首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
4 female and 2 male untrained fattening pigs, weighing 43.9 +/- 1.6 kg at the beginning of the experiment underwent continuous measurement of VO2, VCO2, and rectal temperature, prior to, during, and after running on a horizontal exercise belt set to speeds of 0.7, 1.3, and 2.5 m.s-1. The highest values of VO2 and VCO2 (ml-min-1/kg-1) and rectal temperature (degrees C) were usually measured few minutes after running. They were 18.84 +/- 3.65 and 20.4 +/- 4.53 as well as 41.2 +/- 0.4, 28.41 +/- 4.07 and 33.26 +/- 5.92 or 41.3 +/- 0.5, 26.21 +/- 7.7 and 32.32 +/- 7.14 as well as 40.5 +/- 0.7, depending on the above belt speeds. Exercise belt speeds of 1.3 to 1.8 m.s-1 were found to be suitable for testing aerobic metabolic capacity of untrained young pigs.  相似文献   

2.
VO2, VCO2, gas exchange ratio (R = VO2/VCO2), and rectal body temperature were continuously measured on 6 young fattening pigs and 16 boars during repeated runs (0.7, 1.3, and 2.5 m/s-1) on a horizontally moving belt. Close correlations, almost linear, were found to exist between VO2, VCO2, and rectal temperature in situations in which VO2 moved close to its individual maximum as a result of preselected challenge intensity. None of these 3 parameters was increased further and in keeping with turnover, if higher challenge intensities were chosen.  相似文献   

3.
Continuous measurements were performed on 16 untrained boars for VO2, VCO2, and rectal temperature, prior to, during, and after running exercises on an horizontal exercise belt, with speeds set to 1.3 m.s-1 corresponding to something between 23 and 43 kg of body weight b.wt. or 0.7 and 1.3 m.s-1 corresponding to 76 to 86 kg of b.wt. The highest values of VO2 and VCO2 (ml.min-1/kg-1 b.wt.) and of rectal temperature (degrees C) were 36.78 +/- 3.57, 40.23 +/- 6.17, and 41.9 +/- 0.6 in younger animals or 21.49 +/- 2.46, 22.53 +/- 3.12, 40.8 +/- 0.5, 29.3 +/- 5.15, 30.6 +/- 4.77, and 40.7 +/- 0.45 for somewhat older animals for belt speeds of 0.7 and 1.3 m.s-1. Exercise belt speeds of 0.7 to 1.3 m.s-1 were found to be suitable for testing aerobic metabolic capacity of untrained young boars.  相似文献   

4.
A rapid incremental treadmill exercise test was used to determine the repeatability of the following measurements in exercising horses: maximal oxygen consumption (VO2max), maximal heart rate (HRmax), velocity at a heart rate of 200 beats/min (V-200), oxygen consumption at a heart rate of 200 beats/min (VO2-200), oxygen consumption at HRmax (VO2-HRmax), work rate at a heart rate of 200 beats/min (W-200), work rate at HRmax (W-HRmax) and treadmill velocity at HRmax (V-HRmax). Six Standardbred geldings were exercised on three separate occasions on a treadmill set at an inclination of 6 degrees. The exercise protocol was that each horse was exercised for 2 mins at 3 m/sec, after which the treadmill speed was increased by 1 m/sec every 60 secs, until the horse could no longer maintain its speed. A minimum of 24 h was allowed between repeated tests. No significant differences were found between the three means of any of the eight cardiorespiratory variables with repeated measurement. Variables with high coefficients of variation (greater than 10 per cent) included V-HRmax, W-HRmax and VO2-HRmax. The V-200, W-200 and VO2-200 showed less variation. The VO2max showed good reproducibility, there being coefficients of variation ranging from 1.4 to 9.0 per cent. The individual horse values for VO2max ranged from 104 to 169 ml/kg bodyweight/min. Maximal heart rate was also highly reproducible and the coefficients of variation were less than or equal to 2.7 per cent in all horses. It is concluded that the measurement of VO2max has good reproducibility, but other estimates of maximal aerobic capacity are less precise.  相似文献   

5.
High intensity exercise is associated with production of energy by both aerobic and anaerobic metabolism. Conditioning by repeated exercise increases the maximal rate of aerobic metabolism, aerobic capacity, of horses, but whether the maximal amount of energy provided by anaerobic metabolism, anaerobic capacity, can be increased by conditioning of horses is unknown. We, therefore, examined the effects of 10 weeks of regular (4-5 days/week) high intensity (92+/-3 % VO2max) exercise on accumulated oxygen deficit of 8 Standardbred horses that had been confined to box stalls for 12 weeks. Exercise conditioning resulted in increases of 17% in VO2max (P<0.001), 11% in the speed at which VO2max was achieved (P = 0.019) and 9% in the speed at 115% of VO2max (P = 0.003). During a high speed exercise test at 115% VO2max, sprint duration was 25% longer (P = 0.047), oxygen demand was 36% greater (P<0.001), oxygen consumption was 38% greater (P<0.001) and accumulated oxygen deficit was 27% higher (P = 0.040) than values before conditioning. VLa4 was 33% higher (P<0.05) after conditioning. There was no effect of conditioning on blood lactate concentration at the speed producing VO2max or at the end of the high speed exercise test. The rate of increase in muscle lactate concentration was greater (P = 0.006) in horses before conditioning. Muscle glycogen concentrations before exercise were 17% higher (P<0.05) after conditioning. Exercise resulted in nearly identical (P = 0.938) reductions in muscle glycogen concentrations before and after conditioning. There was no detectable effect of conditioning on muscle buffering capacity. These results are consistent with a conditioning-induced increase in both aerobic and anaerobic capacity of horses demonstrating that anaerobic capacity of horses can be increased by an appropriate conditioning programme that includes regular, high intensity exercise. Furthermore, increases in anaerobic capacity are not reflected in blood lactate concentrations measured during intense, exhaustive exercise or during recovery from such exercise.  相似文献   

6.
To consider the optimal training programme for Thoroughbred horses, we examined the recruitment pattern of muscle fibres including hybrid muscle fibres in well-trained Thoroughbred horses. The horses performed exercise at three different intensities and durations; i.e., 100% VO2max for 4 min, 80% and 60% VO2max for 8 min on a treadmill with 10% incline. Muscle samples were obtained from the middle gluteal muscle before, during (4 min at 80% and 60% VO2max), and after exercise. Four muscle fibre types (types I, IIA, IIA/IIX, and IIX) were immunohistochemically identified, and optical density of periodic acid Schiff staining (OD-PAS) in each fibre type, and the glycogen content of the muscle sample, were determined by quantitative histochemical and biochemical procedures. The changes in OD-PAS showed that the recruitment of all fibre types were identical at the final time stage of each exercise bout, i.e., 4 min running at 100% VO2max, and 8 min running at 80% and 60% VO2max. The changes in OD-PAS of type IIA/IIX fibre were very similar to those of type IIX fibre. The recruitment of these fibres were obviously more facilitated by 4 min running at 100% VO2max than by 4 min running at 80% or 60% VO2max. Short duration with high intensity exercise, such as 4 min running at 100% VO2max or 8 min running at 80% or 60% VO2max, is effective to stimulate type IIX fibre and IIA/IIX fibres that have the fastest speed of contraction.  相似文献   

7.
OBJECTIVES: To determine whether i.v. administration of furosemide (250 mg) to horses before maximal exercise affected maximal oxygen consumption (VO2max), breathing mechanics, or gas exchange during exercise. ANIMALS: 7 healthy, well-conditioned Thoroughbred horses. PROCEDURES: 5 horses initially performed an incremental treadmill exercise test to determine VO2max 4 hours after i.v. administration of furosemide (250 mg i.v.) or placebo (saline [0.9% NaCl] solution). Time to fatigue and distance run were recorded. All 7 horses were then used to determine the effects of furosemide on gas exchange and breathing mechanics at 40, 60, 80, and 100% of VO2max. Horses were weighed immediately before exercise. RESULTS: Furosemide treatment significantly increased mass-specific VO2max (5.3%), but absolute VO2max was not significantly altered. In the 2 parts of the study, body weights were 2.9 and 2.5% higher when horses were given placebo than when they were given furosemide. Time and distance run at speeds > or = 11.0 m/s were significantly greater following furosemide administration. Furosemide treatment had no effect on breathing mechanics or gas exchange. CONCLUSIONS AND CLINICAL RELEVANCE: Previous studies have suggested that prerace administration of furosemide may have a positive effect on performance. Results of this study indicate that this may be attributable, in part, to an increase in mass-specific VO2max but not to improvements in breathing mechanics or gas exchange. Most of the increase in mass-specific VO2max appeared to be attributable to weight loss associated with diuresis induced by furosemide.  相似文献   

8.
Six Warmblood horses suffering an acute exacerbation of COPD were tested to investigate whether inhalation of ipratropium bromide (IB) dry powder (2,400 microg) 30 min preexercise would improve their exercise capacity. A cross-over protocol with an inert powder placebo (P) was used. Mechanics of breathing and arterial blood gases were determined before treatment, after treatment but pre-exercise, and during an incremental exercise test. Oxygen consumption (VO2) was also measured before and during exercise, and the time to fatigue recorded. Inhalation of IB reduced total pulmonary resistance (RL) and maximum intrapleural pressure changes (deltaPpl(max)) and increased dynamic compliance before exercise. The onset of exercise was associated with a marked decrease in RL in P-treated horses but not those receiving IB, so that RL during exercise was not affected by treatment. Although deltaPpl(max) was lower at 8,9 and 10 m/s with IB, there were no treatment-related changes in VO2, blood gases, time to fatigue or any other measurement of breathing mechanics. Therefore, although inhalation of IB prior to exercise may have improved deltaPpl(max), it had no apparent impact on the horses' capacity for exercise.  相似文献   

9.
Pharmacokinetics and lung tissue concentrations of tulathromycin in swine   总被引:5,自引:0,他引:5  
The absolute bioavailability and lung tissue distribution of the triamilide antimicrobial, tulathromycin, were investigated in swine. Fifty-six pigs received 2.5 mg/kg of tulathromycin 10% formulation by either intramuscular (i.m.) or intravenous (i.v.) route in two studies: study A (10 pigs, i.m. and 10 pigs, i.v.) and study B (36 pigs, i.m.). After i.m. administration the mean maximum plasma concentration (C(max)) was 616 ng/mL, which was reached by 0.25 h postinjection (t(max)). The mean apparent elimination half-life (t(1/2)) in plasma was 75.6 h. After i.v. injection plasma clearance (Cl) was 181 mL/kg.h, the volume of distribution at steady-state (V(ss)) was 13.2 L/kg and the elimination t(1/2) was 67.5 h. The systemic bioavailability following i.m. administration was >87% and the ratio of lung drug concentration for i.m. vs. i.v. injection was > or =0.96. Following i.m. administration, a mean tulathromycin concentration of 2840 ng/g was detected in lung tissue at 12 h postdosing. The mean lung C(max) of 3470 ng/g was reached by 24 h postdose (t(max)). Mean lung drug concentrations after 6 and 10 days were 1700 and 1240 ng/g, respectively. The AUC(inf) was 61.4 times greater for the lung than for plasma. The apparent elimination t(1/2) for tulathromycin in the lung was 142 h (6 days). Following i.m. administration to pigs at 2.5 mg/kg body weight, tulathromycin was rapidly absorbed and highly bioavailable. The high distribution to lung and slow elimination following a single dose of tulathromycin, are desirable pharmacokinetic attributes for an antimicrobial drug indicated for the treatment of respiratory disease in swine.  相似文献   

10.
OBJECTIVES: To establish maximum oxygen consumption VO2max) in ponies of different body weights, characterize the effects of training of short duration on VO2max, and compare these effects to those of similarly trained Thoroughbreds. ANIMALS: 5 small ponies, 4 mid-sized ponies, and 6 Thoroughbreds. PROCEDURE: All horses were trained for 4 weeks. Horses were trained every other day for 10 minutes on a 10% incline at a combination of speeds equated with 40, 60, 80, and 100% of VO2max. At the beginning and end of the training program, each horse performed a standard incremental exercise test in which VO2max was determined. Cardiac output (Q), stroke volume (SV), and arteriovenous oxygen content difference (C [a-v] O2) were measured in the 2 groups of ponies but not in the Thoroughbreds. RESULTS: Prior to training, mean VO2max for each group was 82.6 = 2.9, 97.4 +/- 13.2, and 130.6 +/- 10.4 ml/kg/min, respectively. Following training, mean VO2max increased to 92.3 +/- 6.0, 107.8 +/- 12.8, and 142.9 +/- 10.7 ml/kg/min. Improvement in VO2max was significant in all 3 groups. For the 2 groups of ponies, this improvement was mediated by an increase in Q; this variable was not measured in the Thoroughbreds. Body weight decreased significantly in the Thoroughbreds but not in the ponies. CONCLUSIONS AND CLINICAL RELEVANCE: Ponies have a lower VO2max than Thoroughbreds, and larger ponies have a greater VO2max than smaller ponies. Although mass-specific VO2max changed similarly in all groups, response to training may have differed between Thoroughbreds and ponies, because there were different effects on body weight.  相似文献   

11.
OBJECTIVE: To determine the relationship between plasma beta-endorphin (EN) concentrations and exercise intensity and duration in horses. ANIMALS: 8 mares with a mean age of 6 years (range, 3 to 13 years) and mean body weight of 450 kg. PROCEDURE: Horses were exercised for 20 minutes at 60% of maximal oxygen consumption (VO2max) and to fatigue at 95% V02max. Plasma EN concentrations were determined before exercise, after a 10-minute warmup period, after 5, 10, 15, and 20 minutes at 60% VO2max or at the point of fatigue (95% VO2max), and at regular intervals after exercise. Glucose concentrations were determined at the same times EN concentrations were measured. Plasma lactate concentration was measured 5 minutes after exercise. RESULTS: Maximum EN values were recorded 0 to 45 minutes after horses completed each test. Significant time and intensity effects on EN concentrations were detected. Concentrations were significantly higher following exercise at 95% VO2max, compared with those after 20 minutes of exercise at 60% VO2max (605.2 +/- 140.6 vs 312.3 +/- 53.1 pg/ml). Plasma EN concentration was not related to lactate concentration and was significantly but weakly correlated with glucose concentration for exercise at both intensities (r = 0.21 and 0.30 for 60 and 95% VO2max, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: A critical exercise threshold exists for EN concentration in horses, which is 60% VO2max or less and is related to exercise intensity and duration. Even under conditions of controlled exercise there may be considerable differences in EN concentrations between horses. This makes the value of comparing horses on the basis of their EN concentration questionable.  相似文献   

12.
OBJECTIVE: To compare effects of low and high intensity warm-up exercise on oxygen consumption (VO2) and carbon dioxide production (VCO2) in horses. ANIMALS: 6 moderately conditioned adult Standard-breds. PROCEDURES: Horses ran for 2 minutes at 115% of maximum oxygen consumption (VO2max), 5 minutes after each of the following periods: no warm-up (NoWU); 10 minutes at 50% of VO2max (LoWU); or 7 minutes at 50% VO2max followed by 45-second intervals at 80, 90, and 100% VO2max (HiWU). Oxygen consumption and VCO2 were measured during exercise, and kinetics of VO2 and VCO2 were calculated. Accumulated O2 deficit was also calculated. RESULTS: For both warm-up trials, the time constant for the rapid exponential increase in VO2 was 30% lower than for NoWU. Similarly, the rate of increase in VCO2 was 23% faster in LoWU and HiWU than in NoWU. Peak values for VO2 achieved during the high-speed test were not significantly different among trials (LoWU, 150.2 +/- 3.2 ml/kg/min; HiWU, 151.2 +/- 4.2 ml/kg/min; NoWU, 145.1 +/- 4.1 ml/kg/min). However, accumulated O2 deficit (ml of O2 equivalents/kg) was significantly lower during LoWU (65.3 +/- 5.1) and HiWU (63.4 +/- 3.9) than during NoWU (82.1 +/- 7.3). CONCLUSIONS AND CLINICAL RELEVANCE: Both the low- and high-intensity warm-up, completed 5 minutes before the start of high-intensity exercise, accelerated the kinetics of VO2 and VCO2 and decreased accumulated O2 deficit during 2 minutes of intense exertion in horses that were moderately conditioned.  相似文献   

13.
Clinical exercise testing in the normal Thoroughbred racehorse   总被引:1,自引:0,他引:1  
To evaluate normal cardiorespiratory and metabolic responses of Thoroughbred horses to a standardised treadmill exercise test, we examined 28 horses ranging in age from 1 to 4 years. The group consisted of eight yearlings, eight 2-year-olds and twelve 3 and 4-year-olds. All horses except the yearlings were in training, and either racing or ready to race, at the time of examination. None of the horses had histories of performance problems. On the first day the horses received a full physical examination, resting electrocardiogram, upper respiratory tract endoscopy and either one or two acclimatisation runs on the treadmill. The following day they were given an exercise test on a treadmill inclined at 6 degrees (+10% slope). The test consisted of 3 min at 4 m/sec, 90 sec at 6 m/sec and 60 sec intervals at 8, 10, 11, 12 and 13 m/sec. During the last 15 sec of each step, blood samples were collected for plasma lactate determination, expired respiratory gases were obtained using an open flow mask system for measurement of oxygen uptake, and heart rate was measured using telemetry electrocardiogram. From these measurements, various derived values were calculated, which have been used by others as indices of exercise capacity. These values included: V200 (speed at HR of 200 bpm), VHRmax (speed at which horses reached maximum HR), VO2-200 (oxygen uptake at a HR of 200 bpm), VO2max (maximum oxygen uptake), VLA4 (speed at which horses reached a plasma lactate of 4 mmol/l) and HRLA4 (HR at which horses reached a plasma lactate of 4 mmol/l). The yearlings had significantly lower values than the older age groups for most of the derived values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pharmacokinetics of difloxacin, a fluoroquinolone antibiotic, was determined in pigs and broilers after intravenous (i.v.), intramuscular (i.m.), or oral (p.o.) administration at a single dose of five (pigs) or 10 mg/kg (broilers). Plasma concentration profiles were analyzed by a compartmental pharmacokinetic method. Following i.v., i.m. and p.o. doses, the elimination half-lives (t(1/2beta)) were 17.14 +/- 4.14, 25.79 +/- 8.10, 16.67 +/- 4.04 (pigs) and 6.11 +/- 1.50, 5.64 +/- 0.74, 8.20 +/- 3.12 h (broilers), respectively. After single i.m. and p.o. administration, difloxacin was rapidly absorbed, with peak plasma concentrations (C(max)) of 1.77 +/- 0.66, 2.29 +/- 0.85 (pigs) and 2.51 +/- 0.36, 1.00 +/- 0.21 microg/mL (broilers) attained at t(max) of 1.29 +/- 0.26, 1.41 +/- 0.88 (pigs) and 0.86 +/- 0.4, 4.34 +/- 2.40 h (broilers), respectively. Bioavailabilities (F) were (95.3 +/- 28.9)% and (105.7 +/- 37.1)% (pigs) and (77.0 +/- 11.8)% and (54.2 +/- 12.6)% (broilers) after i.m. and p.o. doses, respectively. Apparent distribution volumes(V(d(area))) of 4.91 +/- 1.88 and 3.10 +/- 0.67 L/kg and total body clearances(Cl(B)) of 0.20 +/- 0.06 and 0.37 +/- 0.10 L/kg/h were determined in pigs and broilers, respectively. Areas under the curve (AUC), the half-lives of both absorption and distribution(t(1/2ka), t(1/2alpha)) were also determined. Based on the single-dose pharmacokinetic parameters determined, multiple dosage regimens were recommended as: a dosage of 5 mg/kg given intramuscularly every 24 h in pigs, or administered orally every 24 h at the dosage of 10 mg/kg in broilers, can maintain effective plasma concentrations with bacteria infections, in which MIC(90) are <0.25 microg/mL and <0.1 microg/mL respectively.  相似文献   

15.
In a crossover study, either a placebo paste or N,N-dimethylglycine was administered orally at a dose rate of 1.2 mg/kg twice daily for five days to six thoroughbred horses, with bodyweights ranging from 424 to 492 kg. Using previously determined regression equations for oxygen uptake (VO2) against speed for each horse, a standardised exercise test was given with speeds equivalent to fixed percentages of the maximum oxygen uptake (VO2max). The test consisted of two minutes at speeds equivalent to approximately 40 per cent and 50 per cent VO2max, and one minute at speeds that produced approximately 60, 70, 80, 90 and 100 per cent VO2max. During the last five seconds of each exercise stage, the values of VO2, carbon dioxide production (VCO2), heart rate, arterial blood and plasma lactate concentrations, arterial blood gases and pH were measured. Before and immediately after the exercise test, muscle biopsies were collected from the middle gluteal muscle to determine the muscle lactate concentrations. The administration of N,N-dimethylglycine produced no significant differences in any of the measured values, and it is concluded that the compound has no beneficial effects on cardiorespiratory function or lactate production in the exercising horse.  相似文献   

16.
Sixteen German Landrace pigs of the meat type were kept in individual cages (0.47 m2 floor area each) or in two pens of four pigs providing 1.05 m2 per animal, under otherwise identical conditions for 45 days, commending at a body weight of 45 kg. Plasma volume and plasma glucose were determined before, during and after the pigs made to run on a band moving at 1 m/s for 20 minutes at 24 degrees C. Changes in plasma volume were studied from the total scatter of values (total area covered by the curve of values). This made it possible to quantify individual regulatory capacity and the influence of management. Close confinement in an individual cage reduced the regulatory capacity of the plasma volume by 3.5 to 4 times. There were significant qualitative and quantitative relationships between intravascular fluid volume and intravascular glucose or glucose concentration.  相似文献   

17.
The VO 2max value was established from twelve pigs, followed by checks of their responses to endurance stress (walk 0.7 m/sec, ambient temperatures between 22 degress C and 24 degrees C, relative humidities between 67 and 78 per cent). Also measured were the rectal temperature, heart rate, respiratory rate, haemoglobin level of the blood, haematocrit, mean corpuscular haemoglobin concentration, plasma volume, blood volume, total haemoglobin, plasma glucose concentration and plasma lactid acid concentration. A differentiation could be made between one group weighing between 53.3 +/- 2.47 kg and enduring 97 +/- 9 minutes and another weighing 60.0 +/- 1.38 kg and enduring 36 +/- 6 minutes. The two groups differed from one another for their plasma and blood volumes, their values being 42.6 +/- 3.8 ml/kg and 67.5 +/- 7.5 ml/kg or 33.5 +/- 3.4 ml/kg and 52.2 +/- 5.9 ml/kg. The groups produced quantitatively different responses to endurance stress. The demands implied in endurance were widely met by the circulatory system, while the energy transfer was characterised primarily by aerobic energy collection.  相似文献   

18.
Visceral organs (VO) are essential for their role in the metabolism and distribution of consumed nutrients as well as other life functions in animals. Two experiments were conducted to assess the natural longitudinal changes that the VO undergo from birth through 150 kg body weight (BW). In Experiment 1, a total of 96 crossbred pigs were euthanized at birth (pre-suckle), d 1, 2, 3, 5, 7, 14, 21 (weaning), 22, 23, 24, 26, 28, 42, 49, and 63 of age. In Experiment 2, a total of 48 crossbred pigs were euthanized at 30, 50, 75, 100, 125, and 150 kg of BW. The absolute weight of VO, and the volume and length of the gastrointestinal tract (GIT) were measured. In both experiments, the absolute weight of VO, GIT length, and their volume increased (linear, quadratic, and/or cubic, P < 0.05) as BW and age increased. In Experiment 1, the relative weight of VO (liver, kidney, heart, and lung) decreased after initially increasing within the first week of life (linear, quadratic, and/or cubic, P < 0.05), whereas the relative weight of all VO decreased as BW increased in Experiment 2 (linear and/or quadratic, P < 0.05). The relative length of small intestine decreased and that of large intestine increased as age increased in Experiment 1 (linear and quadratic, P < 0.05), whereas the relative length of the small and large intestine in Experiment 2 were relatively constant at 80% and 20% of the total length of the intestine, respectively. As age and BW increased, the relative volume of the large intestine to the total volume of the GIT increased (linear and/or quadratic, P < 0.05), while the relative volume of the small intestine decreased (linear and/or quadratic, P < 0.05). In conclusion, results showed that both absolute and relative measurements (weight, volume, and length) of VO were dependent on the BW (age) of the pig.  相似文献   

19.
The distribution of tylosin was studied using a crossover design, in six pigs following i.v. and i.m. administration of 10 mgkg(-1) b.w. Plasma samples were analysed by HPLC and UV absorbance detection. After i.v. administration, t(1/2beta) was 271.3 min, V(d) 14.6 Lkg(-1), V(ss) 9.7 Lkg(-1) and CL 26.8 mLmin(-1)kg(-1). After i.m. administration, a C(max) of 1 microgmL(-1) was reached at 90 min. Mean absorption time was 1988.7 min and bioavailability was 95%.  相似文献   

20.
The pharmacokinetics of amoxicillin (Amx) were determined in pigs following intravenous (IV) administration of a single dose of 15 mg/kg and a single dose of 15 mg/kg of a new oral formulation (Amx-FP containing 10% amoxicillin). Residue studies were performed to determine residues in edible tissues of healthy pigs after chronic oral administration of Amx-FP at a daily dose of 15 mg/kg for five consecutive days. After IV administration, the plasma concentration was characteristic of a two-compartment open model. The main pharmacokinetic variables were: t(1/2lambda(n)), MRT=90.1 min, V(darea)=0.81 L/kg and Cl(b)=3.9 mL/kg/min. After single oral administration the main pharmacokinetic variables were: C(max)=758 mug/L, t(max)=347 min and Cl(b/f)=3.7 mL/kg/min for Amx-FP. The oral bioavailability (F) was calculated at 11% for Amx-FP. Based on maximum residue levels (MRL) for AMX in pigs established at 50 microg/kg for all tissues, the withdrawal times of AMX in muscle and skin plus fat were estimated (95% tolerance limit and 95% confidence) to fall below the MRL after a withdrawal period of seven days. Levels of AMX in the liver and kidneys were estimated to fall below the MRL after a withdrawal period of four days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号