首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The essential oil obtained by hydrodistillation from aerial parts of Satureja cuneifolia Ten., collected in three different maturation stages such as preflowering, flowering, and postflowering, were analyzed simultaneously by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Thymol (42.5-45.2%), p-cymene (19.4-24.3%), and carvacrol (8.5-13.2%) were identified as the main constituent in all stages. At the same time, the essential oils and main components were evaluated for their antimicrobial activity using a microdilution assay resulting in the inhibition of a number of common human pathogenic bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and the yeasts Candida albicans and Candida tropicalis. The minimum inhibitory concentrations (MIC) varied between 62.5 and 250 microg/mL within a moderate antimicrobial activity range. Furthermore, the antioxidant capacity of the essential oils and major components thymol and carvacrol were examined in vitro. The essential oils obtained from S. cuneifolia in three different stages and its main components were interacted with 1,1-diphenyl-2-picrylhydrazyl (DPPH (*)) as a nitrogen-centered stable radical, resulting in IC 50 = 1.6-2.1 mg/mL. In addition, the effects on inhibition of lipid peroxidation of the essential oils were assayed using the beta-carotene bleaching method. All of the tested oils inhibited the linoleic acid peroxidation at almost the same level as butylated hydroxytoluene (BHT) (93.54-94.65%). BHT and ascorbic acid were used as positive controls in the antioxidant assays.  相似文献   

2.
The antioxidant activities of a commercial brewed coffee were investigated by measuring malonaldehyde (MA) formation from oxidized cod liver oil using a gas chromatographic method (MA-GC assay) and a thiobarbituric acid method (TBA assay). The highest antioxidant activity obtained by the MA-GC assay was from regular whole brewed coffee (97.8%) at a level of 20%, and the highest antioxidant activity obtained by the TBA assay was from decaffeinated whole brewed coffee (96.6%) at a level of 5%. Among 31 chemicals identified in a dichloromethane extract, guaiacol, ethylguaiacol, and vinylguaiacol exhibited antioxidant activities, which were comparable to that of alpha-tocopherol. Among nine chlorogenic acids (three caffeoylquinic acids, three feruloylquinic acids, and three dicaffeoylquinic acids) identified, 5-caffeoylquinic acid contained the greatest amount both in regular (883.5 microg/mL) and in decaffeinated (1032.6 microg/mL) coffees; it exhibited 24.5% activity by the MA-GC assay and 45.3% activity by the TBA assay at a level of 10 microg/mL. Caffeic and ferulic acids showed moderate antioxidant activities in both assays.  相似文献   

3.
The antioxidant activity of oregano, parsley, olive mill wastewaters (OMWW), Trolox, and ethylenediaminetetraacetic acid (EDTA) was evaluated in bulk oils and oil-in-water (o/w) emulsions enriched with 5% tuna oil by monitoring the formation of hydroperoxides, hexanal, and t-t-2,4-heptadienal in samples stored at 37 degrees C for 14 days. In bulk oil, the order of antioxidant activity was, in decreasing order (p < 0.05), OMWW > oregano > parsley > EDTA > Trolox. The antioxidant activity in o/w emulsion followed the same order except that EDTA was as efficient an antioxidant as OMWW. In addition, the total phenolic content, the radical scavenging properties, the reducing capacity, and the iron chelating activity of OMWW, parsley, and oregano extracts were determined by the Folin-Ciocalteau, oxygen radical absorbance capacity, ferric reducing antioxidant power, and iron(II) chelating activity assays, respectively. The antioxidant activity of OMWW, parsley, and oregano in food systems was related to their total phenolic content and radical scavenging capacity but not to their ability to chelate iron in vitro. OMWW was identified as a promising source of antioxidants to retard lipid oxidation in fish oil-enriched food products.  相似文献   

4.
In this study antifungal activities of essential oils from different tissues of Japanese cedar (Cryptomeria japonica D. Don) against four wood decay fungi and six tree pathogenic fungi were investigated. In addition, the yields of essential oils obtained by water distillation were compared and their constituents determined by GC-MS analyses. The yield of essential oils from four tissues of Japanese cedar is in the decreasing order of leaf (27.38 mL/kg) > bark (6.31 mL/kg) > heartwood (3.80 mL/kg) > sapwood (1.27 mL/kg). Results obtained from the antifungal tests demonstrate that the essential oil of Japanese cedar heartwood used against Laetiporus sulphureus and Trametes versicolor and sapwood essential oil used against L. sulphureus had strong antifungal activities at 500 mug/mL, with IC(50) values of 39, 91, and 94 microg/mL, respectively. Besides, the essential oils of Japanese cedar heartwood used against Rhizoctonia solani, Collectotrichum gloeosporioides, Fusarium solani, and Ganoderma australe had strong antifungal activities at 500 microg/mL, with IC(50) values of 65, 80, 80, and 110 microg/mL, respectively. GC-MS analyses showed that the sesquiterpene hydrocarbon compounds dominate in the essential oil from Japanese cedar heartwood, amounting to a total percentage of 82.56%, with the major compounds of delta-cadinene (18.60%), isoledene (12.41%), and gamma-muurolene (11.82%). It is proposed that the excellent antifungal activities of Japanese cedar heartwood essential oils might correlate with the presence of these compounds.  相似文献   

5.
The leaves and fine stems, bark, and trunk wood oils of Aniba canelilla showed yields ranging from 0.2 to 1.3%. The main volatile constituent identified in the oils was 1-nitro -2-phenylethane (70.2-92.1%), as expected. The mean of DPPH radical scavenging activity (EC 50) of the oils (198.17 +/- 1.95 microg mL(-1)) was low in comparison with that of wood methanol extracts (4.41 +/- 0.12 microg mL(-1)), the value of which was equivalent to that of Trolox (4.67 +/- 0.35 microg mL(-1)), used as antioxidant standard. The mean amount of total phenolics (TP) (710.53 +/- 23.16 mg of GAE/g) and this value calculated as Trolox equivalent antioxidant capacity (TEAC) (899.50 +/- 6.50 mg of TE/g) of the wood methanol extracts confirmed the high antioxidant activity of the species. On the other hand, in the brine shrimp bioassay the values of lethal concentration (LC50) for the oils (21.61 +/- 1.21 microg mL(-1)) and 1-nitro-2-phenylethane (20.37 +/- 0.99 microg mL(-1)) were lower than that of the wood methanol extracts (91.38 +/- 7.20 microg mL(-1)), showing significant biological activities.  相似文献   

6.
The essential oils of rosemary ( Rosmarinus officinalis L.) and sage ( Salvia officinalis L.) were analyzed by means of gas chromatography-mass spectrometry and assayed for their antimicrobial and antioxidant activities. Antimicrobial activity was tested against 13 bacterial strains and 6 fungi, including Candida albicans and 5 dermatomycetes. The most important antibacterial activity of both essential oils was expressed on Escherichia coli, Salmonella typhi, S. enteritidis, and Shigella sonei. A significant rate of antifungal activity, especially of essential oil of rosemary, was also exhibited. Antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with the effect on lipid peroxidation (LP). RSC was assessed by measuring the scavenging activity of essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH) and hydroxyl radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H2O2 systems of induction. Investigated essential oils reduced the DPPH radical formation (IC50 = 3.82 microg/mL for rosemary and 1.78 microg/mL for sage) in a dose-dependent manner. Strong inhibition of LP in both systems of induction was especially observed for the essential oil of rosemary.  相似文献   

7.
The leaf essential oil from indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) was investigated by gas chromatography-mass spectrometry, and 21 compounds were identified. The major constituents of leaf essential oil were the monoterpenes 1,8-cineole (17.0%) and santolina triene (14.2%) and the sesquiterpenes spathulenol (15.7%) and caryophyllene oxide (11.2%). In the antiinflammatory activity assay, we demonstrated that the essential oil has a higher capacity to inhibit proIL-1beta protein expression induced by LPS-treated J774A.1 murine macrophage. At dosages of 60 microg/mL, essential oil clearly inhibited proIL-1beta protein expression. Furthermore, a dose of 60 microg/mL of essential oil was effectively inhibitory for IL-1beta and IL-6 production but not for TNF-alpha, suggesting that essential oil was bioactive in antiinflammation in vitro. This study is the first to report antiinflammatory activity of extracts obtained from the leaf essential oil of C. osmophloeum.  相似文献   

8.
Volatile chemicals obtained from a commercial beer by liquid-liquid continuous extraction were evaluated for antioxidant activity. The inhibitory ability of this extract toward the conversion of hexanal to hexanoic acid was monitored over a 35-day period. The volatile extract demonstrated >99% effectiveness at inhibiting hexanal oxidation at 50 microg/mL, comparable to that of the natural antioxidant alpha-tocopherol (vitamin E). Volatile compounds contained in the extract were isolated and identified by gas chromatography-mass spectrometry (GC-MS). From the volatile constituents identified in beer extract, phenylethyl alcohol, maltol, and 2-furanmethanol were examined for antioxidative activities. At a concentration of 500 microg/mL, maltol and 2-furanmethanol demonstrated approximately 95 and 100% inhibition of hexanal oxidation over 35 days, respectively. Phenylethyl alcohol did not show any appreciable level of inhibition of hexanal oxidation. Heterocyclic compounds, some of which are known to possess antioxidative activities, were also identified in the volatile extract.  相似文献   

9.
A modified malonaldehyde (MA) assay for antioxidant activity, which involves derivatization and headspace solid-phase microextraction (HS-SPME) was developed and validated. The recovery of MA as 1-methylpyrazole (product of MA and N-methylhydrazine) from a headspace of an aqueous solution containing MA, buffer, surfactant, and cod liver oil using HS-SPME with a PDMS/DVB fiber was 91.3 +/- 3.38%. MA was analyzed by a gas chromatograph with a nitrogen-phosphorus detector, and its detection limit was 0.0103 nmol/mL. The antioxidant activities of natural compounds were determined as the percentage inhibition of MA formed from cod liver oil oxidized by Fenton's reagents in the above aqueous solution. Sesamol inhibited MA formation most (86.1%), followed by eugenol (84.4%), capsaicin (80.7%), ethylvanillin (45.3%), and vanillin (31.6%) at a level of 50 microg/mL. This method did not require any organic solvents and is a simple, fast, and a highly sensitive method for MA determination.  相似文献   

10.
Antilisterial activities of Thymbra capitata and Origanum vulgare essential oils were tested against 41 strains of Listeria monocytogenes. The oil of T. capitata was mainly constituted by one component, carvacrol (79%), whereas for O. vulgare three components constituted 70% of the oil, namely, thymol (33%), gamma-terpinene (26%), and p-cymene (11%). T. capitata essential oil had a significantly higher antilisterial activity in comparison to O. vulgare oil and chloramphenicol. No significant differences in L. monocytogenes susceptibilities to the essential oils tested were registered. The minimum inhibitory concentration values of T. capitata essential oil and of carvacrol were quite similar, ranging between 0.05 and 0.2 microL/mL. Antioxidant activity was also tested, the essential oil of T. capitata showing significantly higher antioxidant activity than that of O. vulgare. Use of T. capitata and O. vulgare essential oils can constitute a powerful tool in the control of L. monocytogenes in food and other industries.  相似文献   

11.
The isolated essential oils from seven air-dried plant species were analyzed by gas chromatography-mass spectrometry (GC-MS). Thymus vulgaris (thyme), Origanum vulgare (oregano), and Origanumdictamus (dictamus) essential oils were found to be rich in phenolic compounds representing 65.8, 71.1, and 78.0% of the total oil, respectively. Origanum majorana (marjoram) oil was constituted of hydrocarbons (42.1%), alcohols (24.3%), and phenols (14.2%). The essential oil from Lavandula angustifolia Mill. (lavender) was characterized by the presence of alcohols (58.8%) and esters (32.7%). Ethers predominated in Rosmarinus officinalis (rosemary) and Salvia fruticosa (sage) essential oils, constituting 88.9 and 78.0%, respectively. The radial growth, conidial germination, and production of Penicillium digitatum were inhibited completely by oregano, thyme, dictamus, and marjoram essential oils at relatively low concentrations (250-400 microg/mL). Lavender, rosemary, and sage essential oils presented less inhibitory effect on the radial growth and conidial germination of P. digitatum. Conidial production of P. digitatum was not affected by the above oils at concentrations up to 1000 microg/mL. Apart from oregano oil, all essential oils were more effective in the inhibition of conidial germination than of radial growth. The monoterpene components, which participate in essential oils in different compositions, seem to have more than an additive effect in fungal inhibition.  相似文献   

12.
The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.  相似文献   

13.
A flavonoid-rich extract of Hypericum perforatum L. (FEHP) was prepared by adsorption on macroporous resin and desorption by ethanol. Total flavonoid content of FEHP was determined by a colorimetric method. The major constituents of FEHP, including rutin, hyperoside, isoquercitrin, avicularin, quercitrin, and quercetin, were determined by HPLC analysis and confirmed by LC-MS. Different antioxidant assays were utilized to evaluate free radical scavenging activity and antioxidant activity of FEHP. FEHP was an effective scavenger in quenching DPPH and superoxide radical with IC50 of 10.63 microg/mL and 54.3 microg/mL, respectively. A linear correlation between concentration of FEHP and reducing power was observed with a coefficient of r2 = 0.9991. Addition of 150 microg of FEHP obviously decreased the peroxidation of linoleic acid during 84 h incubation, but the amount of FEHP over 150 microg did not show statistically significant inhibitory effect of peroxidation of linoliec acid (p > 0.05). FEHP exhibited inhibitory effect of peroxidation of liposome induced both by hydroxyl radical generated with iron-ascorbic acid system and peroxyl radical and showed prominent inhibitory effect of deoxyribose degradation in a concentration-dependent manner in site-specific assay but poor effect in non-site-specific assay, which suggested that chelation of metal ion was the main antioxidant action. According to the results obtained in the present study, the antioxidant mechanism of FEHP might be attributed to its free radical scavenging activity, metal-chelation activity, and reactive oxygen quenching activity.  相似文献   

14.
Aroma compounds contained in the extracts of soybean and mung bean that possess antioxidant activity were identified by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major aroma constituents of soybeans were 1-octen-3-ol (13.699 ppm), maltol (1.662 ppm), phenylethyl alcohol (1.474 ppm), hexanol (1.430 ppm), and gamma-butyrolactone (1.370 ppm). The major aroma constituents of mung beans were hexanol (3.234 ppm), benzyl alcohol (2.060 ppm), gamma-butyrolactone (1.857 ppm), 2-methyl-2-propenal (1. 633 ppm), and pentanol (1.363 ppm). The major aroma chemicals of soybeans and mung beans were examined for antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol showed potent antioxidative activities in two different assays. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited the oxidation of hexanal by 100%, 93%, 84%, and 32%, respectively, for a period of 40 days at the 500 microg/mL level. Eugenol, maltol, benzyl alcohol, and 1-octen-3-ol inhibited malonaldehyde (MA) formation from cod liver oil by 91%, 78%, 78%, and 78%, respectively, at the 160 microg/mL level. The antioxidative activity of eugenol was comparable to that of the natural antioxidant alpha-tocopherol (vitamin E).  相似文献   

15.
Antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil (TTO) was determined using two different assays. In the 2,2-diphenyl-1-picrylhydrazyl assay, 10 microL/mL crude TTO in methanol had approximately 80% free radical scavenging activity, and in the hexanal/hexanoic acid assay, 200 microL/mL crude TTO exhibited 60% inhibitory activity against the oxidation of hexanal to hexanoic acid over 30 days. These results were equivalent to the antioxidant activities of 30 mM butylated hydroxytoluene in both tests at the same experimental conditions. This indicated that the TTO could be a good alternative antioxidant. Inherent antioxidants, i.e., alpha-terpinene, alpha-terpinolene, and gamma-terpinene, in the crude TTO were separated and identified chromatographically using silica gel open chromatography, C(18)-high-pressure liquid chromatography, and gas chromatography-mass spectrometry. Their antioxidant activities decreased in the following order in both assays: alpha-terpinene > alpha-terpinolene > gamma-terpinene.  相似文献   

16.
The effect of four levels of nitrogen (N) application (3.2, 16.2, 32.4, and 48.6 g m–2) on the biomass and concentration and composition of essential oils of three parsley types (plain leaf, turnip‐rooted, curl leaf) was investigated in order to determine the optimum N level for oil production by this crop. The concentration of essential oils in the roots and leaves of plain leaf parsley and turnip‐rooted parsley was not affected by N application, but decreased with increasing N rate in curl leaf parsley. However, because the mean foliage biomass for all three types was about 2.5 times higher at 16.2 g m–2 N than in the low‐N‐rate treatment, the mean foliar oil yield increased from 0.68 to 1.38 g m–2. Root biomass increased by a factor of 1.7 at 16.2 g m–2 N (compared to the low‐N‐rate treatment), but oil yield increased only marginally from 0.3 to 0.4 g m–2. The composition of the essential oils of roots and leaves differed between parsley types. Increasing N application caused a reduction in the percentage of β‐phellandrene in the essential oils of parsley leaves. In turnip‐rooted parsley, increasing N caused a reduction in the percentage of myristicin and apiole. Because these three components of the essential oils contribute to parsley aroma, it may be concluded that although application of N fertilizer leads to higher parsley biomass and oil yield per plant, the essential oil components may change and aroma quality may be affected negatively.  相似文献   

17.
Volatiles were isolated from the dried inner bark of Tabebuia impetiginosa using steam distillation under reduced pressure followed by continuous liquid-liquid extraction. The extract was analyzed by gas chromatography and gas chromatography-mass spectrometry. The major volatile constituents of T. impetiginosa were 4-methoxybenzaldehyde (52.84 microg/g), 4-methoxyphenol (38.91 microg/g), 5-allyl-1,2,3-trimethoxybenzene (elemicin; 34.15 microg/g), 1-methoxy-4-(1E)-1-propenylbenzene (trans-anethole; 33.75 microg/g), and 4-methoxybenzyl alcohol (30.29 microg/g). The antioxidant activity of the volatiles was evaluated using two different assays. The extract exhibited a potent inhibitory effect on the formation of conjugated diene hydroperoxides (from methyl linoleate) at a concentration of 1000 microg/mL. The extract also inhibited the oxidation of hexanal for 40 days at a level of 5 microg/mL. The antioxidative activity of T. impetiginosa volatiles was comparable with that of the well-known antioxidants, alpha-tocopherol, and butylated hydroxytoluene.  相似文献   

18.
The antioxidant ferulic and caffeic acid phenolics are ubiquitous in plants and abundant in fruits and vegetables. We have synthesized a series of ferulic and caffeic acid esters and tested for tumor cell proliferation, cyclooxygenase enzymes (COX-1 and -2) and lipid peroxidation inhibitory activities in vitro. In the tumor cell proliferation assay, some of these esters showed excellent growth inhibition of colon cancer cells. Among the phenolics esters assayed, compounds 10 (C12-caffeate), 11 (C16-caffeate), 21 (C8-ferulate), and 23 (C12-ferulate) showed strong growth inhibition with IC50 values of 16.55, 13.46, 18.67, and 7.57 microg/mL in a breast cancer cell line; 9.65, 7.45, 17.05, and 4.35 microg/ mL in a lung cancer cell line; 5.78, 3.5, 4.29, and 2.46 microg/mL in a colon cancer cell line; 12.04, 12.21, 14.63, and 8.09 microg/ mL in a central nervous system cancer cell line; and 8.62, 7.76, 11.0, and 5.37 in a gastric cancer cell line. In COX enzyme inhibitory assays, ferulic and caffeic acid esters significantly inhibited both COX-1 and COX-2 enzymes. Caffeates 5-10 (C4-C12), inhibited COX-1 enzyme between 50% and 90% and COX-2 enzyme by about 70%, whereas ferulates 15-21 (C3-C8) inhibited COX-1 and COX-2 enzymes by 85-95% 25 microg/mL. Long-chain caffeates 11-14 (C16-C22) and short-chain ferulates 15-20 (C3-C5) were the most active in lipid peroxidation inhibition and showed 60-70% activity at 5 microg/mL concentration.  相似文献   

19.
The antioxidant activity of essences of teas prepared from mulberry ( Morus alba L.), Camellia sinensis L., and Cudrania tricuspidata (Carr.) Burea plant was examined using two antioxidant assays. Selected volatile chemicals identified in these plants were also tested for antioxidant activity. All extracts exhibited antioxidant activity with a clear dose response in the aldehyde/carboxylic acid and the malonaldehyde/gas chromatography (MA/GC) assays. Antioxidant activity of extracts at the level of 500 μg/mL ranged from 77.02 ± 0.51% (stems of Burea plant) to 52.57 ± 0.92% (fermented tea of Camellia and stems of Mulberry tea) in the aldehydes/carboxylic acid assay. Their antioxidant activity at the level of 160 μg/mL ranged from 76.17 ± 0.27% (roots of Burea plant) to 59.32 ± 0.27% (stems of Mulberry tea) in the MA/GC assay. Among the positively identified compounds (11 terpenes and terpenoids, 15 alkyl compounds, 26 nitrogen containing heterocyclic compounds, 9 oxygen containing heterocyclic compounds, 18 aromatic compounds, 7 lactones, 6 acids, and 4 miscellaneous compounds), eugenol, 2,5-dihydroxyl acetophenone, and isoeugenol exhibited antioxidant activity comparable to that of BHT in both assays. Vanillin and 2-acetylpyrrole showed potent antioxidant activity in the aldehydes/carboxylic acid assay but only moderate activity in the MA/GC assay. These results suggest that consumption of antioxidant-rich beverages prepared from these plants may be beneficial to human health.  相似文献   

20.
A total of 36 compounds, which comprised 99.4% of the extract, were identified by gas chromatography and mass spectrometry (GC-MS) in the volatile dichloromethane extract obtained from Egyptian corn silk. The main constituents of the volatile extract were cis-alpha-terpineol (24.22%), 6,11-oxidoacor-4-ene (18.06%), citronellol (16.18%), trans-pinocamphone (5.86%), eugenol (4.37%), neo-iso-3-thujanol (2.59%), and cis-sabinene hydrate (2.28%). Dried Egyptian corn silk was also directly extracted with petroleum ether, ethanol, and water. All extracts from solvent extraction and the volatile extract described above exhibited clear antioxidant activities at levels of 50-400 microg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/linoleic acid assay. The ethanol extract inhibited DPPH activity by 84% at a level of 400 microg/mL. All samples tested via the beta-carotene bleaching assay also exhibited satisfactory antioxidant activity with clear dose responses. This study indicates that corn silk could be used to produce novel natural antioxidants as well as a flavoring agent in various food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号