首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A continuous approach assisted by ultrasound for direct enrichment of edible oils (olive, sunflower, and soya) with the main phenols in olive leaves (i.e., oleuropein, verbascoside, apigenin-7-glucoside, and luteolin-7-glucoside) has been developed. Multivariate methodology was used to carry out a detailed optimization of the enrichment, and quantitation of the transferred compounds was based on LC-MS-MS in multiple reaction monitoring optimizing the most sensitive transition for each biophenol. Under the optimal working conditions, only 20 min is necessary to enrich the edible oils with 14.45-9.92 microg/mL oleuropein, 2.29-2.12 microg/mL verbascoside, 1.91-1.51 microg/mL apigenin-7-glucoside, and 1.60-1.42 microg/mL luteolin-7-glucoside. The enrichment method is carried out at room temperature and is organic-solvent-free; thus, the healthy properties of the edible oils improve as does their quality. Also, the low acquisition and maintenance costs of an ultrasound source and its application in a dynamic system make advisable the industrial implementation of the proposed method.  相似文献   

2.
In vitro studies show that some individual minor polar phenolic compounds (MPC) present in virgin olive oil prevent oxidation of human low-density lipoproteins (LDL), but few data are available on the antioxidant effect of whole oil extract. Thus, whole virgin olive extracts were studied to determine whether they maintain the antioxidant activity and whether this last is linked to MPC composition of a single virgin oil. Using HPLC-DAD the MPC content in Taggiasca and Seggianese virgin olive oils was measured. Taggiasca oil was less rich in total MPC (208.5 mg/L) than Seggianese oil (441.9 mg/L). In addition, the major compounds of Taggiasca oil were lignan derivatives, whereas the major compounds in Seggianese oils were secoiridoid derivatives. Moreover, Taggiasca oil was practically free of 5-hydroxytyrosol and 5-hydroxytyrosol derivatives, deacetoxy-oleuropein aglycone and oleuropein aglycone. The antioxidant activity of the oils on human LDL was evaluated by measuring malondialdehyde and conjugate diene generation induced by copper ions. In both tests, the oil extracts dose-dependently reduced malondialdehyde and conjugate diene generation. Moreover, antioxidant potency correlated with total MPC; thus, Seggianese extract was more active. The two oils differed quantitatively and qualitatively, and these differences influenced their biological activities; thus clinical trials focused on studying the effects of olive oils should specify the oils used.  相似文献   

3.
The extraction of biophenols (BPs) from small branches (fibrous softwood) of olive tree accelerated by microwave assistance is proposed for the first time. Under optimal working conditions, no further extraction of the target analytes was achieved after 10 min, so complete removal of them within this interval was assumed (amounts ca. to 19000, 1000, 2000, 900, and 700 mg/kg of oleuropein, verbascoside, tyrosol, alpha-taxifolin, and hydroxytyrosol, respectively; the three last BPs are absent in branch-free olive leaves). The extracts required no cleanup or concentration prior to injection into a chromatograph-photodiode array detector assembly for individual separation-quantification. Extraction from this raw material was also implemented in continuous and discontinuous-continuous extractors using ultrasound assistance and superheated liquids, respectively, as auxiliary energies, and the results were compared with those obtained by microwave-assisted extraction. The simultaneous extraction of small branches and leaves from olive tree provided extracts with a higher variety of BPs, but either extracts richer in oleuropein and verbascoside without tyrosol, alpha-taxifolin, and hydroxytyrosol or rich in these three BPs can be obtained by separate extraction of leaves and branches, respectively.  相似文献   

4.
Capillary electrophoresis (CE) can be effectively used as a fast screening tool to obtain qualitative and semiquantitative information about simple and complex phenolic compounds of extra virgin olive oil. Three simple phenols (tyrosol, hydroxytyrosol, and vanillic acid), a secoiridoid derivative (deacetoxy oleuropein aglycon), and two lignans (pinoresinol and acetoxypinoresinol) were detected as the main compounds in extra virgin olive oils by high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Spectrophotometric indices, radical scavenging activity, and oxidative stability of extra virgin olive oil samples obtained from olives hand-picked at different ripening degrees were statistically correlated with the CZE and HPLC quantification. The concentration of phenols in extra virgin olive oil decreased with ripeness of olive fruits. The high correlations found between CZE and the other analytical results indicate that CE can be applied as a rapid and reliable tool to routinely determine phenolic compounds in extra virgin olive oils.  相似文献   

5.
A comparison between the results obtained by using HPLC-UV, HPLC-MS, and CE-UV for characterizing the deterioration of extra-virgin olive oil during heating (180 degrees C) was investigated, taking into account phenolic compounds. The concentration of several compounds belonging to four families of phenols (simple phenols, lignans, complex phenols, and phenolic acids) was determined in the samples after the thermal treatment by all three techniques. Hydroxytyrosol, elenolic acid, decarboxymethyl oleuropein aglycon, and oleuropein aglycon reduced their concentration with the thermal treatment more quickly than other phenolic compounds present in olive oil. HYTY-Ac and Lig Agl were demonstrated to be quite resistant to this kind of treatment, and the behavior of lignans could be outstanding, as they belong to the family most resistant to thermal treatment. Several "unknown" compounds were determined in the phenolic profiles of the oils after the thermal treatment, and their presence was confirmed in refined olive oils. The oxidative stability index (OSI time) was reduced from 25 to 5 h after 3 h of heating, whereas the peroxide value showed a minimum after 1 h of heating.  相似文献   

6.
Hydroxytyrosol and other olive biophenols (OBPs) such as tyrosol, verbascoside, apigenin-7-glucoside, and alpha-taxifolin have been extracted from alperujo by using static-dynamic superheated liquids. Multivariate methodology has been used to carry out a detailed optimization of the extraction. Under the optimal working conditions no further extraction of the target analytes was achieved after 27 min (up to 2800 and 1500 mg/kg of hydroxytyrosol and tyrosol, respectively), so complete removal of them within this interval was assumed. The extract was injected into a chromatograph-photodiode array detector assembly for individual separation-quantification. The efficacy of ethanol/water mixtures to extract OBPs from alperujo has been demonstrated and compared with that of a conventional stirring-based method. These less toxic extractant mixtures are of interest with a view to future human uses of OBPs.  相似文献   

7.
The stability of the antioxidant fraction in edible vegetable oils has been evaluated during a simulated deep frying process at 180 °C. Four edible oils (i.e., extra-virgin olive oil with a 400 μg/mL overall content in naturally existing phenols; high-oleic sunflower oil without natural content of these compounds but enriched either with hydrophilic antioxidants isolated from olive pomace or with an oxidation inhibitor, dimethylsiloxane; and sunflower oil without enrichment) were subjected to deep heating consisting of 20 cycles at 180 °C for 5 min each. An oil aliquot was sampled after each heating cycle to study the influence of heating on the antioxidant fraction composed of hydrophilic and lipophilic antioxidants such as phenols and tocopherols, respectively. The decomposition curves for each group of compounds caused by the influence of deep heating were studied to compare their resistance to oxidation. Thus, the suitability of olive pomace as raw material to obtain these compounds offers an excellent alternative to the use of olive-tree materials different from leaves. The enrichment of refined edible oils with natural antioxidants from olive pomace is a sustainable strategy to take benefits from this residue.  相似文献   

8.
Olive fruits of three different cultivars (Moraiolo, Dolce di Andria, and Nocellara Etnea) were monitored during ripening up to harvest, and specific and total phenols were measured by HPLC (High Pressure Liquid Chromatography). On the same olive samples (n = 450), spectral detections were performed using a portable NIR (Near Infrared)-AOTF (Acousto Optically Tunable Filter) device in diffuse reflectance mode (1100-2300 nm). Prediction models were developed for the main phenolic compounds (e.g., oleuropein, verbascoside, and 3,4-DHPEA-EDA) and total phenols using Partial Least Squares (PLS). Internal cross-validation (leave-one-out method) was applied for calibration and prediction models developed on the data sets relative to each single cultivar. Validation of the models obtained as the sum of the three sample sets (total phenols, n = 162; verbascoside, n = 162; oleuropein, n = 148; 3,4-DHPEA-EDA, n = 162) were performed by external sets of data. Obtained results in term of R(2) (in calibration, prediction and cross-validation) ranged between 0.930 and 0.998, 0.874-0.942, and 0.837-0.992, respectively. Standard errors in calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP) were calculated obtaining minimum error in prediction of 0.68 and maximum of 6.33 mg/g. RPD ratios (SD/SECV) were also calculated as references of the model effectiveness. This work shows how NIR-AOTF can be considered a feasible tool for the on-field and nondestructive measurement of specific and total phenols in olives for oil production.  相似文献   

9.
Epidemiological studies have linked the Mediterranean diet with a low incidence of cardiovascular diseases. Olive oil, the major fat component of this diet, is characterized by antioxidant properties related to their content in catecholic components, particularly oleuropein aglycon. Therefore quantification of these components in edible oils may be important in determining the quality, and consequently its commercial value. The present method allows us to obtain the profile of the phenolic components of the oil from the methanolic extracts of the crude olive oil. In particular tyrosol, hydroxytyrosol, elenolic acid, deacetoxyligstroside and deacetoxyoleuropein aglycons, ligstroside and oleuropein aglycons, and 10-hydroxy-oleuropein are clearly identified by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). Moreover, oleuropein and its isomers present in the oil are quantified by APCI-MS/MS analysis of the extracts without preliminary separation from other phenolic compounds.  相似文献   

10.
The individual evolution of phenolic compounds has been studied during the natural fermentation of black olives for the first time. Cyanidin 3-rutinoside and cyanidin 3-glucoside were the main anthocyanins identified in fresh olives, and they were not detected after 1 month of storage either in brine or in olive. The fruit colors were different when aerobic or anaerobic conditions were used and as a consequence of the different anthocyanin polymerizations that took place. At time zero, the polyphenols observed in the olive juice were hydroxytyrosol-4-beta-glucoside, oleuropein, hydroxytyrosol, tyrosol, salidroside, and verbascoside and, after 12 months, the main phenol was hydroxytyrosol. The polyphenol content in the oil phase of olives was also analyzed. The dialdehydic form of elenolic acid linked to hydroxytyrosol and tyrosol, oleuropein aglycon, and ligstroside aglycon were the main compounds found at the beginning of fermentation but were not detected after 3 months. In contrast, hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and tyrosol acetate were the main polyphenols detected in the oil phase of the final product. The acid hydrolysis of the initial glucosides (in olive juice) and the aglycons (in oil phase) was, therefore, the main reaction that took place during fermentation.  相似文献   

11.
Olive tree varieties that were cultivated only in the Mediterranean basin a few decades ago are now planted in the Southern Hemisphere as well. The chemical composition of the oils produced in countries as far distant as Spain and Chile are affected by differences in latitude and climate. In this work, seven monovarietal virgin olive oils from Chile (Arbequina, Barnea, Frantoio, Koroneiki, Leccino, Manzanilla and Picual) have been characterized by the chemical compounds responsible for taste (phenols) and aroma (volatiles). The oils were produced in five regions of Chile, and the concentration values of some chemical compounds were related to the geographical location of the olive tree orchards. Virgin olive oils from the major cultivars, Arbequina and Picual, were characterized in comparison with the same monovarietal oils produced in Spain. The concentration values of fourteen volatile compounds showed significant differences (p < 0.05) between the oils produced in Spain and Chile. Concerning the phenol composition, main differences were found on the secoiridoids derivatives of oleuropein and ligstroside, apigenin and luteolin.  相似文献   

12.
This study presents the phenolic compounds profile of commercial Cornicabra virgin olive oils from five successive crop seasons (1995/1996 to 1999/2000; n = 97), determined by solid phase extraction reversed phase high-performance liquid chromatography (SPE RP-HPLC), and its relationship with oxidative stability, processing conditions, and a preliminary study on variety classification. The median of total phenols content was 38 ppm (as syringic acid), although a wide range was observed, from 11 to 76 ppm. The main phenols found were the dialdehydic form of elenolic acid linked to tyrosol (p-HPEA-EDA; 9 +/- 7 ppm, as median and interquartile range), oleuropein aglycon (8 +/- 6 ppm), and the dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA; 5 +/- 8 ppm). In many cases the correlation with oxidative stability was higher when the sum of the dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA) and oleuropein aglycon (r (2) = 0.91-0.96) or the sum of these two and hydroxytyrosol (r (2) = 0.90-0.97) was considered than was observed with HPLC total phenols (r (2)= 0.91-0.95) and especially with colorimetric determination of total polyphenols and o-diphenols (r (2) = 0.77-0.95 and 0.78-0.92, respectively). 3,4-DHPEA-EDA, p-HPEA-EDA, the aglycons of oleuropein and ligstroside, and HPLC total phenols content presented highly significant differences (p = 0.001-0.010) with respect to the dual- and triple-phase extraction systems used, whereas colorimetric total polyphenols content did not (p = 0.348) and o-diphenols showed a much lower significant difference (p = 0.031). The five variables that most satisfactorily classified the principal commercial Spanish virgin olive oil varieties were 1-acetoxypinoresinol, 4-(acetoxyethyl)-1,2-dihydroxybenzene (3,4-DHPEA-AC), ligstroside aglycon, p-HPEA-EDA, and RT 43.3 contents.  相似文献   

13.
Hydrophilic phenols are the most abundant natural antioxidants of virgin olive oil (VOO), in which tocopherols and carotenes are also present. The prevalent classes of hydrophilic phenols found in VOO are phenyl alcohols, phenolic acids, secoiridoids such as the dialdehydic form of decarboxymethyl elenolic acid linked to (3,4-dihydroxyphenyl)ethanol or (p-hydroxypheny1)ethanol (3,4-DHPEA-EDA or p-HPEA-EDA) and an isomer of the oleuropein aglycon (3,4-DHPEA-EA), lignans such as (+)-1-acetoxypinoresinol and (+)-pinoresinol, and flavonoids. A new method for the analysis of VOO hydrophilic phenols by direct injection in high-performance liquid chromatography (HPLC) with the use of a fluorescence detector (FLD) has been proposed and compared with the traditional liquid-liquid extraction technique followed by the HPLC analysis utilizing a diode array detector (DAD) and a FLD. Results show that the most important classes of phenolic compounds occurring in VOO can be evaluated using HPLC direct injection. The efficiency of the new method, as compared to the liquid-liquid extraction, was higher to quantify phenyl alcohols, lignans, and 3,4-DHPEA-EA and lower for the evaluation of 3,4-DHPEA-EDA and p-HPEA-EDA.  相似文献   

14.
The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.  相似文献   

15.
Phenolic extracts from olive tree leaves and olive pomace were used to enrich refined oils (namely, maize, soy, high-oleic sunflower, sunflower, olive, and rapeseed oils) at two concentration levels (200 and 400 μg/mL, expressed as gallic acid). The concentration of characteristic olive phenols in these extracts together with the lipidic composition of the oils to be enriched influenced the mass transfer of the target antioxidants, which conferred additional stability and quality parameters to the oils as a result. In general, all of the oils experienced either a noticeable or dramatic improvement of their quality-stability parameters (e.g., peroxide index and Rancimat) as compared with their nonenriched counterparts. The enriched oils were also compared with extra virgin olive oil with a natural content in phenols of 400 μg/mL. The healthy properties of these phenols and the scarce or nil prices of the raw materials used can convert oils in supplemented foods or even nutraceuticals.  相似文献   

16.
The adsorption isotherms of oleuropein and rutin were evaluated at different temperatures, pH values, and solid/liquid ratios. The experimental data of adsorption isotherms were well fitted to a Langmuir model. The maximum adsorption capacities were determined as 108 mg of oleuropein/g of silk fibroin and 21 mg of rutin/g of silk fibroin. After adsorption of oleuropein and rutin, the antioxidant capacity of silk fibroin increased from 1.93 to 3.61 mmol of TEAC/g. Silk fibroin also gained antimicrobial activity against Staphylococcus aureus and Klebsiella pneumoniae after adsorption of olive leaf antioxidants. In a desorption process, 81% of rutin and 85% of oleuropein were removed from the adsorbent surface in 70% aqueous ethanol solution. Consequently, silk fibroin was found to be a promising biomaterial for the production of functional food or dietary supplements and for the purification of oleuropein and rutin from olive leaf extracts.  相似文献   

17.
A simple analytical method for the quantitative determination of phenols, flavones, and lignans in virgin olive oils was developed. The polar fraction was isolated from small amounts of oil sample (2.5 g) by solid-phase extraction (SPE) using diol-phase cartridges, and the extract was analyzed by reversed-phase HPLC coupled with diode array UV detection. Chromatographic separation of pinoresinol, cinnamic acid, and 1-acetoxypinoresinol was achieved. Repeatability (RSD < 6.5%), recovery (> 90%), and response factors for each identified component were determined. SPE on amino-phase cartridges was used for isolating acidic phenols and as an aid for phenol identification. For the first time, 2-(4-hydroxyphenyl)ethyl acetate was detected in olive oils. The aldehydic structure of the ligstroside aglycon was confirmed by NMR spectroscopy. The colorimetric determination of total o-diphenolic compounds by reaction with molybdate was consistent with their HPLC determination. Differences between results obtained by liquid-liquid extraction and SPE were not statistically significant.  相似文献   

18.
The activity of olive microbiota during the oil extraction process could be a critical point for virgin olive oil quality. With the aim to evaluate the role of microbiological activity during the virgin olive oil extraction process, just before oil extraction freshly collected healthy olive fruits were immersed in contaminated water from an olive mill washing tank. The oils extracted were then compared with control samples from the same batch of hand-picked olives. The presence of lactic and enteric bacteria, fungi and Pseudomonas on the surface of olives was proved to be much higher in washed than in control olives, with increments in cfu/g between 2 and 3 orders of magnitude. The biogenesis of volatile compounds and the extraction of olive polyphenols and pigments were significantly influenced by the microbiological profile of olives even without any previous storage. In most cases the effect of olive microbiota on oil characteristics was greater than the effect exerted by malaxation time and temperature. Oils from microbiologically contaminated olives showed lower amounts of C5 volatiles and higher levels of C6 volatiles from the lipoxygenase pathway and some fermentation products. On the other hand, a decrease of chlorophylls, pheophytins, xanthophylls and the ratio chlorophyll/pheophytin was observed in these oils. Likewise, the microbiological activity during oil extraction led to significantly lower amounts of polyphenols, in particular of oleuropein derivatives. These differences in olive oil chemical composition were reflected in oil sensory characteristics by the decrease of the green and bitter attributes and by the modification of the oil color chromatic ordinates.  相似文献   

19.
This work describes the unambiguous evaluation of the presence of oleuropein in virgin olive oils by ionspray tandem mass spectrometry (ISI-MS/MS). The oil samples obtained from different cultivars, such as Carolea, Cassanese, Coratina, Dolce di Rossano, Roggianella, and Tonda di Strongoli, grown in different geographical areas of Calabria, Italy, have shown an average content of oleuropein ranging from 1 ppb to 11 ppm. Commercial virgin oil samples, blended in some cases, contain significant amounts of this pharmacologically important antioxidant. The MS/MS methodology was applied in a triple-quadrupole instrument, through continuous scanning of the third analyzer to detect oleuropein in methanol extracts and in selected ion monitoring (SRM) for its quantitative assay.  相似文献   

20.
Phenolic compounds in Spanish virgin olive oils were characterized by HPLC. Simple phenols such as hydroxytyrosol, tyrosol, vanillic acid, p-coumaric acid, ferulic acid, and vanillin were found in most of the oils. The flavonoids apigenin and luteolin were also found in most of the oils. The dialdehydic form of elenolic acid linked to tyrosol and hydroxytyrosol was also detected, as were oleuropein and ligstroside aglycons. The structure of a new compound was elucidated by MS and NMR as being that of 4-(acetoxyethyl)-1,2-dihydroxybenzene. Changes of phenolic compounds in virgin olive oils with maturation of fruits were also studied. Hydroxytyrosol, tyrosol, and luteolin increased their concentration in oils with maturation of fruits. On the contrary, glucoside aglycons diminished their concentration with maturation. No clear tendency was observed for the rest of the phenolic compounds identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号