首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that melengestrol acetate (MGA), an orally active progestin, blocks estrus and the preovulatory surge of luteinizing hormone (LH) in beef heifers. Cycling yearling Angus heifers were divided randomly into two groups: MGA-treated (n = 6) and control (n = 5). All heifers received injections of prostaglandin F2alpha (PGF) on d -25, -11, and 0 to synchronize estrus. Following the last PGF injection on d 0, heifers were fed either 0.5 mg MGA in a carrier or the MGA carrier each day for 8 d. At 4-h intervals on d 1 through 6, all heifers were observed for expression of estrous behavior, and blood samples were collected and assayed for LH. Daily blood samples were collected at 0800 on d 1 through 10 and assayed for circulating progesterone concentrations. All control heifers exhibited estrus and a preovulatory surge of LH. In each case, this was followed by increases in circulating concentrations of progesterone indicative of ovulation and normal luteal function. In contrast, none of the MGA-treated heifers exhibited estrus, LH surges, or evidence of ovulation. The results of this experiment show that MGA prevents ovulation in cattle by inhibiting the preovulatory surge of LH.  相似文献   

2.
Luteinizing hormone (LH) stimulates a cascade of ovarian hormonal events that culminate in ovulation. This study was designed to investigate, in sheep, sequential changes in prostaglandin (PG) E2, PGF2 alpha, 6-keto-PGF1 alpha, and cyclic adenosine monophosphate (cAMP) in the theca, granulosa and follicular fluid of large preovulatory follicles and small nonovulatory follicles in response to LH. On d 15 postestrus, preovulatory or nonovulatory follicles were injected intrafollicularly with saline or LH. Ewes were then ovariectomized at 0, 2, 4, or 8 h postinjection. Injected follicles were excised; theca, granulosa and fluid were separated, weighed and assayed for cAMP and PG. Contents of cAMP in the theca, granulosa and fluid of preovulatory follicles increased (P less than .01) 2 to 4 h after injection of LH. Increases (P less than .05) in contents of PGE2 and PGF2 alpha in the theca and fluid of preovulatory follicles were observed between 4 and 8 h after injection of LH. The time courses of LH-induced synthesis of PGE2 and PGF2 alpha in preovulatory follicles were parallel. Luteinizing hormone had no effect on PGE2, PGF2 alpha or cAMP in any compartment of small follicles. Contents of 6-keto-PGF1 alpha varied with time in both theca and granulosa of large and small, saline- and LH-injected follicles. Although specific increases in cAMP and PG followed an injection of LH only in large follicles, the parallel temporal relationship of PGE2 and PGF2 alpha did not explain the dichotomous functions ascribed to PGE2 and PGF2 alpha during the periovulatory period.  相似文献   

3.
Regulation of pulsatile LH secretion by ovarian steroids in the heifer   总被引:1,自引:0,他引:1  
Two experiments were conducted to evaluate relationships among luteinizing hormone (LH), estradiol-17 beta (E2) and progesterone secretion during the preovulatory period in the heifer after prostaglandin F2 alpha (PGF2 alpha)-induced regression of the corpus luteum. A second objective was to elucidate the effects of E2 in regulating LH secretion. In Exp. 1, LH, E2 and progesterone concentrations were determined in serial samples collected during the preovulatory period after PGF2 alpha-induced luteal regression in five Red Angus X Hereford heifers. Progesterone declined to 1 ng/ml by 12 h after the second injection of PGF2 alpha. Frequency of LH pulses increased linearly (P less than .01), whereas no change in amplitude of LH pulses was detected before the preovulatory LH surge. This resulted in a linear increase (P less than .01) in mean LH concentrations. Estradiol also increased in a linear manner (P less than .01), and the rise in E2 was parallel to the increase in mean LH concentrations. In Exp. 2, 12 Angus X Hereford heifers were ovariectomized and administered either 13.5- or 27-cm silastic implants containing E2 at ovariectomy. Four heifers served as nonimplanted controls. Thirty-one days after ovariectomy all heifers were bled at 12-min intervals for 6 h. Frequency of LH pulses declined linearly (P less than .03) while mean LH (P less than .09) and pulse amplitude (P less than .01) increased linearly as E2 dose increased. These results indicate that a reduction in progesterone increases the frequency of LH pulses during the follicular phase of the estrous cycle in cattle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of plasma progesterone concentrations on LH release and ovulation in beef cattle given 100 microg of GnRH im were determined in three experiments. In Experiment 1, heifers were given GnRH 3, 6 or 9 days after ovulation; 8/9, 5/9 and 2/9 ovulated (P<0.02). Mean plasma concentrations of progesterone were lowest (P<0.01) and of LH were highest (P<0.03) in heifers treated 3 days after ovulation. In Experiment 2, heifers received no treatment (Control) or one or two previously used CIDR inserts (Low-P4 and High-P4 groups, respectively) on Day 4 (estrus=Day 0). On Day 5, the Low-P4 group received prostaglandin F(2alpha) (PGF) twice, 12 h apart and on Day 6, all heifers received GnRH. Compared to heifers in the Control and Low-P4 groups, heifers in the High-P4 group had higher (P<0.01) plasma progesterone concentrations on Day 6 (3.0+/-0.3, 3.0+/-0.3 and 5.7+/-0.4 ng/ml, respectively; mean+/-S.E.M.) and a lower (P<0.01) incidence of GnRH-induced ovulation (10/10, 9/10 and 3/10). In Experiment 3, 4-6 days after ovulation, 20 beef heifers and 20 suckled beef cows were given a once-used CIDR, the two largest follicles were ablated, and the cattle were allocated to receive either PGF (repeated 12h later) or no additional treatment (Low-P4 and High-P4, respectively). All cattle received GnRH 6-8 days after follicular ablation. There was no difference between heifers and cows for ovulatory response (77.7 and 78.9%, P<0.9) or the GnRH-induced LH surge (P<0.3). However, the Low-P4 group had a higher (P<0.01) ovulatory response (94.7% versus 61.1%) and a greater LH surge of longer duration (P<0.001). In conclusion, although high plasma progesterone concentrations reduced both GnRH-induced increases in plasma LH concentrations and ovulatory responses in beef cattle, the hypothesis that heifers were more sensitive than cows to the suppressive effects of progesterone was not supported.  相似文献   

5.
The effect of endotoxin on follicular growth and on secretion of LH, estradiol-17β, progesterone and cortisol during the proestrous phase in cattle was investigated. Holstein heifers were treated with PGF2 at 11–13 d after ovulation to induce luteolysis. At 42 hr after PGF2 treatment, heifers were administered either lipopolysaccharide (LPS; Escherichia coli, O111:B4, 5 μg/kg, n = 6) or saline (control; n = 6) by i.v. bolus injection. Ovarian structures were monitored daily by transrectal ultrasonography, and blood samples were collected at various times for hormonal analysis. The duration from PGF2 treatment to ovulation was significantly longer in the LPS group (8.0 ± 1.3 d) than in the control group (4.2 ± 0.2 d). LPS significantly reduced the pulse frequency of LH for 6 hr after the administration, and increased the mean concentration and pulse amplitude of LH from 3 to 6 hr after the administration. The plasma concentrations of progesterone and cortisol were transiently increased after LPS administration. The plasma concentration of estradiol-17β was significantly decreased at 24 hr after LPS administration compared to that in the controls. Five of six LPS-treated heifers exhibited no preovulatory LH surge until 120 hr after PGF2 treatment and the remaining heifer exhibited the surge at 108 hr after PGF2 treatment, while the LH surge was observed at 54–78 hr after PGF2 treatment in control heifers. These results suggest that endotoxin disrupts progression of the proestrous phase of cattle, interrupting the preovulatory estradiol rise and thus delaying the LH surge and the subsequent ovulation.  相似文献   

6.
Luteinizing hormone (LH) surge and follicle rupture act as trigger to start corpus luteum (CL) formation. Thus, we aimed to investigate whether a dominant follicle that has not been exposed to an LH surge can become a functional CL. For this purpose, follicular fluid from the dominant follicles (DF) of cows was aspirated before or after a GnRH-induced LH surge, and subsequent CL formation was observed. Holstein cows were divided into four groups as follows: Luteal phase, a DF was aspirated 7 days after GnRH injection; Pre-LH surge, a DF was aspirated 42 h after PGF(2alpha) injection during the mid luteal phase; Post-LH surge, a DF was aspirated 24 h after GnRH injection following PGF(2alpha); and Intact follicle, ovulation was induced by GnRH injection after PGF(2alpha). Observation of morphological changes in the aspirated follicle using color Doppler ultrasonography and blood sampling was performed on Days 0, 3, 6, and 9 (Day 0 = follicle aspiration). CL formation following DF aspiration was observed only in the Post-LH surge group. In both the Luteal phase and Pre-LH surge groups, however, none of the cows showed local blood flow at the aspirated site or CL formation. Luteal blood flow area, CL volume, and plasma progesterone concentration in the Post-LH surge group were no different from those in the Intact follicle group. The present results clearly demonstrate that rather than follicle rupture, it is the LH surge that is essential for CL formation in cows.  相似文献   

7.
Prostaglandin F2 alpha (PGF2 alpha) was injected on d 5, 8 or 11 postestrus in ewes to determine how stage of the estrous cycle would affect PGF2 alpha-induced changes in concentrations of ovarian and pituitary hormones and intervals to the onset of estrus and the preovulatory surge of luteinizing hormone (LH). Initial concentrations of progesterone and average values during the 12 h after PGF2 alpha were related positively to the day of cycle on which PGF2 alpha was administered. Patterns of decline in progesterone after injection of PGF2 alpha were similar among the 3 d. Concentrations of LH in plasma increased in a similar manner from 0 to 12 h in all ewes. After 12 h LH continued to increase, plateaued or declined in ewes treated on d 5, 8 or 11, respectively. Initial concentrations of follicle stimulating hormone (FSH) in plasma were related positively to day of treatment. After treatment with PGF2 alpha, FSH increased within 2 h on d 5 but declined by that time on d 8 or 11. Concentrations of estradiol following treatment did not vary with day. The onset of estrus and the preovulatory surge of LH occurred at 36 and 35, 40 and 45, and 48 and greater than 48 h in ewes treated on d 5, 8 or 11, respectively. It is concluded that: 1) the initial increase in LH is dependent on a decrease in plasma progesterone and 2) differences in patterns of secretion of gonadotropins before the preovulatory surge of LH might be caused by differences in progesterone or progesterone:-estradiol ratio when luteal regression is induced on different days of the estrous cycle.  相似文献   

8.
The aims of this study were to evaluate the chronology of periovulatory events (oestrus behaviour, LH surge and ovulation) in 16 superovulated Manchega sheep and to determine whether follicular status at start of the FSH supply might affect their occurrence. Mean timing for onset of oestrus behaviour was detected at 28.1 +/- 0.7 h after sponge withdrawal; the preovulatory LH surge and ovulation started at 37.2 +/- 0.7 h and 65.4 +/- 0.7 h after progestagen withdrawal, respectively. The intervals between oestrus, LH surge and ovulation were affected by a high individual variability, which might be the cause for reported decreased efficiency in embryo production. Current results also addressed the role of follicular status at start of the superovulatory treatment on the preovulatory LH surge and the ovulation. The interval LH surge-ovulation was increased in ewes with a growing dominant follicle at starting the FSH treatment (32.3 +/- 0.9 vs 28.6 +/- 0.5 h, p < 0.05). The developmental stage of the largest follicle at starting the superovulatory treatment also affected occurrence of LH surge and ovulation; follicles in growing phase advanced the occurrence of the LH surge and ovulation when compared to decreasing follicles (33.0 +/- 1.0 vs 43.5 +/- 1.1 h, p < 0.05, for LH peak and 60.7 +/- 1.1 vs 72.8 +/- 1.2 h, p < 0.05, for ovulation). Thus, only ewes with growing follicles ovulated prior to 55 h after sponge withdrawal; conversely, no sheep with decreasing follicles ovulated earlier than 67 h, when an 85.7% of the ewes bearing growing follicles has ovulated at 63 h.  相似文献   

9.
Angus x Hereford heifers were used to determine endocrine and ovarian function preceding nutritionally induced anovulation. Six heifers were fed to maintain body condition score (M), and 12 heifers were fed a restricted diet (R) until they became anovulatory. Starting on d 13 of an estrous cycle, heifers were given PGF2alpha every 16 d thereafter to synchronize and maintain 16 d estrous cycles. Ovarian structures of M and R heifers were monitored by ultrasonography daily from d 8 to ovulation (d 1 of the subsequent cycle) until R heifers became anovulatory. Concentrations of LH and FSH were quantified in serum samples collected every 10 min for 8 h on d 2 and 15 (48 h after PGF2alpha), and estradiol and IGF-I were quantified in daily plasma samples from d 8 to 16 during the last ovulatory cycle (Cycle -2) and the subsequent anovulatory cycle (Cycle -1). During the last two cycles before anovulation, M heifers had 50% larger (P < .0001) ovulatory follicles than R heifers and 61% greater (P < .0001) growth rate of the ovulatory follicles. There was a treatment x cycle x day effect (P < .001) for concentrations of estradiol. The preovulatory increase in estradiol occurred in the R and M heifers during Cycle -2 but only in M heifers during Cycle -1. A treatment x cycle x day effect (P < .05) influenced LH concentrations. During Cycle -2, LH concentrations were similar for M and R heifers, but during Cycle -1, M heifers had greater LH concentrations than did R heifers. Concentrations of FSH were greater (P < .05) in R than M heifers after induced luteolysis when R heifers failed to ovulate. There was a treatment x cycle interaction (P < .05) for IGF-I concentrations, and M heifers had 4.7- and 8.6-fold greater IGF-I concentrations than did R heifers during Cycle -2 and -1, respectively. We conclude that growth rate and diameter of the ovulatory follicle, and concentrations of LH, estradiol, and IGF-I are reduced before the onset of nutritionally induced anovulation in beef heifers.  相似文献   

10.
The purpose of these studies was to investigate the pattern and timing of preovulatory endocrine events, estrus and ovulation in Brahman X Hereford (F1) heifers synchronized with norgestomet and estradiol valerate. In Exp. 1, 66 nulliparous and 191 primiparous Brahman X Hereford (F1) heifers were used to estimate the interval from norgestomet implant removal to onset of estrus. The mean interval from implant removal to onset of estrus was 29.8 +/- .5 h, with 80.9% exhibiting estrus within 48 h. Endocrine and reproductive characteristics were examined in detail during Exp. 2 with 37 primiparous heifers. Continuous observation for estrus, 6-h or 2-h blood sampling and ovarian palpation per rectum were employed. All animals were artificially inseminated 48 h after implant removal. Mean interval from implant removal to onset of estrus and to onset of the luteinizing hormone (LH) surge were closely related (r = .91; P less than .0001). Mean intervals from implant removal to ovulation, onset of estrus to ovulation and onset of LH surge to ovulation were 59.1 +/- 2.5 h, 23.3 +/- 1.4 h and 23.1 +/- 1.6 h, respectively. Approximately 73% of heifers exhibited estrus within 54 h after implant removal (optimal timing); conception rate was 59.3% in this subgroup. Conception rate of heifers that did not exhibit estrus within 54 h after implant removal or exhibited an LH surge later than 12 h after estrus (delayed timing) was 10%. Assessment of plasma estradiol-17 beta concentrations suggested that retarded selection and(or) maturation of the preovulatory follicle following implant removal delayed estrus and lowered conception in up to 28% of females timed-inseminated at 48 h.  相似文献   

11.
Estrous cycles of heifers (n = 137) were synchronized with prostaglandin (PGF) and follicular development stimulated with follicle stimulating hormone. Twenty-eight animals were administered Norgestomet implants 12 hr prior to the initial PGF2α injection to suppress the LH surge that initiates ovulation. Animals were ovariectomized every 12 hr after the initial PGF2α (7–9/time, 12–108 hr and at 192 and 240 hr post PGF2α) and divided into three treatment groups to consist of: 1) animals exhibiting a normal luteinizing hormone (LH) surge (n = 86), 2) animals in which no LH surge was detected (n = 23), and 3) suppression of the LH surge via Norgestomet implants (72–108 hr, n = 28). Follicular diameter was measured and follicular fluid was collected for analysis of prolactin, estradiol, progesterone and glycosaminoglycan concentrations. Progesterone concentrations were increased in animals exhibiting an LH surge as compared to animals in which no LH surge was detected; primarily in large follicles (> 8 mm diameter) after the LH surge. Animals not exhibiting an LH surge also had increased follicular progesterone concentrations compared to Norgestomet-implanted animals (242.3 ± 36.3 vs 86.7 ± 6.4 ng/ml, respectively, P < .01), indicating some LH stimulation. Follicular estradiol in animals exhibiting an LH surge increased up to the time of LH surge detection and then declined whereas animals with no LH surge detected had follicular estradiol concentrations that declined after the PGF injection. No differences were noted between those that did not exhibit an LH surge or in which the LH surge was suppressed with Norgestomet in relation to follicular estradiol concentrations. Follicular estradiol concentrations increased with follicular size in all treatment groups (P < .01). Follicular concentrations of prolactin were increased in small follicles (P < .05; ≤ 4 mm diameter) and follicular prolactin increased from 12 to 36 hr post PGF2α injection, then declined after the LH surge. Follicular glycosaminoglycan concentrations decreased with increases in follicular size (P < .01) and were higher in animals that did not exhibit an LH surge (P < .01). No differences in follicular glycosaminoglycans were noted between Norgestomet-implanted animals and those not exhibiting an LH surge. In the animals representing days 4 and 6 of the subsequent estrous cycle (192 and 240 hr post PGF2α), numbers of small-sized follicles were increased. Follicular progesterone and estradiol concentrations were related to atretic large follicles unovulated from the prior estrus and a wave of growth in small and medium follicles. Follicular prolactin and glycosaminoglycans increased with time of the new estrous cycle and were increased in smaller follicles (P < .01). Suppression of LH with progestin implants (Norgestomet) may relate to early effects of progesterone, which may not be totally eliminated at target tissues and subsequently alters the LH surge, steroidogenesis of the follicle, and ovulation. Oocytes were predominantly found in the follicular fluid from animals in which an LH surge was detected and in the buffer wash of follicles in which no LH surge was detected. Oocyte viability was higher in animals exhibiting an LH surge (75% viable) whereas the oocytes of Norgestomet-implanted animals were 75% degenerate.  相似文献   

12.
A study was conducted to determine the effect of charcoal-extracted, bovine follicular fluid (CFF) on plasma follicle stimulating hormone (FSH) and luteinizing hormone (LH) concentrations, the interval from luteolysis to estrus, and subsequent luteal function in heifers. Fifteen Angus, Simmental and Hereford heifers were allotted by age, weight and breed to a control (C, n = 8) or a CFF (n = 7) group. Heifers received injections of saline or CFF (iv, 8 ml/injection) every 12 h from d 1 (d 0 estrus) through d 5 of the estrous cycle. On d 6, each heifer was injected (im) with 25 mg of prostaglandin F2 alpha (PGF2 alpha). Blood samples were collected every 12 h by venipuncture starting just before the first saline or CFF injection and continuing until estrus. Thereafter, blood samples were collected every other day during the subsequent estrous cycle and assayed for FSH, LH, estradiol-17 beta and progesterone by radioimmunoassay. Injections of CFF had no effect (P greater than .05) on circulating FSH or LH concentrations from d 1 to 5 relative to the C group; however, there was a transient rise (P less than .05) in FSH concentrations 24 h following cessation of CFF injections. This transient rise in FSH was not immediately followed by an increase in plasma estradiol-17 beta concentrations. Although CFF injections did not interfere with PGF2 alpha-induced luteolysis, the interval from PGF2 alpha injection to estrus was delayed (P less than .05) by 5 d in the CFF group compared with the C group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cystic ovarian disease is an important cause of reproductive failure. The objective of this study was to evaluate transrectal ultrasonography as a diagnostic tool and gonadotropin-releasing hormone (GnRH) as a therapeutic approach for ovarian follicular cysts in goats. Goats were considered to have a follicular cyst(s) if a non-echoic structure >10 mm in diameter was detected in the absence of corpora lutea (CL) in three ultrasonic examinations performed at 5-day intervals. After diagnosis (Day 0), goats with ovarian follicular cysts (n = 5) were treated with a single bolus injection of 10.5 microg synthetic GnRH followed by administration of 125 microg prostaglandin F2alpha (PGF2alpha) 10 days later. Five blood samples were collected at 5-day intervals for determination of progesterone and estradiol-17beta. For detection of LH surge, blood samples were collected every 2 h. Ovulation rate was determined and pregnancy was confirmed by transrectal ultrasonography. The results showed that transrectal ultrasonography is reliable for diagnosis of ovarian follicular cysts and the mean diameter of the follicular cysts was 12.6 +/- 0.4 mm. Plasma concentrations of progesterone and estradiol-17beta at the time of diagnosis of follicular cysts (Day 0) were 0.7 +/- 0.2 ng/ml and 12.7 +/- 0.9 pg/ml, respectively. The concentration of progesterone increased to 4.0 +/- 0.5 ng/ml 10 days after administration of GnRH indicating luteinization of the ovarian follicular cysts concomitant with a decrease in the concentration of estradiol-17beta (3.5 +/- 0.4 pg/ml). Administration of GnRH to cystic goats resulted in a surge of LH within 2 h of treatment. The interval from PGF2alpha injection to the preovulatory LH surge was 62.8 +/- 1.4 h. All goats exhibited estrus 55.2 +/- 2.3 h after PGF2alpha injection and four goats out of the five ovulated. The ovulation rate was 1.5 +/- 0.3. In conclusion, results of this study suggest that transrectal ultrasonography is a reliable tool for diagnosis of ovarian follicular cysts. In addition, GnRH can be used to effectively treat ovarian follicular cysts in goats with 80% success rate.  相似文献   

14.
Experiments were conducted to determine the role of estrogens on endogenous PGF2 alpha secretion and luteolysis following injection of cloprostenol in heifers. In Exp. 1, eight luteal-phase heifers were used to evaluate tamoxifen (T) as an estrogen antagonist. Heifers received T (35 mg i.v.) or ethanol:saline vehicle (ES) every 4 h for 44 h. All received cloprostenol (500 micrograms i.m.) immediately after the start of T or ES, and received estradiol-17 beta (500 micrograms i.m.) 12 h later. Each ES heifer had a surge of luteinizing hormone (LH) within 48 h of estradiol injection, whereas T-treated heifers did not. Estrus was observed in three ES-treated heifers, but not in T-treated heifers. In Exp. 2, 10 heifers received T (35 mg i.v.) or ES every 4 h for 64 h beginning on d 15 postestrus. Cloprostenol (500 micrograms i.m.) was injected 16 h after the start of treatment. Concentrations of LH were similar (P greater than .05) in both groups. In ES heifers, concentrations of 13,14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) increased; in T-treated heifers, PGFM remained at pre-cloprostenol levels. Luteolysis was induced in all heifers. Progesterone (P4) decreased to less than or equal to 1 ng/ml at similar (P greater than .05) rates in ES-treated and T-treated heifers. Mean concentration of P4 288 h post-cloprostenol was greater (P less than .05) in ES-treated than in T-treated heifers. Three ES-treated heifers, but no T-treated heifers, were in standing estrus. We conclude that T effectively antagonizes estrogen in cattle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Objectives of this study were to characterize patterns of follicular development in sheep superovulated with purified follicle stimulating hormone (FSH) (OVAGENTM, ICP, Auckland, New Zealand) and to determine its influence on preovulatory events (onset of the oestrus behaviour and timing of the preovulatory luteinizing hormone surge) and ovarian response (ovulation rate and embryo yield). Number and size of all ≥ 23 mm follicles from the first FSH injection to withdrawal of progestagen sponges was determined by transrectal ultrasonography just prior to every FSH injection in nine Manchega ewes superovulated with eight decreasing doses (ml) (1.5 × 3, 1.25 × 2 and 1 × 3) of OVAGEN injected twice daily from 60 h before to 24 h after the withdrawal of 40 mg fluorogestone acetate sponges. Oestrous detection and jugular blood sampling for LH radioimmunoassay were performed every 3 h from 14 to 53 h after sponge removal and ovulation rate and number of embryos were determined 4 days after progestagen withdrawal. Administration of OVAGEN induced a significant rise (p < 0.0005) in the number of follicles ≥ 4 mm in size because of an increased growth in size of follicles from the first FSH injection to sponge removal, an increase in the number of newly detected follicles from 12 to 36 h of the first FSH dose (p < 0.005) and a decrease in regression rate from 24 h (p < 0.001). The number of follicles 2–3 mm in size at first FSH dose (10.4 ± 1.5) was positively correlated with the number of ≥ 4 mm follicles at 0 h (19.0 ± 2.7, p < 0.01). A higher number of ≥ 4 mm follicles at 0 h was related with an earlier appearance of oestrus (31.5 ± 1.5 h, p = 0.08) and LH surge (45.0 ± 2.3 h, p < 0.005), and a higher ovulation rate (18.2 ± 3.8, p < 0.005). On the other hand, the rate of embryo recovery was decreased in ewes with earlier preovulatory LH peaks (p < 0.005), with a shorter interval between oestrus and LH peak (p < 0.05).  相似文献   

16.
The objective of the experiment was to study follicular dynamics and characteristics of ovulations in dairy heifers after application of the Ovsynch protocol in the last third of estrous cycle. Therefore, altogether 27 regular cycling Holstein heifers were given an injection of GnRH on day 14, 16 or 18 (9 heifers each in group 1 to 3) of the estrous cycle. All heifers were administered PGF2alpha seven days later. Blood was collected for progesterone determination, just before, 24 hours and 48 hours after the PGF2alpha injection. A second injection of GnRH was administered 48 hours after the PGF2alpha injection. Ovarian follicular dynamics were monitored by frequent ultrasound scanning of the ovaries after first and second GnRH injection. Altogether 22 of 27 heifers (81.5%) ovulated 27 to 33 h after first GnRH injection. In 4 heifers ovulations were recorded 45 to 51 h after first GnRH application. Mean intervals between GnRH application and ovulation were 33.0, 33.6 and 28.3 h, respectively. At the time of PGF2alpha injection mean progesterone concentrations were similar in groups 1 and 2, but significantly lower than in group 3. After the second GnRH treatment 5,6 and 8 heifers had ovulations.The average intervals from the second GnRH treatment to ovulation were 24.8, 24.0 and 24.4 h respectively.The results show that Ovsynch is not sufficient to ensure synchronisation of oestrous and ovulation in each animal treated.  相似文献   

17.
A growing body of evidence indicates that intrafollicular progesterone receptor signaling pathways are obligatory for follicle rupture. However, the intrafollicular localization and regulation of progesterone receptor expression during the periovulatory period in cattle are not known. In this study, we determined the effect of the preovulatory gonadotropin surge on localization and expression of progesterone receptor mRNA in bovine periovulatory follicular and luteal tissue. Ovaries containing preovulatory follicles or new corpora lutea (CL) were collected at approximately 0, 6, 12, 18, 24 (preovulatory follicles) and 48 h (CL) after a GnRH-induced LH surge (n=5-8 per timepoint). Expression of progesterone receptor mRNA was detected in periovulatory follicular and luteal tissue at all timepoints examined. Relative levels of progesterone receptor mRNA were dramatically upregulated within 6h after the LH surge compared to all other time points (P<0.0001). In situ hybridization analysis revealed that the significant increase in progesterone receptor mRNA expression was localized to the granulosal layer of preovulatory follicles. Our results indicate that progesterone receptor mRNA expression is upregulated specifically in the granulosal layer of bovine preovulatory follicles following the LH surge. Progesterone receptor signaling pathways may help mediate the effects of the preovulatory LH surge on follicle rupture in cattle.  相似文献   

18.
We reported previously that passive immunization against inhibin enhances follicular growth and increases the ovulation rate. However, the ovulation rate was not comparable to the number of follicles. Therefore, the aim of this study was to attempt to increase the ovulation rate by increasing the interval between inhibin immunization and PGF2alpha injection. Five miniature Shiba goats were treated with 10 ml inhibin antiserum (inhibin-AS) developed against [Tyro30]-inhibin alpha (1-30). A control group (n=5) was treated with normal goat serum. All animals were injected intramuscularly with 125 microg PGF2alpha 72 h after treatment to induce estrus and ovulation. Blood samples were collected for hormonal assay and the ovulation rate was determined by laparotomy. In contrast to the control group, there was a significant increase in plasma concentrations of FSH in the immunized group. After luteolysis, plasma concentrations of estradiol-17beta increased markedly to a preovulatory peak about 2 folds higher (P<0.01) than that of controls. In addition, the ovulation rate was greater in the immunized group (14.4 +/- 2.2) than in the control group (2.2 +/- 0.6), and the mean number of follicles > or = 4 mm in diameter was 10.0 +/- 0.8 in the inhibin-AS group compared with 2.4 +/- 0.3 in control group. The present results demonstrate that immunoneutralization of endogenous inhibin increased FSH secretions in miniature shiba goats. The increased FSH secretion enhanced follicular growth and increased the ovulation rate. Additionally, increasing the interval between inhibin-AS and PGF2alpha injections (to 72 h) resulted in a greater ovulation rate compared with the previous protocol (48 h). Therefore, inhibin-AS treatment proved to be an effective alternative to exogenous gonadotropin methods for induction of superovulation in goats.  相似文献   

19.
Two experiments were conducted to compare pregnancy rates resulting from fixed-time AI (FTAI) after administration of 1 of 2 long-term controlled internal drug release (CIDR)-based protocols. Heifers were assigned to treatment by age, BW, and pubertal status. The CIDR Select-treated heifers (Exp. 1, n = 37; Exp. 2, n = 192) received a CIDR (1.38 g of progesterone) from d 0 to 14, followed by 100 μg of GnRH, intramuscularly (i.m.) 9 d after CIDR removal (d 23) and PGF(2α) (25 mg, i.m.) 7 d after GnRH treatment (d 30). Heifers assigned to the Show-Me-Synch protocol (Exp. 1, n = 40; Exp. 2, n = 200) received a CIDR from d 0 to 14, followed by PGF(2α) 16 d later (d 30). Artificial insemination was performed at 72 or 66 h after PGF(2α) treatment for the CIDR Select- and Show-Me-Synch-treated heifers, respectively, and each heifer was given GnRH (100 μg, i.m.) at the time of AI. In Exp. 1, ovaries of each heifer were examined by transrectal ultrasonography on d 23 and 30 to characterize follicular dynamics. Follicles ≥5 mm and the presence of corpora lutea were recorded. On d 25, ovaries of each heifer were examined to characterize the status of dominant follicles recorded on d 23. Heifers were fitted with HeatWatch (DDx Inc., Denver, CO) estrus-detection transmitters at PGF(2α) to characterize estrus distribution up to FTAI. The diameter of dominant follicles on d 23 at PGF(2α) and on d 30, and the estrous response after PGF(2α) treatment up to the point of FTAI did not differ between CIDR Select- and Show-Me-Synch-treated heifers. Concentrations of progesterone in serum at PGF(2α) were greater (P = 0.07) in Show-Me-Synch- than CIDR Select-treated heifers (6.0 vs. 4.8 ng/mL, respectively). Pregnancy rates of heifers resulting from FTAI did not differ (P = 0.33) between CIDR Select- and Show-Me-Synch-treated heifers (CIDR Select, 59%; Show-Me-Synch, 70%). In Exp. 2, FTAI pregnancy rates tended (P = 0.07) to be greater in Show-Me-Synch-treated (62%) than in CIDR Select-treated (51%) heifers. Pregnancy rates at the end of the breeding season did not differ (P = 0.72; CIDR Select, 85%; Show-Me-Synch, 83%) between treatments. In summary, pregnancy rates resulting from FTAI were comparable for heifers assigned to each of the 2 long-term progestin-based protocols. The reduced treatment cost and animal handling associated with administration of the Show-Me-Synch protocol offer distinct advantages over the CIDR Select protocol despite similarities in pregnancy rates resulting from FTAI.  相似文献   

20.
The effects of estradiol-17beta (E-17beta) or estradiol benzoate (EB) on gonadotrophin release, estrus and ovulation in beef cattle were evaluated in two experiments. In experiment 1, 16 ovariectomized cows received a previously used CIDR insert from days 0 to 7 and 1mg of EB on day 8; they also received 5mg of E-17beta on days 0 or 1, or 5mg of E-17beta+100mg of progesterone on day 0. There was only an effect of time (P<0.0001) on plasma concentrations of progesterone, estradiol, FSH, and LH. Following treatment with E-17beta, plasma FSH concentrations were suppressed for approximately 36 h, whereas plasma LH concentrations were reduced (P<0.05) for 6 h, but surged within 24 h. Injecting 1mg of EB 24 h after CIDR removal decreased (P<0.02) plasma LH concentrations for 6h, followed by an LH surge at 18 h. In experiment 2, ovary-intact heifers (n=40) received a used CIDR and 5mg of E-17beta+100mg of progesterone on day 0. On day 7, CIDR were removed, PGF given, and heifers received nothing (control) or 1mg of EB 12, 24, or 36 h later. In these groups, plasma LH peaked (mean+/-SEM) 78.0+/-23.0, 37.8+/-8.5, 44.4+/-10.3, and 51.0+/-5.1 h after CIDR removal (means, P<0.001; variances, P<0.001) and intervals from CIDR removal to ovulation were 102.0+/-6.7, 63.6+/-3.6, 81.6+/-3.5, and 78.0+/-4.1h (P<0.05). The interval from CIDR removal to ovulation was shorter and less variable in EB-treated groups; the interval from EB to ovulation was shortest (P<0.05) in the 12-h group. In summary, E-17beta or EB decreased both FSH and LH, but LH increased after 6h (despite elevated progesterone concentrations). Following CIDR removal, 1mg of EB effectively synchronized LH release, and ovulation (in intact cattle), but the interval from CIDR removal to EB treatment affected the time of ovulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号