首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscape features that promote animal movement contribute to functional habitat connectivity. Factors that affect the use of landscape features, such as predation risk, may alter functional connectivity. We identify factors important to functional habitat connectivity by quantifying movement patterns of the Santa Rosa beach mouse (Peromyscus polionotus leucocephalus) in relation to landscape features and by examining how ambient perceived predation risk, which is altered by moon phase, interacts with landscape features. We use track paths across the sand to relate the probability that beach mice cross gaps between vegetation patches to gap width, patch quality, landscape context and moon phase. Overall activity levels were lower during full versus new moon nights, demonstrating that beach mice respond negatively to moonlight. Gap crossing was more likely during new moon nights (25 % of gaps crossed vs. 7 % during full moon nights), and across narrower gaps (<8.38 m) that led to larger vegetation patches (>11.75 m2). This study suggests that vegetation recovery is necessary for functional connectivity in post-hurricane landscapes commonly inhabited by beach mice and provides initial guidelines for restoring landscape connectivity. More broadly, this study highlights the importance of considering predation risk when quantifying landscape connectivity, as landscape features that facilitate connectivity when predation risk is low may be ineffective if predation risk increases over time or across space.  相似文献   

2.
Negative impacts of road networks on wildlife are of global concern. While direct mortality of wildlife via roads has been well-documented, we know little about indirect effects of roads. Using a simulation model parameterized from empirical data, we explored how roads in proximity to maternity roosts influenced foraging activities of the endangered Indiana bat. First, we conducted manipulated landscape simulations to identify characteristics (such as traffic volume, foraging habitat availability, etc.) that influenced landscape permeability. We used a classification and regression tree procedure to assess which landscape and road-related variables, alone or in combination, influenced bat movement. We determined that roads did act as filters (>10 vehicles/5 min) or barriers (>200 vehicles/5 min) to movement. However, it is a combination of the proportion of foraging habitat accessible without crossing a road, and roost-to-road distance that dictated whether the barrier and filter effects of roads hindered the bats’ foraging abilities. We then simulated movement patterns and foraging success of Indiana bats at 32 existing maternity roosts to identify conditions under which colonies currently persist. We established a foraging success threshold, above which Indiana bats currently persist. The value represents the time virtual bats spend in foraging habitat during the simulation period. Finally, simulations from these landscapes around known maternity roosts demonstrate that the road network and landscape configuration are critical to foraging success. This modeling approach and threshold value are beneficial to road developers and represent an invaluable tool in the ecological design of transportation infrastructures.  相似文献   

3.
While studies have found that bat abundance is positively related to the amount of forest cover in a landscape, the effects of forest fragmentation (breaking apart of forest, independent of amount) are less certain, with some indirect evidence for positive effects of fragmentation. However, in most of these studies, the variables used to quantify fragmentation are confounded with forest amount, making it difficult to interpret the results. The purpose of this study was to examine how forest amount and forest fragmentation independently affect bat abundance. We conducted acoustic bat surveys at the centers of 22 landscapes throughout eastern Ontario, Canada, where landscapes were chosen to avoid a correlation between forest amount and forest fragmentation (number of patches) at multiple spatial scales, while simultaneously controlling for other variables that could affect bat activity. We found that the effects of forest amount on bat relative abundance were mixed across species (positive for Lasiurus borealis, negative for Perimyotis subflavus and Lasionycteris noctivagans). When there was evidence for an effect of forest fragmentation, independent of forest amount, on bat relative abundance, the effect was positive (Myotis septentrionalis, Myotis lucifugus and Lasiurus borealis). We suggest that the mechanism driving the positive responses to fragmentation is higher landscape complementation in more fragmented landscapes; that is, increased access to both foraging and roosting sites for these bat species. We conclude that fragmented landscapes that maximize complementation between roosting and foraging sites should support a higher diversity and abundance of bats.  相似文献   

4.
Landscape heterogeneity can influence animal dispersal by causing a directional bias in dispersal rate, as certain landscape configurations might promote, impede, or prevent movement and gene flow. In forested landscapes, logging operations often contribute to heterogeneity that can reduce functional connectivity for some species. American martens (Martes americana) are one such species, as they are considered specialists of late-seral coniferous forests. We assessed marten gene flow to test the hypothesis that habitat management has maintained landscape connectivity for martens in the managed forests of Ontario, Canada. We genotyped 653 martens at 12 microsatellite loci, sampled from 29 sites across Ontario. We expected that if forest management has an effect on marten gene flow, we would see a correlation between effective resistance, estimated by circuit theory, and genetic distance, estimated by population graphs. Although we found a positive relationship between effective resistance and genetic distance (Mantel r = 0.249, P < 0.001), marten gene flow was better described by isolation by Euclidean distance (Mantel r = 0.410, P < 0.001). Our results suggest that managed forests in Ontario are well connected for marten and neither impede nor promote marten gene flow at the provincial scale.  相似文献   

5.
Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal movement. ‘Indirect’ approaches involving genetic analyses provide a complementary tool to ‘direct’ methods such as capture–recapture or radio-tracking. Here the effect of landscape on dispersal was investigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is characterized by increasing genetic differentiation among individuals separated by increasing geographic distances. The effect of landscape features on this genetic pattern was used to test for a departure from spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. heterogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether landscape structure may be accountable for this difference, we used effective distances that take into account the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation by distance. Effective distances computed using least-cost modeling were better correlated to genetic distances in both landscapes, thereby showing that the interaction between landscape features and dispersal in Martes americana may be detected through individual-based analyses of spatial genetic structure. However, the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained by these models may limit their utility in quantifying the effect of landscape structure.  相似文献   

6.
Metapopulation and optimal foraging theories predict the presence of animals and their duration, respectively, in foraging patches. This paper examines use of these two theories to describe the movements and patterns of foraging in patches used by Caspian gulls (Larus cachinnans) at inland reservoirs during the chick-rearing period. We assumed that birds would move differently across diverse habitats, with some types of land cover less permeable than others, and some landscape features acting as corridors. We also expected larger and less isolated patches, and patches that were close to corridors, to have a higher probability of the presence of foraging birds, and that they would be more abundant, forage for a shorter time, and hunt smaller prey than in small, more isolated patches surrounded by barriers. Forests seem to be a much less permeable type of land cover, whereas rivers became corridors for Caspian gulls during foraging trips. Probability of bird presence was positively related to the size of foraging patches and negatively linked with distance to the nearest river, distance to the nearest foraging patch, and the presence of forests in the vicinity. The same factors significantly affected bird abundance. Contrary to expectations, the duration and success of foraging were not influenced by any variable we measured, suggesting that although larger patches contain a higher abundance of fish, their density and the probability of capturing prey were relatively stable among the various patches. However, gulls that foraged in more isolated ponds that were located further from the river and the colony, and also surrounded by forest, captured larger fish more often than birds that foraged near the colony in less-isolated patches. Pooling metapopulation and optimal foraging concepts seems to be valuable in describing patch use by foraging animals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.

Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.

  相似文献   

8.
Forest cover reduction may affect movements of forest animals, but resistance to animal movements in and out of forests remains unknown despite its importance for modelling. We tested whether ovenbird (Seiurus aurocapilla), a forest-interior songbird, responds similarly to the amount of forest cover while moving locally (~2 km) and over entire landscapes (~25 km). We compared spatially-explicit simulations to field data to address the issue of resistance to movement in open areas. We caught, banded and translocated 143 territorial males 0.8–27 km away from their territory early in the breeding season. Seventy-eight percent and 50% of translocated males returned (homed) within 10 days following “local” and “landscape” translocations respectively. Independent of translocation distance, homing times increased with decreasing forest in the landscape. With a Geographic Information System (GIS), we simulated “least-cost” paths that homing ovenbirds would ideally take, when resistance to movement in open areas ranged 1–1000 times the resistance to movement in forest. The length, the cumulative cost, and variability of simulated least-cost movement paths increased with increasing resistance in open areas. With landscape translocations, least-cost path length explained homing time better than Euclidean distance, and based on an information-theoretic approach, resistance to movement was estimated to be 27 times greater in open areas than in forests (95% confidence interval: 16–45). However, least-cost path length did not perform better than Euclidean distance with local translocations, and the cumulative cost of least-cost paths was not associated to homing time in either translocation scale. We conclude that resistance to animal movements in open areas can be addressed by a combination of GIS modelling and translocation experiments, and is between one and two orders of magnitude greater than resistance to movements in forests, in the case of ovenbirds.  相似文献   

9.
Jonsen  Ian D.  Fahrig  Lenore 《Landscape Ecology》1997,12(3):185-197
The purpose of this study was to investigate the effect ofchanges in landscape pattern on generalist and specialistinsects. We did this by comparing the species richness andabundance of generalist and specialist herbivorous insects inalfalfa (Medicago sativa, L.) fields on 26 agriculturallandscapes that differed in spatial structure. The insects werefrom the families Curculionidae (Coleoptera), weevils, andCicadellidae (Auchennorhyncha), leafhoppers.We hypothesized that: (1) generalist richness and abundancewould be highest in landscapes with high diversity(Shannon-Wiener); (2) specialist richness and abundance would behighest in landscapes with (i) high percent cover alfalfa and(ii) low mean inter-patch distance. We tested for these effectsafter controlling for the patch-level effects of field size,field age, frequency of disturbance and vegetation texture.The important findings of the study are: (1) generalist richness andabundance increased with increasing landscape diversity and (2)isolation (percent cover alfalfa in the landscape and/or meaninter-patch distance) does not affect specialist insects. Theseresults are significant because they indicate that bothgeneralist and specialist insects may move over much largerdistances than previously thought. This is one of the firststudies to demonstrate a large scale effect of spatial structureon insects across a broad range of landscapes.  相似文献   

10.

Context

Connectivity has become a top conservation priority in response to landscape fragmentation. Many methods have been developed to identify areas of the landscape with high potential connectivity for wildlife movement. However, each makes different assumptions that may produce different predictions, and few comparative tests against empirical movement data are available.

Objectives

We compared predictive performance of the most-used connectivity models, cost-distance and circuit theory models. We hypothesized that cost-distance would better predict elk migration paths, while circuit theory would better predict wolverine dispersal paths, due to alignment of the methods’ assumptions with the movement ecology of each process.

Methods

We used each model to predict elk migration paths and wolverine dispersal paths in the Greater Yellowstone Ecosystem, then used telemetry data collected from actual movements to assess predictive performance. Methods for validating connectivity models against empirical data have not been standardized, thus we applied and compared four alternative methods.

Results

Our findings generally supported our hypotheses. Circuit theory models consistently predicted wolverine dispersal paths better than cost-distance, though cost-distance models predicted elk migration paths only slightly better than circuit theory. In most cases, our four validation methods supported similar conclusions, but provided complementary perspectives.

Conclusions

We reiterate suggestions that alignment of connectivity model assumptions with focal species movement ecology is an important consideration when selecting a modeling approach for conservation practice. Additional comparative tests are needed to better understand how relative model performance may vary across species, movement processes, and landscapes, and what this means for effective connectivity conservation.
  相似文献   

11.
Seagrasses, which form critical subtidal habitats for marine organisms worldwide, are fragmented via natural processes but are increasingly being fragmented and degraded by boating, fishing, and coastal development. We constructed an individual-based model to test how habitat fragmentation and loss influenced predator–prey interactions and cohort size for a group of settling juvenile blue crabs (Callinectes sapidus Rathbun) in seagrass landscapes. Using results from field studies suggesting that strong top-down processes influence the relationship between cannibalistic blue crab populations and seagrass landscape structure, we constructed a model in which prey (juvenile blue crabs) are eaten by mesopredators (larger blue crabs) which in turn are eaten by top-level predators (e.g., large fishes). In our model, we varied the following parameters within four increasingly fragmented seagrass landscapes to test for their relative effects on cohort size: juvenile blue crab (prey) predator avoidance response, hunting ability of mesopredators and predators, the presence of a top-level predator, and prey settlement routines. Generally, prey cohort size was maximized in the presence of top-level predators and when mesopredators and predators exhibited random searching behavior vs. directed hunting. Cohort size for stationary (tethered) prey was maximized in fragmented landscapes, which corresponds to results from field experiments, whereas mobile prey able to detect and avoid predators had higher survival in continuous landscapes. Prey settlement patterns had relatively small influences on cohort size. We conclude that the effects of seagrass fragmentation and loss on organisms such as blue crabs will depend heavily on behaviors of prey and predatory organisms and how these behaviors change with landscape structure.  相似文献   

12.
Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight study sites in Missouri and Illinois, USA, during 2007–2010. We used an information-theoretic approach to evaluate hypotheses concerning factors affecting predator-specific and overall rates of predation at landscape, edge, and nest-site scales. We found support for effects of landscape forest cover and distance to habitat edge. Predation by Brown-headed Cowbirds (Molothrus ater) increased, and predation by rodents decreased as landscape forest cover decreased. Predation by raptors, rodents, and snakes increased as the distance to forest edges decreased, but the effect was modest and conditional upon the top-ranked model. Despite the predator-specific patterns we detected, there was no support for these effects on overall rates of predation. The interactions between breeding birds, nest predators, and the landscapes in which they reside are scale-dependent and context-specific, and may be resistant to broad conceptual management recommendations.  相似文献   

13.
Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.  相似文献   

14.
Home range size is a result of individual movements and the spatial distribution of a population. While body size, sex, and age are known to influence the area over which an animal ranges, it remains uncertain how landscape heterogeneity influences home range size. We examined elk (Cervus elaphus) seasonal home range sizes in relation to the quantity and spatial heterogeneity of forage biomass, forest cover, topography, snow–water equivalents, and landscape structure in three study landscapes: Yellowstone National Park, Wyoming, USA; eastern slopes of the Canadian Rockies, Alberta; and northern Wisconsin, USA. We used a 95% fixed kernel estimator to measure the home range size and location of all elk. To identify the scales at which important factors influenced home range sizes, we quantified environmental variables within the estimated home range polygon and within concentric circles with radii of 1000, 2000, 3000, 4000, and 5000 m from the home range center. Results indicate that there was an inverse relationship between forage biomass and summer and winter home range sizes in Alberta and Wisconsin, however the relationship was positive in Yellowstone. The size of summer and winter home ranges was positively related to percent forest cover; however this relationship was significant only when forest cover was quantified within the home range polygon or radii that were greater than or equal to 3000 m. Winter home ranges also had a positive relationship with snow–water equivalents. The predictive strength of summer home range models was greatest when landscape variables were quantified within the concentric circles with a radius of 3000 m or more, whereas the predictive strength of the winter models was greatest within the estimated home range polygon. Results suggest that elk ranging patterns reflected complex trade-offs that affect foraging, group dynamics, movement energetics, predation avoidance and thermal regulation. The multi-scale analysis indicates that elk based home ranging decisions on an area equal to their home range, but areas outside of the estimated home range were also important.  相似文献   

15.
Individual-based analyses relating landscape structure to genetic distances across complex landscapes enable rigorous evaluation of multiple alternative hypotheses linking landscape structure to gene flow. We utilize two extensions to increase the rigor of the individual-based causal modeling approach to inferring relationships between landscape patterns and gene flow processes. First, we add a univariate scaling analysis to ensure that each landscape variable is represented in the functional form that represents the optimal scale of its association with gene flow. Second, we use a two-step form of the causal modeling approach to integrate model selection with null hypothesis testing in individual-based landscape genetic analysis. This series of causal modeling indicated that gene flow in American marten in northern Idaho was primarily related to elevation, and that alternative hypotheses involving isolation by distance, geographical barriers, effects of canopy closure, roads, tree size class and an empirical habitat model were not supported. Gene flow in the Northern Idaho American marten population is therefore driven by a gradient of landscape resistance that is a function of elevation, with minimum resistance to gene flow at 1500 m.  相似文献   

16.
We address effects of large-scale forestry on landscape structure and the structure and composition of boreal bird communities in North Sweden. Specifically, we ask: after controlling for the effect of patch size, forest age and tree species composition, is there any residual effect attributable to the reduction in area of old forest? Pairs of landscape blocks (25 by 25 km) were selected to maximize area difference in human-induced disturbance, clear-cut as opposed to semi-natural old forest. Median distance to natural edge (wetlands, open water) from randomly selected points in forest was 250 and 200 m in high and low impact landscapes, respectively, indicating a high degree of ‘natural’ fragmentation of the pristine boreal landscape in the area. By contrast, median distance to clear-cut in uncut forest was 750 and 100 m, respectively. Clear-cuts in high impact landscapes were disproportionally more common in areas with contiguous forest land than in areas with spatially disjunct forest, implicating that forestry increases natural fragmentation of the landscape by subdividing larger forest tracts. Point counts along forestry roads showed that species richness and relative abundance of forest birds were higher in landscapes with low forestry impact. These differences can partly be explained by differences in age composition of forest and composition of tree species. After controlling for patch size, forest age and tree species composition, a significant effect of forestry impact remained for Sibirian species and the Tree pipitAnthus trivialis. Our results thus imply that this group of species and the Tree pipit may be sensitive to forest fragmentation. In contrast to previous Finnish studies, we found relatively small negative effects on relative abundance of species hypothesized to be negatively affected by large-scale clear-cutting forestry. However, our picture of the present does not contradict results from Finnish long-term population studies. Five factors may account for this: 1) clear-cut areas are not permanently transformed into other land use types, 2) planted forests are not completely inhabitable for species preferring older forest, 3) the majority of species in the regional pool are habitat generalists, 4) the region studied is still extensively covered with semi-natural forest, and 5) our study area is relatively close to contiguous boreal forest in Russia, a potential source area for taiga species.  相似文献   

17.
Nest predation is an important cause of mortality for many bird species, especially in grassland ecosystems where generalist predators have responded positively to human disturbance and landscape fragmentation. Our study evaluated the influence of the composition and configuration of the surrounding landscape on nest predation. Transects consisting of 10 artificial ground nests each were set up in 136 roadsides in six watersheds in south-central Iowa. Nest predation on individual roadside transects ranged from 0 to 100% and averaged 23%. The relationship of landscape structure within spatially-nested landscapes surrounding each roadside transect (within 200, 400, 800, 1200, and 1600 m of the transect line) to nest predation was evaluated by using multiple regression and canonical correlation analyses. The results of this multiscale landscape analysis demonstrated that predation on ground nests was affected by the surrounding landscape mosaic and that nest predators with different-sized home ranges and habitat affinities responded to landscapes in different ways. In general, wooded habitats were associated with greater nest predation, whereas herbaceous habitats (except alfalfa/pasture) either were associated with less nest predation or were not important. Different landscape variables were important at different spatial scales. Whereas some block-cover habitats such as woodland were important at all scales, others such as rowcrops and alfalfa/pasture were important at large scales. Some strip-cover habitats such as gravel roads and paved roads were important at small scales, but others such as wooded roadsides were important at all all scales. Most landscape metrics (e.g., mean patch size and edge density) were important at large scales. Our study demonstrated that the relationships between landscape structure and predator assemblages are complex, thus making efforts to enhance avian productivity in agricultural landscapes a difficult management goal.  相似文献   

18.

Purpose

Human-mediated landscape changes alter habitat configuration, which strongly structures animal distributions and interspecific interactions. The effects of anthropogenic disturbance on predator–prey relationships are fundamental to ecology, yet less well understood. We determined where predation events occurred for fawn and adult female mule deer from 2008 to 2014 in critical winter range with extensive energy development. We investigated the relationship between predation sites, energy infrastructure, and natural landscape features across contiguous areas experiencing different degrees of energy extraction during periods of high and low intensity development.

Methods

We contrast spatial correlates of 286 mortality locations with random landscape locations and mule deer distribution estimated from 350,000 GPS locations. We estimated predation risk with resource selection functions and latent selection difference functions.

Results

Relative to the distribution of mule deer, predation risk was lower closer to pipelines and well pads, but higher closer to roads. Predation sites occurred more than expected relative to availability and deer distribution in deeper snow and non-forested habitats. Anthropogenic features had a greater influence on predation sites during the period of low activity than high activity, and natural landscape characteristics had weaker effects relative to anthropogenic features throughout the study. Though canids accounted for the majority of predation events, felids exhibited stronger landscape associations, driving the observed spatial patterns in predation risk to mule deer.

Conclusions

The emergence of varied interactions between predation and landscape features across contexts and years highlights the complexity of interspecific interactions in highly modified landscapes.
  相似文献   

19.

Context

Understanding connectivity patterns in relation to habitat fragmentation is essential to landscape management. However, connectivity is often judged from expert opinion or species occurrence patterns, with very few studies considering the actual movements of individuals. Path selection functions provide a promising tool to infer functional connectivity from animal movement data, but its practical application remains scanty.

Objectives

We aimed to describe functional connectivity patterns in a forest carnivore using path-level analysis, and to explore how connectivity is affected by land cover patterns and road networks.

Methods

We radiotracked 22 common genets in a mixed forest-agricultural landscape of southern Portugal. We developed path selection functions discriminating between observed and random paths in relation to landscape variables. These functions were used together with land cover information to map conductance surfaces.

Results

Genets moved preferentially within forest patches and close to riparian habitats. Functional connectivity declined with increasing road density, but increased with the proximity of culverts, viaducts and bridges. Functional connectivity was favoured by large forest patches, and by the presence of riparian areas providing corridors within open agricultural land. Roads reduced connectivity by dissecting forest patches, but had less effect on riparian corridors due to the presence of crossing structures.

Conclusions

Genet movements were jointly affected by the spatial distribution of suitable habitats, and the presence of a road network dissecting such habitats and creating obstacles in areas otherwise permeable to animal movement. Overall, the study showed the value of path-level analysis to assess functional connectivity patterns in human-modified landscapes.
  相似文献   

20.
Research performed on microlandscapes embodies the essence of landscape ecology by focusing on the ecological consequences of the mosaic structure of different landscape elements. As an illustration, observations and simulations were used to test whether the fractal structure of grassland microlandscapes affected the movement patterns of tenebrionid beeetles in natural environments. The significant tendency of beetles to avoid 1 m2 cells with fractal dimensions of 1.85 to 1.89 (indicating the area-filling tendency of bare ground) demonstrated the role of landscape structure as a modifier of beetle movements or diffusion in heterogeneous landscapes. Experiments in microlandscapes may accelerate the development of quantitative conceptual frameworks applicable to landscapes at all scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号