首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The cardiopulmonary effects of etomidate, a nonbarbiturate, short-acting, IV anesthetic, were compared and contrasted with those of thiamylal sodium in chronically instrumented conscious dogs. Etomidate, when administered IV at dosages of 1.5 and 3.0 mg/kg of body weight, produced anesthesia lasting from 8 +/- 5 and 21 +/- 9 minutes, respectively. Heart rate, aortic blood pressure, left ventricular peak pressure, left ventricular end diastolic pressure, left ventricular contractile force, and myocardial oxygen consumption were unchanged after administration of either dose of etomidate; however, the dosage of 1.5 mg/kg produced significant (P less than 0.05) increases in respiratory rate and decreases in tidal volume. The minute volume remained unchanged from base-line values. Significant (P less than 0.05) decreases in tidal volume, arterial pH, and partial pressure of oxygen were produced, and minute volume remained unchanged when 3.0 mg of etomidate/kg of body weight was administered. Thiamylal sodium (8.0 mg/kg of body weight; given IV) produced anesthesia lasting for 14 +/- 5 minutes. Significant increases (P less than 0.05) in heart rate, arterial blood pressure, left ventricular peak pressure, and myocardial oxygen consumption were observed after IV administration. Left ventricular contractility was significantly (P less than 0.05) decreased. Respiratory rate was not significantly (P less than 0.05) affected by thiamylal although tidal volume and minute volume were decreased. These respiratory alterations resulted in significant (P less than 0.05) increases in the arterial partial pressure of carbon dioxide and decreases in pH and the partial pressure of oxygen. On the basis of cardiopulmonary function, etomidate offered rapid, safe, short duration anesthesia superior to that of thiamylal sodium.  相似文献   

2.
OBJECTIVE: To compare the disposition of lidocaine administered IV in awake and anesthetized horses. ANIMALS: 16 horses. PROCEDURE: After instrumentation and collection of baseline data, lidocaine (loading infusion, 1.3 mg/kg administered during 15 minutes (87 microg/kg/min); constant rate infusion, 50 microg/kg/min) was administered IV to awake or anesthetized horses for a total of 105 minutes. Blood samples were collected at fixed times during the loading and maintenance infusion periods and after the infusion period for analysis of serum lidocaine concentrations by use of liquid chromatography with mass spectral detection. Selected cardiopulmonary parameters including heart rate (HR), mean arterial pressure (MAP), arterial pH, PaCO2, and PaO2 were also recorded at fixed time points during lidocaine administration. Serum lidocaine concentrations were evaluated by use of standard noncompartmental analysis. RESULTS: Serum lidocaine concentrations were higher in anesthetized than awake horses at all time points during lidocaine administration. Serum lidocaine concentrations reached peak values during the loading infusion in both groups (1,849 +/- 385 ng/mL and 3,348 +/- 602 ng/mL in awake and anesthetized horses, respectively). Most lidocaine pharmacokinetic variables also differed between groups. Differences in cardiopulmonary variables were predictable; for example, HR and MAP were lower and PaO2 was higher in anesthetized than awake horses but within reference ranges reported for horses under similar conditions. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthesia has an influence on the disposition of lidocaine in horses, and a change in dosing during anesthesia should be considered.  相似文献   

3.
The cardiopulmonary effects of 3 dosages of doxapram hydrochloride (0.275 mg/kg, 0.55 mg/kg, and 1.1 mg/kg, IV) were studied in 6 adult horses. Doxapram given IV significantly (P less than 0.05) decreased PaCO2 and increased respiratory rate, cardiac output arterial blood pressures (systolic, mean, and diastolic) arterial pH, and PaO2 at 1 minute after each dose was administered. Heart rate and mean and diastolic pulmonary arterial blood pressure were significantly (P less than 0.05) increased 1 minute after the 2 larger dosages of doxapram were given (0.55 mg/kg and 1.1 mg/kg, IV), but not after the smallest dosage was given. All measurements, except heart rate and cardiac output, had returned to base line by 5 minutes after each dosing. Heart rate remained significantly (P less than 0.05) increased 10 minutes after the 0.55 mg/kg dosage was given and 30 minutes after the 1.1 mg/kg dosage. Cardiac output remained significantly (P less than 0.05) increased at 10 minutes, 5 minutes, and 30 minutes after the 0.275, 0.55, and 1.1 mg/kg dosages, respectively, were given.  相似文献   

4.
Xylazine and remifentanil in constant rate infusion (CRI) could be used for sedation in horses without adverse effects. The objective was to evaluate behavioral and cardiopulmonary effects of an intravenous (IV) infusion of xylazine and remifentanil for sedation in horses. Xylazine (0.8 mg/kg IV) followed after 3 minutes by a CRI of xylazine and remifentanil (0.65 mg/kg/h and 6 μg/kg/h, respectively) was administered in 10 healthy horses for 60 minutes. Sedation, ataxia, and cardiopulmonary, hematological, and blood gases variables were evaluated. Heart rate decreased significantly during the first 25 minutes after CRI of xylazine and remifentanil, whereas the respiratory rate showed a significant decrease at 20 minutes and remained significantly low until the endpoint. There were no statistically significant fluctuations in blood arterial pressure, blood pH, partial pressure of arterial carbon dioxide, lactate, creatinine, calcium, chlorine, and sodium, compared with baseline values. Blood partial pressure of arterial oxygen and bicarbonate values were significantly higher compared with baseline values, whereas potassium decreased. Sedation and ataxia developed immediately after the administration of xylazine in all horses. All horses recovered successfully within 10 minutes after interruption of the CRI of xylazine and remifentanil, with no ataxia. No adverse effects were observed. The use of a combination of xylazine and remifentanil as sedation protocol has no adverse effects at the described dosage.  相似文献   

5.
Six standing awake adult horses were instrumented for measurement of mean arterial, central venous, and pulmonary arterial blood pressures (mm of Hg), thermodilution cardiac output (ml/kg/min), and pulmonary arterial blood temperature (C). Total peripheral resistance was calculated from these values. Base-line data were accumulated, and a single dose of hydralazine HCl (0.5 mg/kg) was administered IV. Horses were monitored for 420 minutes after hydralazine administration. Mean arterial and central venous blood pressures did not change from the base-line values. Cardiac output and heart rate were increased above base-line values for 260 minutes. Total peripheral resistance was decreased for 240 minutes. Pulmonary arterial blood temperature was decreased for 60 minutes after drug administration. Mean pulmonary arterial pressure relative to the base-line mean was intermittently decreased during the study. Intravenously administered hydralazine HCl appears to be an effective vasodilator, with moderate duration of action in horses.  相似文献   

6.
Dynamic baroreflex sensitivity for increasing arterial pressure (DBSI) was used to quantitatively assess the effects of anesthesia on the heart rate/arterial pressure relationship during rapid (less than or equal to 2 minutes) pressure changes in the horse. Anesthesia was induced with IV administration of xylazine and ketamine and maintained with halothane at a constant end-tidal concentration of 1.1 to 1.2% (1.25 to 1.3 minimal alveolar concentration). Systolic arterial pressure (SAP) was increased a minimum of 30 mm of Hg in response to an IV bolus injection of phenylephrine HCl. Linear regression was used to determine the slope of the R-R interval/SAP relationship. During dynamic increases in SAP, a significant correlation between R-R interval and SAP was observed in 8 of 8 halothane-anesthetized horses. Correlation coefficients between R-R interval and SAP were greater than 0.80 in 5 of 8 horses. Mean (+/- SD) DBSI was 4.8 +/- 3.4 ms/mm of Hg in anesthetized horses. A significant correlation between R-R interval and SAP was observed in only 3 of 6 awake horses during dynamic increases in SAP. Lack of correlation between R-R interval and SAP in 3 of 6 awake horses indicated that rapidly increasing SAP with an IV phenylephrine bolus is a poor method to evaluate baroreceptor-mediated heart rate changes in awake horses. Reflex slowing of heart rate in response to a rising arterial pressure appeared to have been overridden by the effects of excitement. Mean (+/- SD) DBSI (3 horses) was 7.3 +/- 3.3 ms/mm of Hg in awake horses.  相似文献   

7.
OBJECTIVE: To evaluate the cardiopulmonary and clinicopathologic effects of rapid IV administration of dimethyl sulfoxide (DMSO) in awake and halothane-anesthetized horses. DESIGN: Prospective study. ANIMALS: 6 adult horses. PROCEDURES: Horses received IV infusion of 5 L of a balanced electrolyte solution with and without 1 g/kg (0.45 g/lb) of 10% DMSO solution when they were awake and anesthetized with halothane (4 treatments/horse). Arterial and venous blood samples were collected immediately before and at intervals during or after fluid administration and analyzed for blood gases and hematologic and serum biochemical variables, respectively. Heart rate, respiratory rate, and arterial blood pressure variables were recorded prior to, during, and after fluid administration. RESULTS: After administration of fluid with or without DMSO, changes in measured variables were detected immediately, but most variables returned to baseline values within 4 hours. One awake control horse had signs of anxiety; agitation and tachycardia were detected in 2 awake horses administered DMSO. These clinical signs disappeared when the rate of infusion was reduced. In anesthetized horses, increased concentrations of WBCs and plasma fibrinogen and serum creatine kinase activity persisted for 24 hours, which was related to the stress of anesthesia more than the effects of fluid administration. CONCLUSIONS AND CLINICAL RELEVANCE: Infusion of 5 L of balanced electrolyte solution with or without 10% DMSO induced minimal changes in cardiopulmonary function and clinicopathologic variables in either awake or halothane-anesthetized horses. Stress associated with anesthesia and recovery had a greater influence on measured variables in anesthetized horses than fluid administration.  相似文献   

8.
Xylazine and tiletamine-zolazepam anesthesia in horses   总被引:4,自引:0,他引:4  
The cardiopulmonary and anesthetic effects of xylazine in combination with a 1:1 mixture of tiletamine and zolazepam were determined in 6 horses. Each horse was given xylazine IV or IM, as well as tiletamine-zolazepam IV on 4 randomized occasions. Anesthetics were administered at the rate of 1.1 mg of xylazine/kg of body weight, IV, 1.1 mg of tiletamine-zolazepam/kg, IV (treatment 1); 1.1 mg of xylazine/kg, IV, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 2); 1.1 mg of xylazine/kg, IV, 2.2 mg of tiletamine-zolazepam/kg, IV (treatment 3); and 2.2 mg of xylazine/kg, IM, 1.65 mg of tiletamine-zolazepam/kg, IV (treatment 4). Tiletamine-zolazepam doses were the sum of tiletamine plus zolazepam. Xylazine, when given IV, was given 5 minutes before tiletamine-zolazepam. Xylazine, when given IM, was given 10 minutes before tiletamine-zolazepam. Tiletamine-zolazepam induced recumbency in all horses. Duration of recumbency in group 1 was 31.9 +/- 7.2 (mean +/- 1 SD) minutes. Increasing the dosage of tiletamine-zolazepam (treatments 2 and 3) significantly (P less than 0.05) increased the duration of recumbency. Xylazine caused significant (P less than 0.05) decreases in heart rate and cardiac output and significant (P less than 0.05) increases in central venous pressure and mean pulmonary artery pressure 5 minutes after administration. Respiratory rate was decreased. Arterial blood pressures increased significantly (P less than 0.05) after xylazine was administered IV in treatments 1 and 3, but the increases were not significant in treatment 2. Xylazine administered IM caused significant (P less than 0.05) increases in central venous pressure and significant (P less than 0.05) decreases in cardiac output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Baroreflex sensitivity (BS) was used to quantitatively assess the effects of halothane and isoflurane on the heart rate/arterial pressure relationship during steady-state (10 minutes) and dynamic pressure changes in adult horses. Arterial pressure was decreased in response to nitroglycerin or sodium nitroprusside and increased in response to phenylephrine HCl. Mean (+/- SEM) BS in awake horses was 28.9 +/- 2.6 and 13.2 +/- 2.0 ms/mm of Hg during steady-state decreases and increases in systolic arterial pressure (SAP), respectively. Halothane and isoflurane either significantly (P less than 0.05) decreased or eliminated BS during steady-state decreases in SAP, with no significant differences detected between anesthetic agents. During steady-state decreases in SAP, significant (P less than 0.05) correlation between R-R interval and arterial pressure was not observed for 6 of 10 and 4 of 11 halothane and isoflurane anesthesia periods, respectively. Halothane significantly (P less than 0.05) decreased BS during steady-state increases in SAP to 7.9 +/- 0.6 and 6.5 +/- 1.1 ms/mm of Hg during low and high minimal alveolar concentration (MAC) multiples, respectively. Isoflurane decreased BS during steady-state increases in SAP to 9.6 +/- 1.5 and 6.6 +/- 1.1 ms/mm of Hg during low and high MAC anesthesia, respectively, with high MAC of isoflurane decreasing BS significantly (P less than 0.05), compared with awake and low MAC values. Plasma catecholamine (epinephrine and norepinephrine) concentrations increased significantly (P less than 0.05), compared with baseline values during steady-state vasodilator infusions in halothane- and isoflurane-anesthetized horses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Lateral cecal arterial blood flow, carotid arterial pressure, heart rate, and mechanical activity in the duodenum, right ventral colon, cecal body, and cecal apex were measured in 6 conscious healthy horses for 60 minutes during and for 120 minutes after IV infusion of 0.9% NaCl solution (control) or fenoldopam. There were no significant changes in these measurements during or after infusion of 0.9% NaCl (saline) solution. Fenoldopam, a selective dopamine-1 receptor agonist, was administered in saline solution at dosages of 0.01, 0.05, and 0.1 micrograms/kg/min. Intravenous infusion of fenoldopam at 0.01 microgram/kg/min significantly increased heart rate, but did not change average carotid arterial pressure or lateral cecal arterial blood flow. Intravenous infusion of fenoldopam at both 0.05 and 0.1 microgram/kg/min significantly increased heart rate, significantly decreased average carotid arterial pressure, and significantly increased lateral cecal arterial blood flow. Intravenous infusion of fenoldopam at 0.01, 0.05, and 0.1 microgram/kg/min did not significantly change the mechanical activity measured by the area under the strain gauge deflection curve for the duodenum, right ventral colon, cecal body, or cecal apex. These results suggest that dopaminergic-1 receptors are present on the colonic vasculature of horses. There was no evidence, however, that dopaminergic-1 receptors exist on the visceral smooth muscle of the duodenum, right ventral colon, cecal body, or cecal apex of horses.  相似文献   

11.
Cardiopulmonary effects of IV administered butorphanol tartrate (BUT) were assessed in 7 yearling steers medicated with atropine and anesthetized with guaifenesin, thiamylal sodium, and isoflurane in O2 for surgical placement of duodenal cannulae. Heart rate, respiratory rate, arterial blood pressures, pHa, PaCO2, PaO2, arterial [HCO3-], esophageal temperature, and end-tidal isoflurane concentrations were measured before and after IV administration of BUT (10 mg). Mean respiratory rate increased significantly (P less than 0.05) only at 45 and 60 minutes after BUT administration. Mean respiratory rate was 26 +/- 6.3 breaths/min before BUT administration and 46 +/- 12.1 breaths/min 60 minutes after BUT administration. Arterial blood pressures were increased significantly (P less than 0.05) at all times, except 5 minutes after BUT administration. The mean value for mean arterial pressure was 76 +/- 9.6 mm of Hg before BUT injection and 117 +/- 12.6 mm of Hg 60 minutes after BUT injection. Mean values for pHa and arterial [HCO3-] were significantly (P less than 0.05) higher at 60 minutes after BUT administration (baseline, pH = 7.25 +/- 0.04 and [HCO3-] = 29.9 +/- 3.5 mEq/L; 60 minutes after BUT, pH = 7.28 +/- 0.03 and [HCO3-] = 33.0 +/- 1.8 mEq/L). Although some statistically significant changes were recorded, IV administration of BUT to these steers did not have a marked effect on the cardiopulmonary variables measured.  相似文献   

12.
Reversal of hemodynamic alterations induced by midazolam maleate (1.0 mg/kg of body weight), xylazine hydrochloride (0.44 mg/kg), and butorphanol tartrate (0.1 mg/kg) with yohimbine (0.1 mg/kg) and flumazenil (0.25 mg/kg) was evaluated in 5 dogs. The dogs were anesthetized with isoflurane for instrumentation. With return to consciousness, baseline values were recorded, and the midazolam/xylazine/butorphanol mixture with glycopyrrolate was administered IV. Hemodynamic data were recorded for 60 minutes, and then a reversal mixture of yohimbine and flumazenil was administered IV. All variables were measured 1 minute from beginning of the reversal injection. Mean arterial pressure, pulmonary arterial pressure, systemic vascular resistance, and right ventricular stroke work index increased significantly (P < 0.05) above baseline at 60 minutes. Cardiac index and central venous pressure significantly decreased below baseline at 60 minutes. After reversal, mean arterial pressure and central venous pressure significantly decreased from baseline, whereas cardiac index, pulmonary arterial pressure, and right ventricular stroke work index increased significantly above baseline. Heart rate, cardiac index, and right ventricular stroke work index increased significantly above the 60-minute value after reversal. Mean arterial pressure and systemic vascular resistance decreased significantly (P < 0.05) below the 60-minute value after reversal. The hemodynamic alterations accompanying midazolam/xylazine/butorphanol sedation-anesthesia may be rapidly reversed with a combination of yohimbine and flumazenil.  相似文献   

13.
OBJECTIVE: To compare cardiopulmonary responses during anesthesia maintained with halothane and responses during anesthesia maintained by use of a total intravenous anesthetic (TIVA) regimen in horses. ANIMALS: 7 healthy adult horses (1 female, 6 geldings). PROCEDURE: Each horse was anesthetized twice. Romifidine was administered IV, and anesthesia was induced by IV administration of ketamine. Anesthesia was maintained for 75 minutes by administration of halothane (HA) or IV infusion of romifidine, guaifenesin, and ketamine (TIVA). The order for TIVA or HA was randomized. Cardiopulmonary variables were measured 40, 60, and 75 minutes after the start of HA orTIVA. RESULTS: Systolic, diastolic, and mean carotid arterial pressures, velocity time integral, and peak acceleration of aortic blood flow were greater, and systolic, diastolic, and mean pulmonary arterial pressure were lower at all time points for TIVA than for HA. Pre-ejection period was shorter and ejection time was longer for TIVA than for HA. Heart rate was greater for HA at 60 minutes. Minute ventilation and alveolar ventilation were greater and inspiratory time was longer for TIVA than for HA at 75 minutes. The PaCO2 was higher at 60 and 75 minutes for HA than forTIVA. CONCLUSIONS AND CLINICAL RELEVANCE: Horses receiving a constant-rate infusion of romifidine, guaifenesin, and ketamine maintained higher arterial blood pressures than when they were administered HA. There was some indication that left ventricular function may be better during TIVA, but influences of preload and afterload on measured variables could account for some of these differences.  相似文献   

14.
The relationship between mixed venous O2 tension and cardiac output was studied in six anesthetized horses breathing 100% O2. Cardiac output, O2 consumption, mean arterial pressure, heart rate, and arterial and venous blood gases were measured after administration of xylazine or dobutamine to horses in lateral, sternal, and dorsal recumbencies. After approximately 3 hours, Escherichia coli endotoxin was administered while horses were in dorsal recumbency, and all measurements were repeated. Relationships between cardiac index (CI) and PVO2, heart rate, mean arterial pressure, jugular PVO2, and PVO2 of blood from a superficial limb vein were evaluated by linear regression analysis. Mean arterial pressure was significantly (P less than 0.05) correlated with CI in horses in all positions and after endotoxin administration. However, data points were poorly grouped. Heart rate and CI were significantly correlated in horses in all positions, but not after endotoxin administration. Correlations between jugular PVO2 and PVO2 of blood from a superficial limb vein were not significant in horses in sternal recumbency, and PVO2 of blood from a superficial limb vein was not significantly correlated with CI in horses in lateral recumbency. There was a significant and tight correlation between PVO2 and CI in horses in all positions and after endotoxin administration.  相似文献   

15.
Large colon torsion frequently is a fatal condition in horses. The purpose of the study reported here was to determine systemic arterial pressure, plasma eicosanoid concentrations, colonic blood flow, vascular resistance, tissue pH, and morphologic features associated with large colon torsion and detorsion, and to evaluate the effects of sodium heparin (80 IU/kg of body weight, IV) treatment on these values. Values were determined in 20 anesthetized ponies that were randomly assigned into 4 equal groups: control; control/heparin; torsion; torsion/heparin. Torsions were created by a 720 degrees rotation of the cecum and colon around their long axes at the sternal and diaphragmatic flexures. After 1 hour of torsion, the torsion was corrected and the colon was allowed to reperfuse for 1 hour. Heparin was administered 30 minutes into the experiment. Parametric data were analyzed (P less than or equal to 0.05), using split-plot analysis of variance, with differences between means evaluated with a modified Bonferroni t test; histopathologic data were analyzed (P less than or equal to 0.05) with a Kruskal-Wallis one-way analysis of variance by ranks. Heparin prevented colonic detorsion-induced hypotension and increases in vascular resistance and thromboxane concentration, and it significantly increased colonic blood flow for 40 minutes during reperfusion. Heparin did not alter prostacyclin concentration or the histologic appearance of the large colon.  相似文献   

16.
Circulatory and respiratory function was monitored in nonmedicated, spontaneously breathing horses (n = 7) immediately before, during, and 1 hour after 85 +/- 4.1 (X +/- SEM) minutes of constant 1.57% isoflurane in O2 anesthesia. Comparison of values during anesthesia with those obtained while horses were awake revealed a significant (P less than 0.05) decrease in arterial blood pressure that was related to a slight, but insignificant, decrease in cardiac output and peripheral vascular resistance. Although isoflurane anesthesia and recumbency resulted in a significant (P less than 0.05) decrease in stroke volume, cardiac output did not decrease significantly because heart rate tended to increase. Isoflurane and recumbency also significantly (P less than 0.05) increased PaCO2, peak expiratory gas flow, total expiratory time, and PCV and significantly decreased PaO2, minute expired ventilation, and the ratio of peak inspired to expired gas flow. Differences imposed by isoflurane anesthesia were reversed by 1.5 hour after anesthesia.  相似文献   

17.
Cardiopulmonary effects of prostacyclin infusion in anesthetized horses   总被引:1,自引:0,他引:1  
Prostacyclin was infused IV into 6 horses anesthetized with halothane. Three dosage rates (10, 30, and 100 ng/kg of body weight/min) were evaluated in each horse. Facial and pulmonary artery pressures, heart rate, cardiac output, blood temperature, and arterial and mixed venous pH, PCO2, and PO2 were measured. Arterial blood was collected for determination of glucose, lactate, and PCV. Mixed venous blood was sampled for assay of 6-keto-prostaglandin F1 alpha and catecholamines. Infusion of prostacyclin at 10 ng/kg/min had no effect on the variables measured, whereas the 30 ng/kg/min dosage decreased diastolic and mean arterial pressure at 15 and 30 minutes and PaO2 at 15 minutes (P less than 0.05). Prostacyclin infusion at 100 ng/kg/min significantly decreased arterial pressure, total vascular resistance, and total pulmonary resistance. Heart rate increased slightly, and cardiac output increased by 44%. Arterial PO2 decreased from 311 mm of Hg to 137 and 135 mm of Hg at 15 and 30 minutes, respectively. Blood glucose was increased. Prostacyclin infusions of 30 and 100 ng/kg/min increased blood concentrations of 6-keto-prostaglandin F1 alpha by factors of 5 and 40, respectively. Significant changes in catecholamine concentrations did not occur.  相似文献   

18.
Lumbosacral CSF pressure was measured in 6 horses via a catheter inserted through the lumbosacral space. Heart rate, facial artery pressure, central venous pressure, and CSF pressure were measured before IV injection of a saline solution control, for 15 minutes after saline solution injection, and for 60 minutes after the IV injection of 1.1 mg of xylazine/kg of body weight. Arterial pH and blood gases were analyzed before saline solution injection, 15 minutes after saline solution injection, and at 15, 30, and 60 minutes after xylazine injection. Constant craniocervical posture was maintained during sedation. Lumbosacral CSF pressure was significantly decreased for 15 minutes after xylazine injection. Diastolic arterial pressure was significantly increased 4 minutes after xylazine administration and diastolic and mean arterial pressure were increased at 6 and 8 minutes after xylazine administration. Small increases in systolic arterial blood pressure and central venous pressure, and a small decrease in heart rate were observed. There were no significant differences in the arterial blood gas values. It was concluded that IV injection of xylazine causes a decrease in intracranial pressure in healthy conscious horses. The effects may be different in horses with neurologic disease or cerebral trauma.  相似文献   

19.
OBJECTIVE: To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery. ANIMALS: 100 client-owned horses. PROCEDURE: After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded. RESULTS: Mean (+/- SD) duration of anesthesia for all horses was 104 +/- 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups. CONCLUSIONS AND CLINICAL RELEVANCE: Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable alpha2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important.  相似文献   

20.
OBJECTIVE: To determine whether the bispectral index (BIS) can be used as an indicator of degree of CNS depression in isoflurane-anesthetized horses. ANIMALS: 10 Standardbred and 6 Norwegian cold-blooded trotter stallions admitted for routine castration. PROCEDURE: A 2-channel referential electrode configuration was used to record EEG for calculation of BIS by the EEG monitor. The BIS was calculated before (awake) and after (sedated) administration of detomidine (0.01 mg/kg of body weight, IV) and butorphanol (0.01 mg/kg, IV). Anesthesia was induced with ketamine hydrochloride (2.5 mg/kg, IV) and diazepam (0.04 mg/kg, IV) and maintained with isoflurane delivered in oxygen. The BIS was calculated after 30 minutes of equilibration at an end-tidal isoflurane concentration of 1.4% (n = 8) or 1.9% (8) and recorded continuously during surgery. RESULTS: Bispectral index was significantly less in sedated and anesthetized horses, compared with awake horses. However, BIS was not significantly different between sedated and anesthetized horses. Mean BIS in horses anesthetized at 1.9% isoflurane was significantly greater, compared with horses anesthetized at an end-tidal concentration of 1.4%. Four horses in the 1.4% group moved during surgery, and BIS increased immediately prior to movement in 2 of these horses. CONCLUSIONS AND CLINICAL RELEVANCE: BIS is not a precise indicator of degree of CNS depression in isoflurane-anesthetized horses. Thus, determination of BIS may not be a useful technique for monitoring anesthetic depth in isoflurane-anesthetized horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号