首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Oxytocin (OT) stimulates endometrial secretion of prostaglandin (PG) F(2 alpha) during corpus luteum regression in swine but there is differential responsiveness to OT among endometrial cell types. To determine if progesterone influenced responsiveness of luminal epithelial, glandular epithelial, and stromal cells to 100 nM OT during luteolysis in swine, cells were isolated from endometrium of 15 gilts by differential enzymatic digestion and sieve filtration on day 16 postestrus and cultured continuously in the presence of 0, 10 or 100 nM progesterone. For phospholipase C (PLC) activity and PGF(2 alpha) secretion, stromal cells were most responsive to OT (P<0.01) in the absence of progesterone, whereas luminal epithelial cells were unresponsive and glandular epithelial cells displayed an intermediate response to OT (P<0.09). Progesterone enhanced PLC activity linearly in glandular epithelial cells (P<0.05) and influenced it quadratically in stromal cells (P=0.05). The effect of OT and progesterone on PLC activity in luminal epithelial cells was not significant, and progesterone did not increase PLC activity in response to OT in any cell type. Culture in the presence of progesterone, enhanced PGF(2 alpha) secretion in response to OT in luminal epithelial cells (P<0.05) but not in glandular epithelial or stromal cells. Progesterone also increased overall PGF(2 alpha) release from glandular epithelial (P<0.05) and stromal cells (P<0.06) across both levels of OT treatment. These results indicate that progesterone enhanced PGF(2 alpha) secretion from luminal epithelial cells in response to OT and increased basal PGF(2 alpha) release from glandular epithelial and stromal cells.  相似文献   

2.
We have studied in the porcine endometrium the expression of oxytocin receptor (OTR) mRNA and the effect of progesterone (P4) on oxytocin/oxytocin receptor (OT/OTR) function concerning intracellular Ca2+ mobilisation ([Ca2+]i), prostaglandin F2alpha (PGF2alpha) and E2 (PGE2; PG) secretion. Tissue was taken from cyclic and early pregnant pigs (days 14-16). A higher expression of OTR mRNA (P < 0.05) was observed in the endometrium of cyclic than pregnant pigs. The stimulatory (P < 0.05) effect of OT (10(-7) M) on [Ca2+]i mobilisation was noticed within 15-60 s and 30-60 s in endometrial stromal cells of cyclic and pregnant pigs, respectively. In the presence of P4 (10(-5) M) basal and OT-stimulated [Ca2+]i concentrations decreased in stromal cells during luteolysis and pregnancy. In stromal cells P4 delayed mobilisation of [Ca2+]i in response to OT by 15 s during luteolysis and had no effect during pregnancy. In cyclic and pregnant epithelial cells OT stimulated mobilisation of [Ca2+]i in 45 s and 60 s, respectively. Oxytocin increased (P < 0.05) PGF2alpha secretion during luteolysis and pregnancy and PGE2 during luteolysis from endometrial slices. Progesterone did not inhibit this stimulatory effect. During luteolysis OT increased (P < 0.05) PGF2alpha in epithelial and stromal cells and PGE2 secretion in epithelial cells. In the presence of P4 this effect of OT was reduced only in stromal cyclic cells (6 h culture). The presence of P4 decreased the effect of OT on [Ca2+]i mobilisation only in stromal cells. We found that, in most conditions, P4 did not inhibit the OT-stimulated secretion of PG in the porcine endometrium.  相似文献   

3.
To establish a storage system for isolated endometrial cells, we investigated the basal, oxytocin (OT)- and tumor necrosis factor (TNF) alpha-stimulated production of prostaglandin (PG) F(2alpha) in bovine-passaged and frozen-thawed endometrial cells. Stromal and epithelial cells obtained from cows in the early stage of the estrous cycle (Days 2-5) were frozen at -80 C or further cultured and/or passaged until passage 4 in DMEM/Ham's F-12 supplemented with 10% calf serum. A fresh-unfrozen primary culture and one-time passaged fresh-unfrozen cells were used as the control. When both unfrozen and frozen cells reached confluence, the culture medium was replaced with fresh medium with 0.1% BSA and the cells were stimulated with OT (100 ng/ml) or TNFalpha (1 ng/ml) for 4 h. The passage and freezing of the endometrial cells did not affect their morphology. In primary culture of frozen and unfrozen endometrial cells, OT strongly stimulated PGF(2alpha) production in epithelial cells, and TNFalpha strongly stimulated PGF(2alpha) production in stromal cells (P<0.05). The basal output of PGF(2alpha) in frozen stromal cells was similar to that in unfrozen stromal cells. However, the basal output of PGF(2alpha) in frozen epithelial cells was significantly lower than that unfrozen cells (P<0.05). On the other hand, in passaged cells, the basal level of PGF(2alpha) production was retained until passage 1 in epithelial cells, whereas it was retained until passage 4 in stromal cells. Although epithelial cells responded to OT in PGF(2alpha) production until passage 2 (P<0.05), the stromal cells showed a significant response to TNFalpha until passage 4 (P<0.05). These results suggest that stored cells could be used for studying the physiology of bovine endometrium in vitro until passage 1 in endometrial epithelial cells, and until passage 4 in stromal cells.  相似文献   

4.
The purpose of this study was to determine whether nitric oxide (NO) mediates tumor necrosis factor (TNF)alpha influence on the bovine endometrium. TNFalpha influence on the bovine endometrium is limited to the stromal cells. Therefore, it was interesting to find out whether NO production by the stromal cells, stimulated by TNFalpha might influence the endometrial epithelium. Moreover, we investigated the intracellular mechanisms of TNFalpha- and NO-regulated prostaglandin (PG) F(2alpha) and PGE(2) synthesis. Epithelial and stromal cells from the bovine endometrium (Days 2-5 of the oestrous cycle) were separated by means of enzymatic dispersion and cultured for 6-7 days in 48-well plates. The confluent endometrial cells were exposed to a NO donor (S-NAP; 1-1000 microM) for 24 h. S-NAP strongly stimulated PGE(2) production in both bovine endometrial cell types (P<0.001). The effect of SNAP on PGF(2alpha) production was limited only to the stromal cells (P<0.05). To study the intracellular mechanisms of TNFalpha and NO action, stromal cells were incubated for 24 h with TNFalpha or S-NAP and with NO synthase (NOS) inhibitor (L-NAME; 10 microM) or an inhibitor of phosphodiesterase (IBMX; 10 microM). When the cells were exposed to TNFalpha in combination with NOS inhibitor (L-NAME), TNFalpha-stimulated PGs production was reduced (P<0.05). The inhibition of enzymatic degradation of cGMP by IBMX augmented the actions of S-NAP and TNFalpha on PGs production (P<0.05). The overall results suggest that TNFalpha augments PGs production by bovine endometrial stromal cells partially via induction of NOS with subsequent stimulation of NO-cGMP formation. NO also stimulates PGE(2) production in epithelial cells.  相似文献   

5.
The present studies were undertaken to examine the effect of tumour necrosis factor (TNF) alpha on prostaglandins (PGs) F(2alpha) and E(2) release by cultured porcine endometrial cells harvested on days 13-16 after oestrus in comparison to stimulation with oxytocin (OT) and luteinizing hormone (LH). A time-dependent effect of TNFalpha (10 ng/ml) on PGF(2alpha) release was observed in stromal and luminal epithelial cells. Moreover, TNFalpha increased PGF(2alpha) secretion from both endometrial cell types with effective concentrations of 1 (p < 0.05), 10 and 50 ng/ml (p < 0.01). The effect of TNFalpha (10 ng/ml) on endometrial PGF(2alpha) and PGE(2) release was compared with OT (100 nmol/l) and LH (100 ng/ml). All factors affected PGF(2alpha) secretion from stromal cells, however, the stimulation tended to be more potent after OT and LH (p < 0.01) than after TNFalpha (p < 0.05) treatment. In epithelial cells, only TNFalpha was able to stimulate PGF(2alpha) release (p < 0.001). PGE(2) secretion from stromal cells increased after incubation with TNFalpha and OT (p < 0.05). Only LH stimulated PGE(2) release from epithelium (p < 0.001), and its action was very effective when compared with TNFalpha or OT (p < 0.01). Summarizing, TNFalpha induces both PGs secretion from cultured porcine endometrium, but preferentially stimulates PGF(2alpha) release from luminal epithelial cells. Therefore, similarly to OT and LH, TNFalpha may be considered as a potential modulator of endometrial PGF(2alpha) production during luteolysis in the pig.  相似文献   

6.
Heparin‐binding EGF‐like growth factor (HB‐EGF) regulates several cell functions by binding to its membrane receptor (ErbB1 and ErbB4). Experimental evidences suggest that HB‐EGF, prostaglandins (PGs) and interferon‐τ (IFN‐τ) regulate uterine function for pregnancy establishment in ruminants. In this study, the mRNA expressions of HB‐EGF, ErbB1 and ErbB4 in bovine endometrium and the effects of HB‐EGF and IFN‐τ on PGE2 and PGF2‐α production by endometrial cells were investigated. RT‐PCR analysis revealed that HB‐EGF mRNA was greater at the mid‐luteal stage than at the early and regressed luteal stages (p < 0.05). ErbB1 mRNA expression was greater at the mid‐ and late luteal stages than at the other luteal stages (p < 0.05). IFN‐τ increased the expression of HB‐EGF, ErbB1 and ErbB4 mRNA in epithelial cells (p < 0.05). HB‐EGF did not affect PGF2‐α or PGE2 production by bovine endometrial epithelial cells, but increased PGF2‐α and PGE2 production by bovine endometrial stromal cells (p < 0.05). IFN‐τ significantly decreased HB‐EGF‐stimulated PGF2‐α (p < 0.05), but not PGE2 (p > 0.05) production by stromal cells. These results indicate that HB‐EGF and its receptors expression changed in bovine endometrium throughout the oestrous cycle. IFN‐τ increased their expression in cultured endometrial cells. HB‐EGF and IFN‐τ have the ability to regulate PGs production by stromal cells and therefore may play a role in the local regulation of uterine function at the time of implantation in cattle.  相似文献   

7.
Luminal epithelial, glandular epithelial, and stromal cells were isolated from pig endometrium by enzymatic dispersion and sieve filtration. The three cell types, maintained in primary culture, showed distinctly different morphologies when viewed by light and scanning electron microscopy. Immunocytochemical staining indicated that luminal and glandular epithelial cells were positive for both cytokeratin and vimentin. However, stromal cells were positive only for vimentin. Acid phosphatase activity was detected in the culture medium of glandular cells and increased (P less than .05) when progesterone (.1 microM) was included in the culture medium. The secretion of uteroferrin by glandular cells was also indicated by one-dimensional PAGE and Western blot analysis. Stromal cells produced more (P less than .01) prostaglandin E (PGE) than prostaglandin F2 alpha (PGF2 alpha), whereas glandular cells secreted more (P less than .01) PGF2 alpha than PGE. Pregnancy status affected prostaglandin secretion in that stromal cells secreted less (P less than .01) PGE and PGF2 alpha and glandular cells secreted less (P less than .05) PGF2 alpha when they were harvested from pregnant vs cyclic pigs. Furthermore, the PGE:PGF2 alpha ratio in medium from stromal cells was greater (P less than .01) for cells collected from pregnant pigs. This culture system provides an in vitro model for studying the hormonal regulation of the endometrium and potentially may be useful for studying interactions between endometrial cells and embryos in the pig.  相似文献   

8.
Cortisol (Cr), the most important glucocorticoid (GC), is well known to suppress uterine prostaglandin F2α (PGF) production. However, the details of the regulatory mechanisms controlling the cyclic changes in endometrial PGF production remain unclear. Here we investigated the expression of the GC receptor (GC-Rα), the actions of cortisol throughout the estrous cycle and the regulatory mechanism of GC-Rα in the bovine endometrium. The levels of GC-Rα protein were greater at the mid-luteal stage (Days 8–12) than at the other stages. Cr more strongly suppressed PGF production at the mid-luteal stage than at the follicular stage. GC-Rα expression was increased by progesterone (P4) but decreased by estradiol-17β (E2) in cultured endometrial stromal cells. The overall results suggest that ovarian steroid hormones control the cyclic changes in endometrial PGF production by regulating GC-Rα expression in bovine endometrial stromal cells.  相似文献   

9.
The endometrial tissue of the uterus plays a key role in reproduction and is a source of hormones and factors responsible for the proper physiological function of reproductive tract during the oestrous cycle and pregnancy. In this study, we investigated the pattern of PGF(2alpha) and PGE(2) secretion from cultured porcine endometrial cells at different days of the oestrous cycle. Epithelial and stromal cells were isolated by differential enzymatic digestion on days 6-8, 10-12 and 14-16. After attachment cells were incubated for 3 and 24 h to estimate PGF(2alpha) and PGE(2) output. The purity of culture was 85-90% for epithelial and 95-98% for stromal cells as determined by immunofluorescent staining. Release of PGF(2alpha) and PGE(2) was affected by cell type, days of the oestrous cycle and the time of incubation. After 3 h of incubation epithelial cells secreted more PGF(2alpha) than PGE(2) during all studied periods of the oestrous cycle (p < 0.01 and p < 0.001, respectively), whereas stromal cells released more PGE(2) (p < 0.01) on days 10-12 and 14-16. Longer incubation of stromal cells revealed that PGF(2alpha) output tended to overcome PGE(2) on days 10-16. The lowest secretion of prostaglandins was observed on days 6-8 in both cell types. The highest secretion of PGF(2alpha) from epithelium was measured on days 10-12 after 24 h of incubation when compared with other days studied (p < 0.001). In stromal cells, PGE(2) output increased on consecutive days studied (p < 0.001) after 3 h of incubation. The differential properties of endometrial cell types seem to play an important role in the profile of PGF(2alpha) and PGE(2) release before and during luteolysis. Described endometrial cells culture might serve as the model for further studies on the hormonal regulation of prostaglandin production in the pig.  相似文献   

10.
The objective of the present investigation was to study proliferative activity of fibroblast-like endometrial stromal cells in bovine endometrial caruncular (CAR) and intercaruncular (ICAR) areas that have distinct functions during implantation. Endometrial stromal cells were derived from CAR and ICAR of nonpregnant cows, and their proliferative potential was analyzed in an in vitro cell culture system. In addition, expression of four types of cell cycle regulatory molecules was analyzed by RT-PCR in samples of CAR, ICAR, cotyledon (COT) and fetal membrane of both artificially inseminated (AI) and somatic nuclear transferred (NT) cows on days 30 and 60 of gestation. The proliferation growth curve showed that the cells derived from CAR had higher proliferative activity than that of ICAR-derived cells. No morphological differences were found between the cells derived from CAR and ICAR at population-doubling levels (PDL) of the two. Most of the cells derived from ICAR of nonpregnant cows exhibited expanded shape with no further proliferation at PDL 6 with a lack of cyclin E expression. Of the regulatory molecules, cyclin D1, CDK2 and CDK4 were expressed in both CAR and ICAR cells derived from both nonpregnant, and AI cows on days 30 and 60 of gestation. The expression of cyclin E in both AI and NT cows was confined to COT and fetal membrane on day 30 of gestation. Cyclin E expression on day 60 of gestation in AI cows was observed in all but ICAR areas. In marked contrast, however, cyclin E expression on day 60 of gestation in NT cows was confined to COT, suggesting that poor placentation in these cows is possibly associated with a lack of cyclin E expression. These results suggest that CAR-derived stromal cells have higher proliferative potential, which may be related to cyclin E expression during implantation.  相似文献   

11.
A review is presented of the roles of prostaglandins in swine reproduction. PGE and PGF are both produced in the ovary. PGE is thought to mediate steroidogenic activity of L.H. on the development of the granulosa cells leading to increased progesterone production in the preovulatory phase of the oestrus cycle. PGF2 acts on the theca cells leading to increased oestradiol and oestrus manifestation. The PG blocker indomethacin prevents oocyte rupture, but not maturation. The L.H. surges in the follicular phase stimulate ovarian PG production which initiates oestrus and ovulation. The uterus produces PGF2alpha. Disorders leading to abortion usually result in excess PGF2alpha production at the endometrium leading to luteolysis. With normal gestation circulatory progesterone levels fall during the last two weeks of pregnancy associated with increased circulatory foetal corticoid levels. The foetal corticoids are thought to trigger endometrial PGF2alpha levels leading to luteolysis and parturition. The use of exogenous PGF2alpha for induction of oestrus and abortion, parturition, semen collection and resolution of anoestrus is reviewed.  相似文献   

12.
The objective of the present study was to investigate the influence of prostaglandin F(2alpha) (PGF (2alpha)) and nitric oxide (NO) on production of steroids and PGs by culturing bovine luteal cells obtained from ovaries on days 8-12 of the estrous cycle with a nitric oxide (NO) donor (Spermine NONOate), and a NO synthase inhibitor (N(G)-nitro-L-arginine methyl ester dihydrochloride: L-NAME). When the cells were exposed for 24 h to PGF(2alpha) (10(-7)-10(-5) M), production of progesterone (P(4)) increased significantly at all doses used (P<0.05). Moreover, PGF(2alpha) stimulated PGF(2alpha) production (P<0.01), depressed testosterone (T) production (P<0.05), but did not affect synthesis of prostaglandin E(2) (PGE(2)). Spermine NONOate decreased P(4) production to 66%, 47% and 34% of the control concentration after treatment with 10(-5) M, 10(-4) M and 10(-3) M, respectively, but did not affect T production, and increased PGF(2alpha) synthesis (P<0.05) and PGE(2) (P<0.01) at all doses used. L-NAME increased production of P(4) (P<0.01) but did not affect (P>0.05) secretion of T, PGF(2alpha) and PGE(2). Estradiol-17beta (E(2)) was detectable on the level of sensitivity of assay and was not significantly altered by any treatments. The overall results suggest that PGF(2alpha) and NO produced locally in bovine CL play roles in the regulation of the secretory function of the bovine CL as auto/paracrine factors.  相似文献   

13.
Interleukin-18 (IL-18) is a proinflammatory cytokine involved in chronic inflammation, autoimmune diseases, and a variety of cancers, and is expressed in mouse uteri. Our previous study suggested that IL-18 acts as a paracrine factor, regulating endometrial function. To elucidate the physiological roles of IL-18 in the mouse endometrium, the expression of the IL-18 receptor (IL-18R) alpha subunit was analyzed. IL-18Ralpha mRNA was expressed in several mouse organs in addition to the endometrium. In situ hybridization analysis using a biotin-labeled mouse IL-18Ralpha riboprobe demonstrated that IL-18Ralpha mRNA expression was detected in glandular epithelial cells, stromal cells around uterine glands, and myometrial cells in the mouse uterus, suggesting that these cells are targets for IL-18. The uterine IL-18Ralpha mRNA expression level changed with the estrous cycle. The uterine IL-18Ralpha mRNA levels of estrous mice were higher than those of diestrous mice. In addition, the IL-18Ralpha mRNA levels in uteri at 3 and 14 days after ovariectomy were higher than those at diestrus and decreased following treatment with estradiol-17beta or progesterone. These findings suggest that IL-18Ralpha gene expression is regulated by estrogen and progesterone and that the uterine IL-18 system is involved in the regulation of uterine functions in a paracrine manner.  相似文献   

14.
The present study was undertaken to investigate whether withdrawal of estrogen and progesterone (EP-withdrawal) stimulates prostaglandin F2alpha (PGF2alpha) production through oxygen radical (ROS)-induced NF-kappaB activation in human endometrial stromal cells (ESC). To study the EP-withdrawal, ESC that had been treated with estradiol (E, 10(-8) M) and medroxyprogesterone acetate (MPA, 10(-6) M) for 12 days were then incubated with or without E+MPA for a further 11 days. PGF2alpha concentrations in the medium and cyclooxygenase-2 (COX-2) mRNA levels were significantly increased after EP-withdrawal, while they were unchanged by the continuous treatment with E+MPA. When ESC were incubated with N-acetyl-L-cysteine (Nac, 50 mM), an antioxidant, during EP-withdrawal, Nac blocked the increases in PGF2alpha production and COX-2 mRNA expression caused by EP-withdrawal. Next, we examined whether ROS generated in response to EP-withdrawal acted through NF-kappaB activation. Electrophoretic mobility shift assay revealed that EP-withdrawal caused marked increases in NF-kappaB DNA binding activity, which was completely suppressed by Nac. Furthermore, when ESC were incubated with MG132 (3 microM), which inhibits NF-kappaB activation, during EP-withdrawal, MG132 blocked the increases in PGF2alpha production and COX-2 mRNA expression caused by EP-withdrawal. In conclusion, EP-withdrawal stimulates COX-2 expression and PGF2alpha production through ROS-induced NF-kappaB activation, suggesting a possible mechanism for menstruation.  相似文献   

15.
The effect of lipopolysaccharide on ovine endometrial tissue was examined at estrus (follicular phase) and during the luteal phase. Endometrial tissues were cultured with 0, 1, or 10 microg/mL lipopolysaccharide. After 24 h, culture supernates were harvested and analyzed for PGF2alpha, PGE2, 6-keto-PGF1alpha, thromboxane B2 (TXB2), and cysteinyl-leukotrienes (leukotrienes) using EIA. Homogenates of endometrial tissue were analyzed for prostaglandin endoperoxidase-1 (PTGS-1), and -2 (PTGS-2) as well as Type-I, -II, and -III nitric oxide synthase (NOS) by Western analysis. Follicular phase tissue produced more PGF2alpha (P < 0.001), TXB2 (P < 0.001), and leukotrienes (P < 0.02) than luteal tissue. Lipopolysaccharide increased PGE2 (P < 0.001) and TXB2 (P < 0.02) production by endometrial tissue. Elevations in these eicosanoids were likely due to the measured increases in PTGS-2 (P = 0.002) because no changes in PTGS-1 (P = 0.54) or Type-I, -II, or -III NOS (P > or = 0.20) occurred in endometrial tissue following lipopolysaccharide exposure. These data suggest that the phase of the estrous cycle regulates prostaglandin production by immune-challenged endometrial tissue.  相似文献   

16.
17.
The purpose of the present study was to determine the effect of progesterone or progesterone + estradiol-17beta on oxytocin-induced prostaglandin F2alpha (PGF2alpha) secretion in postpartum beef cows. Thirty-four anestrous postpartum beef cows were ovariectomized (d 32 [Groups 1 to 3] or d 23 [Groups 4 to 6] postpartum [d 0 = parturition]) and allotted to six treatments (Group 1; negative control) to simulate short (Groups 2 through 5) or normal (Group 6) length estrous cycles. Steroid treatments for the respective groups were as follows: Group 1) no estradiol-17beta or progesterone treatment (n = 8; negative control); Group 2) progesterone (d 34 to 40; n = 6); Group 3) estradiol-17beta (d 32 to 33) and progesterone (d 34 to 40; n = 6); Group 4) progesterone (d 23 to 29), no estradiol-17beta (d 32 to 33), and progesterone (d 34 to 40; n = 5); Group 5) progesterone (d 23 to 29), estradiol-17beta (d 32 to 33), and progesterone (d 34 to 40; n = 5); and Group 6) progesterone (d 23 to 29), estradiol-17beta (d 32 to 33), and progesterone (d 34 to 50; n = 4; positive control). Oxytocin (100 IU) was injected (i.v.) at the end of each treatment to test the ability of the postpartum uterus to secrete PGF2alpha as measured by a stable metabolite of PGF2alpha, 15keto-13,14 dihydro-PGF2alpha (PGFM). Peak concentrations ofPGFM (P < 0.08) and total PGFM secreted (area under the curve; P < 0.05) were increased on d 6 following first (Group 2) or second (Group 4) exposure to progesterone and were similar to peak concentrations and total PGFM secreted 16 d following a simulated normal estrous cycle (Group 6). Administration of estradiol-17beta before first progesterone exposure (Group 3) did not reduce peak concentrations of PGFM or total PGFM secreted relative to the preceding groups. Peak concentrations of PGFM (P < 0.08) and total PGFM secreted (P < 0.05) were reduced following a second progesterone exposure, provided that cows were pretreated with estradiol-17beta (Group 5). In summary, oxytocin-induced release of PGFM was inhibited on d 6 following second exposure to progesterone only when cows were pretreated with estradiol-17beta. Therefore, estradiol-17beta and progesterone were both associated with the timing of PGF2, secretion in postpartum cows.  相似文献   

18.
Luteal regression is caused by a pulsatile release of prostaglandin (PG) F(2alpha) from the uterus in the late luteal phase in most mammals including cattle. Although it has been proposed in ruminants that pulsatile PGF(2alpha) secretion is generated by a positive feedback loop between luteal and/or hypophyseal oxytocin and uterine PGF(2alpha), the bovine endometrium may possess other mechanisms for initiation of luteolytic PGF(2alpha) secretion. It has been recently demonstrated that tumor necrosis factor-alpha (TNF-alpha) stimulates PGF(2alpha) output from bovine endometrial tissue not only during the follicular phase but also during the late luteal phase, suggesting that TNF-alpha is a factor in the initiation of luteolysis in cattle. Furthermore, our recent study has shown that IFN-tau suppresses the action of TNF-alpha on PGF(2alpha) synthesis by the bovine endometrium in vitro, suggesting that IFN-tau plays a luteoprotective role by inhibiting TNF-alpha-induced PGF(2alpha) production in early pregnancy. On the other hand, factors other than oxytocin or TNF-alpha have also been suggested to be involved in the regulation of PGF(2alpha) synthesis by bovine endometrium. The purpose of this review is to summarize our current understanding of the endocrine mechanisms that regulate the timing and pattern of uterine PGF(2alpha) secretion during the estrous cycle and early pregnancy.  相似文献   

19.
The ability of equine endometrium to release prostaglandin (PG) F, PGE2, and leukotriene (LT) B4 was studied in vitro, using endometrial tissue from diestrous mares. Because of the high cross-reactivity of the PGF antiserum with PGF1 alpha and with PGF2 alpha, results were quoted as total immunoreactive PGF. Significant concentrations of these arachidonate metabolites were released into tissue culture medium between 1 and 24 hours of incubation. Significantly higher concentrations of PGE, but not of PGE2 or LTB4, were released from endometria of mares with chronic endometritis than from genitally normal mares. Prostaglandin F was released only in low concentrations from the endometrium of a mare with pyometra, but concentrations of PGE2 and LTB4 were similar to those of genitally normal mares.  相似文献   

20.
The main purpose of this study was to check whether phyto- and endogenous estrogens influence calcium ion mobilization [Ca(2+)](i) in bovine endometrial cells and whether this action is connected with biological effects i.e. prostaglandin (PG)F(2alpha) production. In our study we used two calcium measurement methods by comparing the microscopic method with widely used quantitative - spectrofluorometric method of [Ca(2+)](i) measurement. We also wanted to confirm whether visualization of calcium ion [Ca(2+)](i) in cells using microscopic method supported by micro image analysis (Micro Image Olympus system) reflects real, qualitative changes in the ion concentration. In both methods a cell-permeable form of fluorescent [Ca(2+)](i) indicator Fura-2 was used. Cultured bovine endometrial epithelial and stromal cells influenced by phorbol-2-myristate-13-acetate (PMA; positive control), estradiol 17-beta (E(2); endogenous estrogen) and active metabolites of phytoestrogens (environmental estrogens) were used as a model to study PGF(2alpha) secretion and [Ca(2+)](i) mobilization in the cells. Equol and para-ethyl-phenol in doses of 10(-8)-10(-6) M increased PGF(2alpha) concentration both in epithelial and stromal cells (P<0.05). In both methods, equol and para-ethyl-phenol did not cause intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P>0.05). Both methods revealed that only E(2) and PMA induced intracellular [Ca(2+)](i) mobilization in epithelial and stromal cells (P<0.05). The results of both methods were highly correlated (P<0.001; r=0.82 for epithelial cells and r=0.89 for stromal cells). In conclusion, both methods gave approximately the same results and showed that phytoestrogens, in contrast to PMA and E(2), did not cause intracellular [Ca(2+)](i) mobilization in endometrial cells. The obtained results proved that the [Ca(2+)](i) visualization method supported by micro image analysis can produce similar results to the spectrofluorometric method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号