首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coated CaC2 is a newly developed product which can supply nitrification-inhibiting quantities of C2H2 (1–10 Pa) to the soil, throughout a cropping season. This method of applying C2H2 to the soil maintains C2H2 in the soil continuously for several months. It is not know whether these low C2H2 concentrations alter soil microbial processes. A field study was initiated to determine the effect of supplying C2H2 to a clay soil, using coated CaC2, on soil respiration, denitrification, nitrification, and C2H2 consumption. The C2H2 consumption rate increased with length of soil exposure to C2H2 (r 2=0.59). The rates of CO2 production (r 2=0.88) and denitrification (r 2=0.86) were both highly correlated with the C2H2 consumption rates. The nitrifier potential decreased to a minimum of 21% of the control after 3 months of C2H2 treatment. After this time, nitrifier activity increased to 41% of the control after 11 months of treatment. This increase was due to increased C2H2 consumption in the soil. After 3 months of continuous application of C2H2 to the soil, the C2H2 concentrations were generally below that necessary to inhibit nitrification. No adaptation to the C2H2 by nitrifiers was found. Repeating these measurements 1 year later showed that soils previously exposed to C2H2 retained their enhanced C2H2 oxidation capacity and the capacity to use C2H2 to increase denitrification. Nitrification potentials remained about 50% lower in soils exposed to C2H2 a year earlier compared to soils not previously exposed to C2H2.  相似文献   

2.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

3.
Abstract

Recently there has been developments in the measurement of N2 fixation due mainly to the C2H2 reduction method (1). This method, however, has several disadvantages, especially for submerged soil, and the estimated amount of fixed N2 on the basis of the C2H2 reduction activity is not very reliable. The tracer 15N2 technique which gives a reliable estimation of the fixed N2 is too expensive for common use. Development of an alternative method suitable for submerged soil would therefore be desirable. The present authors expected that the measurement of the ratio N2/Ar in the soil solution might provide advantages for the estimation of the fixed N2 in submerged soil.  相似文献   

4.
Cellulose, xylan, and glucose were compared in waterlogged soil as modifying factors of the redox potential (Eh), of the quantity of reducing equivalents, and of the soil capacity to produce N2O and CO2. During the study period (168 h) soils supplied with glucose and xylan showed a higher Eh decrease than the control soil and the soil treated with cellulose. In samples taken after 0, 24, 48, and 168 h, the soils supplied with C showed a higher number of reducing equivalents than the control soil did. These quantities were not correlated with Eh values, nor with N2O production. N2O production was increased compared with the control soil over the entire experimental period in the glucose-amended soils but only after 48 h in the xylan-amended soils and not until 168 h in the cellulose-treated soils. The CO2:N2O ratio was consistently higher than the theoretical value of 2, suggesting that denitrification and CO2 production via fermentation occurred simultaneously. Moreover, this ratio was highly correlated with the Eh values. We conclude that more research is needed to explain the role of soil redox intensity (Eh) and capacity (quantity of redox species undergoing reduction) in the expression of soil denitrification-fermentation pathways.  相似文献   

5.
Summary Soil was amended with a variety of carbon sources, including four soluble compounds (glucose, sucrose, glycerol and mannitol) and two plant residues (straw and alfalfa).. Potential denitrification rates, measured both as N2O accumulation and NO3 disappearance, were compared, and the predicted values of available C, measured as CO2 production and water-extractable C, were assessed.The two measures of denitrification agreed well although N2O accumulation was, found to be most sensitive. Soil treated with the four soluble C compounds resulted in the same rate of denitrification although glycerol was not as rapidly oxidized. Alfalfa-amended soil produced a significantly higher rate of denitrification than the same amount of added straw. CO2 evolution was found to be a good predictor of denitrification over the first 2 days of sampling, but neither measure of available substrate C correlated well with denitrification rate beyond 4 days, when NO3 was depleted in most treatments. The data with alfalfa-amended soil suggested that denitrifiers used water-extractable C. materials produced by other organisms under anaerobic conditions.  相似文献   

6.
We examined denitrifying bacteria from wet soils and creek sediment in an agroecosystem in Oregon, USA that received inputs of nitrogen (N) fertilizer. Our objective was to determine the variation in denitrifying community composition and activities across three adjacent habitats: a fertilized agricultural field planted to perennial ryegrass, a naturally vegetated riparian area, and creek sediment. Using C2H2 inhibition, denitrifying enzyme and N2O-reductase activities were determined in short-term incubations of anaerobic slurries. A key gene in the denitrification pathway, N2O reductase (nosZ), served as a marker for denitrifiers. Mean denitrifying enzyme activity (DEA) was similar among habitats, ranging from 0.5 to 1.8 μg N g−1 dry soil h−1. However, the ratio of N2O production, without C2H2, to DEA was substantially higher in riparian soil (0.64±0.02; mean±standard error, n=12) than in agricultural soil (0.19±0.02) or creek sediment (0.32±0.03). Mean N2O-reductase activity ranged from 0.5 to 3.2 μg N g−1 dry soil h−1, with greater activity in agricultural soil than in riparian soil. Denitrifying community composition differed significantly among habitats based on nosZ terminal-restriction fragment length polymorphisms. The creek sediment community was unique. Communities in the agricultural and riparian soil were more closely related but distinct. A number of unique nosZ genotypes were detected in creek sediment. Sequences of nosZ obtained from riparian soil were closely related to nosZ from Bradyrhizobium japonicum. Although nosZ distribution and N2O-reductase activity differed among habitats, relationships between activity and community composition appeared uncoupled across the agroecosystem.  相似文献   

7.
The soil of the former lake Texcoco is an ‘extreme’ alkaline saline soil with pH > 10 and electrolytic conductivity (EC) > 150 dS m−1. These conditions have created a unique environment. Application of wastewater sludge to Texcoco soil showed that large amounts of NH4+ were immobilized, NO3 was reduced aerobically, NO2 was formed and the mineralization of the organic material in the sludge was inhibited. A series of experiments were initiated to study the processes that inhibited the decomposition of organic material and affected the dynamics of mineral N. The large EC and pH inhibited the decomposition of easily decomposable organic material such as glucose and maize, although cellulolytic activity was observed in soil with pH 9.8 and EC 32.7 dS m−1. The high soil pH favoured NH3 volatilization of approximately 50 mg N kg−1 soil within a day and a similar amount could be fixed on the soil matrix due to the dispersed minerals and their volcanic origin. Soil microorganisms immobilized large amounts of NH4+ within a day when glucose was added to soil in excess of what was required for metabolic activity. Removal of NO3 from soil amended with glucose was not inhibited by 100% O2 and NH4+ indicating that the contribution of denitrification and assimilatory reduction to the reduction of NO3 was minimal while the formation of NO2 was not inhibited by 0.1% acetylene, known to inhibit nitrification. Additionally, the reduction of NO3 in the glucose-amended alkaline saline Texcoco soil was followed by an increase in the amount of NH4+, which could not be due to denitrification. It was concluded that the reduction of NO3 and the formation of NO2 and NH4+ in the glucose-amended soil was a result of aerobic NO3 reduction. A phylogenetic analysis of the archaeal community in the soil of the former lake Texcoco showed that some of the clones identified were capable of reducing NO3 aerobically to NO2 when glucose was added. A study of the diversity of the bacterial dissimilatory and respiratory nitrate-reducing communities indicated that bacteria could have contributed to the process.  相似文献   

8.
Summary The effect of increasing oxygen concentrations (0, 5, 10 and 20 Vol% O2) on total denitrification and N20 release was studied in model experiments using a neutral pH loamy soil relatively rich in easily decomposable organic matter and supplied with nitrate (300 g nitrate N/g dry soil). The sterilized soil was inoculated with three different denitrifying bacteria (Bacillus licheniformis,Aeromonas denitrificans andAzospirillum lipoferum) and incubated (80% WHC, 30°C). The gas volume was analysed for O2, CO2, N2O, NO and N2 by gas chromatography and the soil investigated for changes in ammonium, nitrite, nitrate, pH, total N and C as well as water-extractable C. WithB. licheniformis andAeromonas denitrificans total denitrification increased remarkably with increasing pO2 as the result of intensified mineralization.Azospirillum lipoferum, however, showed the highest activity at 5 vol% O2. WithB. licheniformis N2O was released only in anaerobic conditions and at 5 Vol% O2 (maximum) or 10 Vol% 02, but not at 20 Vol%, whereasAeromonas denitrificans produced N2O only in the presence of He gas (maximum) or at 5 Vol% O2. In contrast to these bacteria, N2O production withAzospirillum lipoferum was restricted to 10 Vol% O2 (maximum) and to 20 Vol% 02, with some traces at 5 vol% O2. With a certain set of conditions, total denitrification and N2O formation seem to be governed by the mineralization rate of the organisms in question. The increased demand for electron acceptors by a high turnover rate rather than the presence of anaerobic conditions seems to have determined the rate of denitrification.  相似文献   

9.
Nitrate and glucose additions were investigated for their role in the C and N dynamics during anaerobic incubation of soil. A gas-flow soil core method was used, in which the net production of N2, N2O, NO, CO2, and CH4 under a He atmosphere could be monitored both accurately and frequently. In all experiments clayey silt loam soil samples were incubated for 9 days at 25 °C. Addition of nitrate (50 mg KNO3-N kg-1 soil) had no effect on total denitrification and CO2 production rates, while the N2O/N2 ratio was affected considerably. The cumulative N2O production exceeded the cumulative N2 production for 6 days in the treatment with nitrate addition, compared to 1.2 days in the unamended treatment. Glucose addition stimulated the microbial activity considerably. The denitrification rates were limited by the growth rate of the denitrifying population. During denitrification no significant differences were observed between the treatments with 700 mg glucose-C kg-1 and 4200 mg glucose-C kg-1, both in combination with 50 mg KNO3-N kg-1. The N2 production rates were remarkably low, until NO inf3 sup- exhaustion caused rapid reduction of N2O to N2 at day 2. During the denitrification period 15–18 mg N kg-1 was immobilised in the growing biomass. After NO inf3 sup- shortage, a second microbial population, capable of N2-fixation, became increasingly important. This change was clearly reflected in the CO2 production rates. Net volatile fatty acid (VFA) production was monitored during the net N2-fixation period with acetate as the dominant product. N2-fixation faded out, probably due to N2 shortage, followed by increased VFA production. In the high C treatment butyrate became the most important VFA, while in the low C treatment acetate and butyrate were produced at equal rates. During denitrification no VFA accumulation occurred; this does not prove, however, that denitrification and fermentation appeared sequentially. The experiments illustrate clearly the interactions of C-availability, microbial population and nitrate availability as influencing factors on denitrification and fermentation.Dedicated to Professor J. C. G. Ottow on the occasion of his 60th birthday  相似文献   

10.
Acetylene reduction activities (ARAs) of soils and rice plants during rice-growing season were monitored in temperate region in northeast China. This activity was significantly higher in rhizosphere soil than that in inter-row soil after rice seedlings were transplanted. The ARA was high for most of growing season, suggesting that the native N2-fixing bacteria responded to rice roots very quickly. Sixteen strains of free-living N2-fixing bacteria were isolated from three different soils. The ARAs of these strains were correlated with the averaged soil ARAs, suggesting that the isolated strains were likely the active flora responsive to rice roots. The strains were inoculated by soaking seedling roots into the liquid culture for 2 h, and the seedlings were transplanted into pots. Most strains tested did not show any growth-promoting effects except Azotobacter armeniacus and Azotobacter nigricans, which showed growth-promoting effects only at late rice growth stage and only when inoculated in combination but not separately. Present data indicated the promising future applications of these two strains in combination in the region, but further research is needed to understand the underlying mechanisms.  相似文献   

11.
反硝化是根际氮素损失重要途径,作物品种和行距改变是否会对根际反硝化产生影响尚不清楚。本研究比较了不同玉米品种和种植行距间根际土壤反硝化菌群丰度和功能的差异,为降低根际反硝化损失和提高氮肥利用效率提供科学依据。通过两个独立的田间试验,利用生物化学和分子微生物学方法,分别研究‘浚单20’、‘安农8号’、‘郑单958’、‘品玉18’和‘隆平206’5个玉米品种以及20 cm、30 cm、40 cm、50 cm种植行距对根际土壤反硝化能力、反硝化菌群丰度、N_2O/(N_2O+N_2)产物比和土壤呼吸等指标的影响。‘浚单20’、‘安农8号’、‘郑单958’根际反硝化能力显著低于其他两个品种;随着行距减少,反硝化能力有显著增加趋势。‘隆平206’和‘品玉18’的nir S型反硝化菌群丰度显著高于其他品种,而nir K和nosZ型菌群的丰度以‘浚单20’和‘安农8号’最高;行距20 cm的nir S和nir K型菌丰度显著高于其他行距处理,但nosZ型菌丰度以40 cm行距丰度最大。品种对N_2O/(N_2O+N_2)产物比有一定影响,其中‘安农8号’最低,但行距对产物比没有显著影响。相关分析表明反硝化能力与土壤呼吸和nirS型菌群丰度均极显著正相关,但与nos Z和nir K型菌群未呈现这种关系,由此表明nirS型菌丰度和根际有机碳差异可能是造成反硝化能力不同的主导因子。品种和种植行距会对玉米根际反硝化过程产生一定影响,根际低反硝化损失品种的筛选、选育和根际反硝化过程调控是减少根际反硝化损失,提高氮肥利用效率的有效途径。  相似文献   

12.
Summary Glucose, acetate, malate, and citrate were added to an agricultural soil. The pe values (-log e-; calculated from the redox potential) obtained 30 min after the addition of C were not correlated with the theoretical reducing power nor with the theoretical total energy of the C compounds. By contrast the number of electron (e-) equivalents was correlated with pe7, indicating that the proton number affected the redox potential (Eh) measurement. After 24 h of incubation, denitrification rates followed the order citrate>malate>glucose and control. No N2O production was detected with acetate. Denitrification was not correlated with the theoretical reducing power of the added C compounds but was correlated with pe+pH. Similar numbers of e- equivalents were measured with all treatments. After 72 h of incubation, the order of the denitrification rates was malate>citrate >acetate>glucose and control. The Eh values (lower than after 24h) did not differ with treatment while the number of e- equivalents was influenced by the quality of the C source. This also demonstrates that the proton number affected the measured Eh. Our results suggest that the different C substrates did not directly influence the soil physicochemical and biological conditions through their degree of oxidation. Any effects appeared to be indirect, arising from the ability of the substrates to generate new metabolites, and consequently initiate different metabolic pathways that modified the soil physicochemical conditions, reducing power and microbial activity.  相似文献   

13.
In a field experiment, the effect of animal slurry, (with and without the nitrification inhibitor dicyandiamide on total denitrification losses estimated by the C2H2 inhibition technique was measured over 2 years (1989–1990). During this period, four different plots (each with four replicates) were fertilized six times with 150 kg N ha-1 in the form of cattle-pig slurry or NH4NO3. Soil samples (0–20 cm) were analysed at regular intervals for NH inf4 sup+ and NO inf3 sup– concentrations. The soil water content was determined gravimetrically. During the first year (1989) total denitrification losses from unfertilized, mineral-fertilized, and animal slurry-amended plots (with or without dicyandiamide) were estimated as 0.2, 3.1, 0.7, and 0.6 kg N ha-1, respectively. During the second year (1990) the denitrification losses were 0.4, 1.3, 0.7, and 0.7 kg N ha-1, respectively. There was a clear relationship between the NO inf3 sup– concentration or soil water content and the denitrification rate. The results are siteund experiment-specific and cannot be generalized so far.  相似文献   

14.
In order to study the establishment of a spermosphere, the C2H2 reduction activity of N2-fixing bacteria isolated from river sand was examined in a simulated spermosphere in the river sand which contained sucrose, an amino acid mixture, and CN- released from plant seeds. The sand incubated with 10-10 to 10-9 mol CN- 30 g sand-1 exhibited higher C2H2 reduction activity than that without CN-. The change in the most probable number of N2 fixers with increasing quantities of CN- roughly corresponded to that in C2H2 reduction activity. However, the most probable number of non-N2-fixing bacteria decreased except for CN--tolerant ones. Both C2H2 reduction activity and proliferation of the N2 fixers isolated on a modified Burk's medium were almost similar to those in the bacteria in the sand. In contrast, the proliferation of some nonfixers decreased with an increasing CN- concentration. C2H2 reduction activity of N2 fixers cultured in combination with non-fixers exhibited a clear peak at 10-7 M CN- as for C2H2 reduction activity in the sand. We therefore speculate that cyanide evolved from seeds during a pregermination period may suppress the growth of general bacteria, but may promote the proliferation of N2 fixers, thus contributing to the establishment of a spermosphere.  相似文献   

15.
The long-term (9 years) effect of pig slurry applications vs mineral fertilization on denitrifying activity, N2O production and soil organic carbon (C) (extractable C, microbial biomass C and total organic C) was compared at three soil depths of adjacent plots. The denitrifying activities were measured on undisturbed soil cores and on sieved soil samples with acetylene method to estimate denitrification rates under field or potential conditions. Pig slurry applications had a moderate impact on the C pools. Total organic C was increased by +6.5% and microbial biomass C by ≥25%. The potential denitrifying activity on soil suspension was stimulated (×1.8, P<0.05) 12 days after the last slurry application. This stimulation was still apparent, but not significant, 10 months later and, according to both methods of denitrifying activity measurement (r 2=0.916, P<0.01 on sieved soil; r 2=0.845, P<0.001 on soil cores), was associated with an increase in microbial biomass C above a threshold of about 105 mg kg−1. The effect of pig slurry on denitrification and N2O reduction rates was detected on the surface layer (0–20 cm) only. However, no pig slurry effect could be detected on soil cores at field conditions or after NO3 enrichments at 20°C. Although the potential denitrifying activity in sieved soil samples was stimulated, the N2O production was lower (P<0.03) in the plot fertilized with pig slurry, indicating a lower N2O/(N2O + N2) ratio of the released gases. The pig-slurry-fertilized plot also showed a higher N2O reduction activity, which is coherent with the lower N2O production in anaerobiosis.  相似文献   

16.
Reduction of nitrous oxide (N2O) to dinitrogen (N2) by denitrification in soils is of outstanding ecological significance since it is the prevailing natural process converting reactive nitrogen back into inert molecular dinitrogen. Furthermore, the extent to which N2O is reduced to N2 via denitrification is a major regulating factor affecting the magnitude of N2O emission from soils. However, due to methodological problems in the past, extremely little information is available on N2 emission and the N2:N2O emission ratio for soils of terrestrial ecosystems. In this study, we simultaneously determined N2 and N2O emissions from intact soil cores taken from a mountainous beech forest ecosystem. The soil cores were taken from plots with distinct differences in microclimate (warm-dry versus cool-moist) and silvicultural treatment (untreated control versus heavy thinning). Due to different microclimates, the plots showed pronounced differences in pH values (range: 6.3–7.3). N2O emission from the soil cores was generally very low (2.0 ± 0.5–6.3 ± 3.8 μg N m−2 h−1 at the warm-dry site and 7.1 ± 3.1–57.4 ± 28.5 μg N m−2 h−1 at the cool-moist site), thus confirming results from field measurements. However, N2 emission exceeded N2O emission by a factor of 21 ± 6–220 ± 122 at the investigated plots. This illustrates that the dominant end product of denitrification at our plots and under the given environmental conditions is N2 rather than N2O. N2 emission showed a huge variability (range: 161 ± 64–1070 ± 499 μg N m−2 h−1), so that potential effects of microclimate or silvicultural treatment on N2 emission could not be identified with certainty. However, there was a significant effect of microclimate on the magnitude of N2O emission as well as on the mean N2:N2O emission ratio. N2:N2O emission ratios were higher and N2O emissions were lower for soil cores taken from the plots with warm-dry microclimate as compared to soil cores taken from the cool-moist microclimate plots. We hypothesize that the increase in the N2:N2O emission ratio at the warm-dry site was due to higher N2O reductase activity provoked by the higher soil pH value of this site. Overall, the results of this study show that the N2:N2O emission ratio is crucial for understanding the regulation of N2O fluxes of the investigated soil and that reliable estimates of N2 emissions are an indispensable prerequisite for accurately calculating total N gas budgets for the investigated ecosystem and very likely for many other terrestrial upland ecosystems as well.  相似文献   

17.
Fixation of N by biological soil crusts and free-living heterotrophic soil microbes provides a significant proportion of ecosystem N in arid lands. To gain a better understanding of how elevated CO2 may affect N2-fixation in aridland ecosystems, we measured C2H2 reduction as a proxy for nitrogenase activity in biological soil crusts for 2 yr, and in soils either with or without dextrose-C additions for 1 yr, in an intact Mojave Desert ecosystem exposed to elevated CO2. We also measured crust and soil δ15N and total N to assess changes in N sources, and δ13C of crusts to determine a functional shift in crust species, with elevated CO2. The mean rate of C2H2 reduction by biological soil crusts was 76.9±5.6 μmol C2H4 m−2 h−1. There was no significant CO2 effect, but crusts from plant interspaces showed high variability in nitrogenase activity with elevated CO2. Additions of dextrose-C had a positive effect on rates of C2H2 reduction in soil. There was no elevated CO2 effect on soil nitrogenase activity. Plant cover affected soil response to C addition, with the largest response in plant interspaces. The mean rate of C2H2 reduction in soils either with or without C additions were 8.5±3.6 μmol C2H4 m−2 h−1 and 4.8±2.1 μmol m−2 h−1, respectively. Crust and soil δ15N and δ13C values were not affected by CO2 treatment, but did show an effect of cover type. Crust and soil samples in plant interspaces had the lowest values for both measurements. Analysis of soil and crust [N] and δ15N data with the Rayleigh distillation model suggests that any plant community changes with elevated CO2 and concomitant changes in litter composition likely will overwhelm any physiological changes in N2-fixation.  相似文献   

18.
Abstract

The technique of simultaneous quantitative determination of mineral N soil forms (nitrates, exchangeable and non‐exchangeable ammonium, and total amount of these compounds) and sample pretreatment for the analysis of 15N:14N ratio is suggested. The technique is based on the selective association of NH4 +‐ions into indophenol complex and subsequent ethyl‐acetate extraction of this complex from solution. The mineralization of indophenol is carried out in alkaline medium with simultaneous NH3 distillation into H2SO4 titrant. The application of given technique allows us to shorten significantly the time required for analysis and to increase the accuracy of analytical determination.  相似文献   

19.
In situ and laboratory measurements of aerobic respiratory and denitrifying activities were studied in the vadose zone (almost 2.5 m thick) of a fluvic hypercalcaric cambisol characterized by transitory anaerobic conditions. A field experiment was conducted in a bare soil, over a 7-month period starting just after maize harvest and incorporation of maize crop residues. Weather variables (air and soil temperature, rainfall), soil water content, soil solutes (NO3 and dissolved organic carbon) and soil gases (CO2 and N2O), were recorded throughout the experiment. Four soil layers were defined. Bacterial counts were performed in each layer using the most probable number (MPN) method. Aerobic respiratory and denitrifying activities were estimated from laboratory measurements. In situ microbial activity, as revealed by CO2 and N2O measurements in the soil atmosphere, was strongly influenced by weather. Laboratory measurements showed that potential aerobic respiratory activity (ARA) occurred throughout the soil profile, whereas semi-potential denitrifying activities SPDA (i.e. measured under organic-C limiting condition) occurred mainly in the top 30 cm soil layer. In the soil profile, the CO2 concentration gradient was stronger than the N2O concentration gradient. Seasonal variations in microbial activities increased with depth, whereas DOC concentrations, and variations in those concentrations, decreased with depth, suggesting that DOC quality investigations are necessary in the deep vadose zone to understand microbial activities seasonal variations. Laboratory measurements of potential activities agreed well with in situ microbial activity in natural environmental conditions. NO3 was a stronger limiting factor for SPDA than was denitrifier density in the soil profile.  相似文献   

20.
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2+NO3). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3 reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2)) as a function of NO2 concentrations. Additions of NO2 to aerobic soil slurries (with 15N labelled NO3 added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2. We further found convincing evidence for NO2-induction of aerobic denitrification in acid soils. The study underlines the role of NO2, both for regulating denitrification and for the apparent nitrifier-derived N2O emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号