首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toll-like receptors (TLR) are a group of pattern recognition molecules that play a crucial role in innate immunity. TLR2 recognises a variety of microbial components leading to the development of inflammatory and immune responses. To characterise the expression and functional properties of porcine TLR2 (pTLR2), we have raised a panel of monoclonal antibodies (mAb) against this molecule. Mouse 3T3 cell transfectants expressing pTLR2 were used for immunisation of mice. The specificity of these antibodies was confirmed by their reactivity with CHO cells transfected with pTLR2 but not with pTLR4 or with non-transfected cells. Using one of these mAbs, named 1H11, pTLR2 was found on cells of the innate immune system, including monocytes, macrophages, and granulocytes, but not on peripheral blood lymphocytes. Staining of tissue sections showed that pTLR2 is also expressed on epithelial cells lining the tracheobronchial and intestinal tracts, bile ducts in the liver and renal tubules, and on the basal layer of the epidermis. This distribution is consistent with a surveillance function at entry sites, allowing for early detection of microbial invasion.  相似文献   

2.
Toll-like receptors (TLRs) are key sensors of pathogen-associated molecular patterns (PAMPs). Their role in immunity is difficult to examine in species of veterinary interest, due to restricted access to the knockout technology and TLR-specific antibodies. An alternative approach is to generate cell lines transfected with various TLRs and to examine the recognition of PAMPs or relevant bacteria. In this report, we examined whether recognition of various PAMPs and mastitis-causing bacteria is achieved by transfection of recombinant bovine TLR2 (boTLR2). Therefore, human embryonic kidney (HEK) 293 cells were transfected by whole boTLR2. A clonal analysis of stably transfected cells disclosed variable recognition of several putative TLR2 agonists although expressing similar amounts of the transgene and endogenous TLR6. One clone (clone 25) reacted by copious interleukin-8 (IL-8) production to several stimulants of TLR2 such as di-palmitoylated cysteyl-seryl-lysyl-lysyl-lysyl-lysine (Pam2), a biochemical preparation of lipoteichoic acid from Staphylococcus aureus, a commercial preparation of peptidoglycan from S. aureus, and heat-killed Listeria monocytogenes (HKLM). TLR2-dependent induction of IL-8 release was stronger in medium containing human serum albumin than in medium containing fetal calf serum. Clone 25 cells responded to high concentrations of S. aureus and to Escherichia coli causing mastitis, but not to Streptococcus uberis and to Streptococcus agalactiae which also cause mastitis. Stimulation by S. aureus was relatively weak when compared (i) with stimulation of the same cells by HKLM and PAMPs derived from S. aureus, (ii) with a clone stably transfected with TLR4 and MD-2 and stimulated by E. coli causing mastitis, and (iii) with interferon-gamma-costimulated bovine macrophages stimulated by S. aureus and S. agalactiae. Thus, clone 25 is suitable for studying the interaction of putative TLR2 agonists with bovine TLR2-transfected cells, provides a cell to search for TLR2-specific antibodies, and is a tool for studying the interaction of TLR2 with bacteria causing disease, e.g. mastitis, in cattle.  相似文献   

3.
TLRs, Siglecs and CD163 are cell surface receptors that play an important role in immune response and sepsis. The objective of this study was to assess changes in the expression levels of several of these receptors (TLR2, TLR4, CD163, Siglec-1, Siglec-3, Siglec-5 and Siglec-10) on the surface of peripheral blood mononuclear cells from pigs with sepsis caused by Haemophilus parasuis. Flow cytometry was employed to analyze samples from an experimental infection and from cell cultures. A significant increase in CD163, TLR2 and Siglec-3 expression during infection was seen. However, in vitro exposure of peripheral blood monocytes to bacteria or sera from infected pigs did not increase the expression of these receptors. These changes may be due to recruitment of monocytes into the blood compartment in response to H. parasuis-induced sepsis.  相似文献   

4.
5.
6.
《Veterinary microbiology》1998,61(4):237-248
The present study compared the replication of bovine respiratory syncytial virus (BRSV) in bovine and ovine peripheral blood mononuclear cells, ovine and bovine monocytic cell lines and ovine alveolar macrophages. Low titres of virus were detected in ovine and bovine lymphocytes and monocytes 24–96 h post-exposure to the virus but there was no apparent replication of the virus in ovine alveolar macrophages during the culture period. The virus replicated to higher but statistically insignificant titres in ovine and bovine peripheral blood monocytes than in lymphocytes, with lymphocytes yielding peak titres significantly earlier. The secondary cell lines obtained from ovine liver and bone marrow also supported the replication of BRSV to high titres. The titres of BRSV in ovine and bovine lymphocytes and monocytes were significantly lower than in secondary cell lines. The addition of human recombinant tumour necrosis factor alpha after exposure to the virus or pre-incubation of ovine or bovine monocytic cells with either human recombinant interleukin 2 or phorbol myristate acetate before exposure to BRSV, did not significantly affect virus titre. Pre-incubation of cells with indomethacin or actinomycin significantly lowered virus titre (p<0.05).  相似文献   

7.
Molecular cloning and characterization of equine Toll-like receptor 9   总被引:1,自引:0,他引:1  
Innate immunity relies on a series of germline-encoded pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), to detect conserved microbial components. TLR9 is typically expressed intracellularly in immune cells such as dendritic cells and recognizes unmethylated bacterial or viral cytosine-phosphate-guanine DNA (CpG-DNA). To investigate innate immune responses through TLR9 signaling pathway in horses, we cloned and characterized equine TLR9. Protein sequence analysis shows that equine TLR9 has a typically conserved cytosolic Toll/interleukin-1 receptor (TIR) domain, three leucine-rich repeat (LRR) motifs, with greater than 82% identity to human, monkey, bovine, canine, feline, porcine and ovine orthologs. Equine TLR9 mRNA expression was characterized for spleen, lymph node, and peripheral blood leukocyte samples. Flow cytometric analysis of equine TLR9 expression using a cross-reactive TLR9 mAb identified high constitutive expression of equine TLR9 in PMNs, CD4(+) and CD8(+) T-lymphocytes as well as other leukocytes; similar to human TLR9 expression. The conservation of equine TLR9 and high expression profile in leukocytes suggests that equine TLR9 is a frequent target for unmethylated CpG-DNA, an essential mechanism for the activation of innate immunity.  相似文献   

8.
9.
10.
Invading pathogens are controlled by the innate and adaptive arms of the immune system. Adaptive immunity, mediated by B and T lymphocytes, recognises pathogens via high affinity receptors. However, the establishment of a primary adaptive immune response is not rapid enough to eradicate invading microorganisms as it involves cell proliferation, gene activation and protein synthesis. More rapid defence mechanisms are provided by innate immunity, which recognises invading pathogens by germ-line-encoded pattern recognition receptors. Recent evidence shows that this recognition can mainly be attributed to the family of TOLL-like receptors (TLR). Binding of pathogen-associated molecular patterns to TLR induces the production of reactive oxygen and nitrogen intermediates, pro-inflammatory cytokines, and up-regulates expression of co-stimulatory molecules, subsequently initiating the adaptive immunity. In this paper, we will discuss the current knowledge with regards to the TLR, and in particular the bovine family of TLR. In addition, we will show the expression of TLR mRNA in bovine antigen-presenting cell subsets, summarise the discovery and the critical roles of TLR2 in host defence against Mycobacteria, and provide evidence for a mycobacteria species-specific response of bovine macrophages.  相似文献   

11.
12.
Expression and function of Toll-like receptor 2 in canine blood phagocytes   总被引:2,自引:0,他引:2  
Toll-like receptors (TLRs) are a family of highly conserved pattern recognition receptors (PRR) of mammals that participate in the activation of innate immune responses against microbial infections. Among these receptors, TLR2 is essential for the recognition of conserved structural components of bacteria, protozoa and fungi. Until now, expression of TLR2 in dogs has not been investigated. In this work we describe a partial sequence of the gene coding for canine TLR2 and show that TLR2 mRNA is constitutively expressed in canine blood PMNs. We also show that stimulation of purified PMNs with lipoteichoic acid (LTA), a ligand of TLR2, leads to the release of proinflammatory chemokine IL-8. Furthermore, TLR2 protein is easily detectable by flow cytometry on the canine peripheral blood granulocyte and monocyte cell surface, and slightly on lymphocytes. These findings suggest that, also in dogs as in humans the initial antibacterial response of PMNs could be elicited through engagement of TLR2.  相似文献   

13.
The gut maintains a delicate balance between the downregulation of inflammatory reactions to commensal bacteria and the capacity to respond to pathogens with vigorous cellular and humoral immune responses. Intestinal epithelial cells, including colonic epithelial cells (CECs) possess many properties of cells of the innate immune system, in particular the ability to recognize and respond to microbial antigens. Recognition of microorganisms by CECs is based upon their recognition of signature molecules, called microbe-associated molecular patterns (MAMP), by pattern recognition receptors (PRR) including membrane toll-like receptors (TLR) and cytosolic Nod2, an intracellular counterpart of TLRs. The purpose of this study was to determine whether primary CECs from normal dogs express a functional TLR2, TLR4, and Nod2 and whether they are regulated by inflammatory mediators. We show that canine primary CECs express TLR2, TLR4, and Nod2 that can be modulated in response to their respective MAMPs, lipopolysaccharides (LPS) or peptidoglycans (PGN). Furthermore, we demonstrate that these receptors are functional as evidenced by the induction of cytokine gene expression in response to LPS or PGN.  相似文献   

14.
Two new monoclonal antibodies (CC17 and CC29) raised against bovine thymocytes are described. The antibodies, both of which were IgG1, recognize a molecule of approximately 67,000 molecular weight on bovine T cells. They react T cells in peripheral blood, the lymph node paracortex and the periateriolar lymphoid sheath in the spleen. Both the cortex and medulla of the thymus are stained but the medulla reacts more intensely. They do not stain B cells in peripheral blood, the ileal Peyer's patch, the cortex or the primary follicles in lymph nodes. No activity was found on cells outside the lymphoid system, i.e. monocytes, alveolar macrophages or endothelial and epithelial tissue. The antigen recognized is considered to be the bovine homologue of CD5 (T1) in humans and Lyt1 in mice. The mAbs appear to be particularly useful for detecting cells in the peripheral blood of young calves which are of the T cell lineage but do not express BoT2 or the mature pan T cell antigen recognized by mAb IL-A27 and may thus allow identification of a population of bovine lymphocytes previously described as null cells.  相似文献   

15.
16.
Toll-like receptors recognize pathogen-associated molecular patterns of microbial origin, and ligand recognition results in the production of different immune mediators such as pro-inflammatory cytokines, interferon, reactive oxygen and nitrogen intermediates, and upregulation of costimmulatory molecules. As these receptors have a critical role in linking pathogen recognition to induction of inflammation and innate as well as adaptive immunity, there is tremendous interest in understanding how the tissue and cell-type expression of TLRs is regulated and its influence on the local innate immune response. While TLRs are well studied in humans and rodents, to date little is known about them in dogs. The purpose of this study was to develop canine specific antibodies against TLR2, 4, 5 and 9 that were used to measure relative expression of these TLRs in healthy and reactive canine mesenteric lymph nodes. All 8 rabbit sera (2 each for TLR2, 4, 5 and 9) were strongly positive in ELISA against the respective 2 peptides per TLR used for immunization. The purified antibodies selected specifically detected a protein band with an apparent size of approximately 70 kDa in lysates of canine PBMCs by Western blotting. Immunostaining was observed with purified antibodies against TLR4, 5 and 9, whereas for canine TLR2, staining was only observed with the unpurified antibodies. In the mesenteric lymph node of healthy dogs, the overall staining pattern was very similar for TLR4 and 5 with positive cells predominantly found in the internodular areas and lower part of the cortex. Compared to the TLR4 and 5, more cells stained positive for TLR9 especially in the lymphoid nodules. The reactive lymph nodes contained more TLR4 and 9 positive cells. Moreover, a shift of TLR-9 positive cells from the lymphoid follicles to the deep cortex and medullary cords was observed. Whereas TLR9 co-localized with CD79-positive areas, TLR4 and 5 antibodies stained cells primarily in the CD3-positive areas. All three TLR antibodies stained cells within the area that co-localized with lysozyme-positive cells. In conclusion, this study demonstrates that the antibodies generated against canine TLR 4, 5 and 9 identify the expression of these TLRs in formalin-fixed canine lymph nodes and demonstrate increased expression in reactive canine mesenteric lymph nodes.  相似文献   

17.
The interaction of bovine cells with lipopolysaccharide (LPS) was explored using human embryo kidney (HEK) 293 cell line stably transduced with bovine toll-like receptor-4 (TLR4) alone or in combination with bovine MD-2. These lines and mock-transduced HEK293 cells were tested by flow cytometry for LPS-fluorescein isothiocyanate (LPS-FITC) binding, nuclear factor kappa B (NFkappaB) activation, interleukin-8 (IL-8) production and interferon-beta mRNA expression/interferon (IFN) type I production. Whereas bovine TLR4 was sufficient to promote binding of high concentrations of LPS-FITC, both bovine TLR4 and MD-2 were required for activation by LPS, as assessed by NFkappaB activation and IL-8 production. Induction of IFN bioactivity was not observed in doubly transduced HEK293 cells, and no evidence for IFN-beta mRNA induction in response to LPS was obtained, although cells responded by IFN-beta mRNA expression to stimulation by Sendai virus and poly-inosinic acid-poly-cytidylic acid (poly(I:C)). Cells stably transduced with both bovine TLR4 and bovine MD-2 responded to LPS by IL-8 production, in decreasing order, in the presence of fetal bovine serum (FCS), of human serum, and of human serum albumin (HSA). The reduced activity in the presence of HSA could be restored by the addition of soluble CD14 (sCD14) but not of LPS binding protein (LBP). This is in contrast to macrophages which show a superior response to LPS in the presence of HSA when compared with macrophages stimulated by LPS in the presence of FCS. This suggests that macrophages but not HEK293 cells express factors rendering LPS stimulation serum-independent. Stably double-transduced cells reacted, in decreasing order, to LPS from Rhodobacter sphaeroides, to LPS from Escherichia coli, to synthetic lipd-IVa (compound 406), to diphosphoryl-lipid-A (S. minnesota) and to monophosphoryl-lipid-A (S. minnesota). They failed to react to the murine MD-2/TLR4 ligand taxol. This resembles the reactivity of bovine macrophages with regard to sensitivity (ED(50)) and order of potency but is distinct from the reactivity pattern of other species. This formally establishes that in order to react to LPS, cattle cells require serum factors (e.g. sCD14) and cell-expressed factors such as MD-2 and TLR4. The cell lines described are the first of a series expressing defined pattern recognition receptors (PRR) of bovine origin. They will be useful in the study of the interaction of the bovine TLR4-MD-2 complex and Gram-negative bovine pathogens, e.g. the agents causing Gram-negative bovine mastitis.  相似文献   

18.
To evaluate effects of treatment with pathogen-associated molecular patterns (PAMPs) on toll-like receptor (TLR), MHC II, B7 and cytokine expression, pig monocytes and monocyte-derived DCs (moDCs) were treated with LPS, CpG, lipoteichoic acid (LTA), poly IC or peptidoglycan (Pep). Monocytes and moDCs treated with LPS, CpG, LTA, poly IC or Pep altered expression of at least one TLR (4, 5 and 9) and up-regulated MHC II and/or B7. The mRNA for IL-4 was not detected after any treatment. Treatment with LPS or LTA tended to up-regulate mRNA for TLR 4, Th-1 (IFN-gamma and IL-12p35) and Th-2 cytokines (IL-10 and IL-13). Poly IC or CpG tended to up-regulate TLR 9 and Th-1 cytokines. Porcine monocytes and moDCs like those of humans and mice responded to microbial PAMPs by altering TLR expression, up-regulating MHC II and B7 and altering cytokine expression toward Th-1 and/or Th-2, which may steer immune response. Hence, porcine moDCs and monocytes are likely able to discriminate between microorganisms using TLRs which determine cytokine expression and immune response bias.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号