medicago sativa L. Algonguin) forage for 4 years. Soil from 24 sets of paired sites, alfalfa field versus adjacent cropland, were sampled at depths of 0–5, 5–10 and 10–20 cm. Total soil organic C and N, particulate organic matter (POM) C and N were determined. Organic C, total N, POM-C, and POM-N contents in the 0–5 cm layer were significantly greater in alfalfa field than in adjacent cropland. However, when the entire 0–20 cm layer was considered, there were significant differences in SOC, POM-C and POM-N but not in total N between alfalfa and crop soils. Also, greater differences in POM-C and POM-N were between the two land-use treatments than in SOC and total N were found. Across all sites, SOC and total N in the 0–20 cm profile averaged 22.1 Mg C ha−1 and 2.3 Mg N ha−1 for alfalfa soils, and 19.8 Mg C ha−1and 2.2 Mg N ha−1 for adjacent crop soils. Estimated C sequestration rate (0–20 cm) following crops to alfalfa conversions averaged 0.57 Mg C ha−1 year−1. Sandy soils have more significant C accumulation than silt loam soils after conversion. The result of this suggests that the soils studied have great C sequestration potential, and the conversion of crops to alfalfa should be widely used to sequester C and improve soil quality in this region.  相似文献   

17.
Conservation tillage practices are commonly used to reduce erosion; however, in fields that have been in no-tillage (NT) for long periods, compaction from traffic can restrict infiltration. Rotational tillage (RT) is a common practice that producers use in the central corn-belt of the United States, and could potentially reduce soluble nutrient loads to surface waters. The objectives of this study were to determine the first year impacts of converting from long-term NT to (RT) on N and P losses through runoff. Plots (2 m × 1 m) were constructed in two fields that had been in NT corn–soybean rotation for the previous 15 years. One field remained in NT management, while RT was initiated prior to planting corn in the other field using a soil finisher. Variable-intensity rainfall simulations occurred before and after fertilization with urea (224 kg N ha−1) and triple superphosphate (112 kg P ha−1). Rainfall was simulated at (1) 50 mm h−1 for 50 min; (2) 75 mm h−1 for 15 min; (3) 25 mm h−1 for 15 min; (4) 100 mm h−1 for 15 min. Runoff volumes and nutrient (NH4-N, NO3-N and dissolved P [DP]) concentrations were greater from the NT field than the RT field before and after fertilization.Dissolved P concentrations in runoff prior to fertilization were greater during the 50 mm h−1 rainfall period (0.09 mg L−1) compared to the other periods (0.03 mg L−1). Nutrient concentrations increased by 10–100-fold when comparing samples taken after fertilization to those taken prior to fertilization. Nutrient loads were greater prior to and after fertilization from the NT treatment. Prior to fertilization, NT resulted in 83 g ha−1 greater NH4-N and 32.4 g ha−1 greater dissolved P losses than RT treatment. After fertilization, NT was observed to lose 5.3 kg ha−1 more NH4-N, 1.3 kg ha−1 more NO3-N, and 2.4 kg ha−1 more dissolved P than RT. It is typically difficult to manage land to minimize P and N losses simultaneously; however, in the short term, tillage following long-term NT resulted in lowering the risk of transport of soluble N and P to surface water.  相似文献   

18.
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were decreased in upper hillslope positions affected by high soil erosion loss. In the present study, soil cores were collected and characterized to indicate the effects of long-term intensive tillage on soil properties as a function of depth and tillage erosion. This study provides quantitative measures of the chemical and physical properties of soil profiles in a landscape subject to prolonged tillage erosion, and compares the properties of soil profiles in areas of differing rates of tillage erosion and an uncultivated hillslope. These comparisons emphasize the influence of soil translocation within the landscape by tillage on soil profile characteristics. Soil profiles in areas subject to soil loss by tillage erosion >20 Mg ha−1 year−1 were characterized by truncated profiles, a shallow depth to the C horizon (mean upper boundary 75 cm from the soil surface), a calcic subsoil and a tilled layer containing 19 g kg−1 of inorganic carbon. In contrast, profiles in areas of soil accumulation by tillage >10 Mg ha−1 year−1 exhibited thick sola with low inorganic carbon content (mean 3 g kg−1) and a large depth to the C horizon (usually >1.5 m below the soil surface). When compared to areas of soil accumulation, organic carbon, total nitrogen and Olsen-extractable phosphorus contents measured lower, whereas inorganic carbon content, pH and soil strength measured higher throughout the profile in eroded landscape positions because of the reduced soil organic matter content and the influence of calcic subsoil material. The mean surface soil organic carbon and total nitrogen contents in cultivated areas (regardless of erosion status) were less than half that measured in an uncultivated area, indicating that intensive tillage and cropping has significantly depleted the surface soil organic matter in this landscape. Prolonged intensive tillage and cropping at this site has effectively removed at least 20 cm of soil from the upper hillslope positions.  相似文献   

19.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

20.
Terrain attributes, landform segmentation, and soil redistribution   总被引:4,自引:0,他引:4  
The 137Cs technique has greatly expanded our knowledge of the topography–soil redistribution relationship. For the technique to be useful in upscaling of process models and regional-scale conservation planning, we must be able to show that a consistent relationship exists between 137Cs-derived soil redistribution rates and terrain attributes in a given region. In this paper, the association between 137Cs-derived soil redistribution rates and quantitatively defined landform elements was examined at nine hummocky terrain sites in southern Saskatchewan, Canada. Shoulder (SH) elements with convex plan curvatures had the highest mean soil loss rates of 33 t ha−1 yr−1, followed closely by other SH and backslope (BS) elements. The erosional behavior of level elements (i.e. those with gradients less than 3°) was highly dependent on the specific dispersal area (SDA) of the element—elements with high dispersal areas were dominantly erosional (mean soil loss of 14 t ha−1 yr−1), whereas level elements with low dispersal areas were depositional (mean soil gain of 15 t ha−1 yr−1). Doubly concave footslope (FS) elements had mean soil gain of 10 t ha−1 yr−1. The dispersion of values across the nine sites was much greater for the depositional units than the erosional units, indicating a complex relationship between deposition and terrain attributes in the depositional units. The results clearly indicate that regional-scale patterns of soil redistribution can be developed using the 137Cs technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号