首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
A G protein directly regulates mammalian cardiac calcium channels   总被引:45,自引:0,他引:45  
A possible direct effect of guanine nucleotide binding (G) proteins on calcium channels was examined in membrane patches excised from guinea pig cardiac myocytes and bovine cardiac sarcolemmal vesicles incorporated into planar lipid bilayers. The guanosine triphosphate analog, GTP gamma S, prolonged the survival of excised calcium channels independently of the presence of adenosine 3',5'-monophosphate (cAMP), adenosine triphosphate, cAMP-activated protein kinase, and the protein kinase C activator tetradecanoyl phorbol acetate. A specific G protein, activated Gs, or its alpha subunit, purified from the plasma membranes of human erythrocytes, prolonged the survival of excised channels and stimulated the activity of incorporated channels. Thus, in addition to regulating calcium channels indirectly through activation of cytoplasmic kinases, G proteins can regulate calcium channels directly. Since they also directly regulate a subset of potassium channels, G proteins are now known to directly gate two classes of membrane ion channels.  相似文献   

2.
Muscarinic modulation of cardiac rate at low acetylcholine concentrations   总被引:11,自引:0,他引:11  
Slowing of cardiac pacemaking induced by cholinergic input is thought to arise from the opening of potassium channels caused by muscarinic receptor stimulation. In mammalian sinoatrial node cells, however, muscarinic stimulation also inhibits the hyperpolarization-activated current (If), which is involved in the generation of pacemaker activity and its acceleration by catecholamines. Acetylcholine at nanomolar concentrations inhibits If and slows spontaneous rate, whereas 20 times higher concentrations are required to activate the acetylcholine-dependent potassium current (IK,ACh). Thus, modulation of If, rather than IK,ACh, is the mechanism underlying the muscarinic control of cardiac pacing at low (nanomolar) acetylcholine concentrations.  相似文献   

3.
Residual calcium ions depress activation of calcium-dependent current   总被引:4,自引:0,他引:4  
Calcium ions enter and accumulate during depolarization of some cells, activating a potassium current, IK(Ca), that depends on the cytoplasmic concentration of calcium ions, [Ca]i. However, elevation of [Ca]i can depress IK(Ca) elicited by a subsequent membrane depolarization. The depression of IK(Ca) is ascribed here to a [Ca]i-mediated inactivation of the voltage-gated calcium conductance, which causes a net reduction in calcium ions available for the activation of IK(Ca). This suggests that other processes dependent on gated calcium entry may also be depressed by small background elevations in cytosolic free calcium ions.  相似文献   

4.
The gray tree frog mates over a temperature range of at least 9 degrees C. Gravid females, tested at two different temperatures, preferred synthetic mating calls with temperature-dependent temporal properties similar to those produced by a male at about the same temperature as their own. Thus, the vocalization system and the temporal pattern recognition system are affected by temperature in a qualitatively similar fashion.  相似文献   

5.
Ventricular myocytes exhibit a nifedipine-sensitive inward calcium current (ICa) and contracture when they are voltage clamped from -40 to 0 millivolt in the presence of caffeine and in the absence of extracellular sodium. However, upon repolarization they fail to relax because neither the sarcoplasmic reticulum nor the sodium-calcium exchange can reduce intracellular calcium. Sudden application of extracellular sodium during the contracture (but after repolarization) causes immediate relaxation and activates a transient inward sodium-calcium exchange current (INa-Ca), whose peak slightly precedes mechanical relaxation. The total charge carried by the nifedipine-sensitive ICa is twice the total charge carried by the transient inward INa-Ca. Assuming an exchange stoichiometry of three sodium to one calcium, these results indicate that all the calcium entering the cell during the initial depolarization is extruded by the sodium-calcium exchange.  相似文献   

6.
7.
8.
Some noctuid winter moths fly at near 0 degrees C by maintaining an elevated(30 degrees to 35 degrees C) thoracic muscle temperature. Geometrid winter moths sustain themselves in free flight at subzero muscle temperatures. However, the temperature characteristics of citrate synthase and pyruvate kinase from both of these different kinds of moths and from a sphinx moth that flies with a muscles temperature of 40 degrees C are nearly identical. Furthermore, mass-specific rates of energy expenditure of both kinds of winter moths are also similar at given thoracic temperature (near 0 degrees C). The geometrids that are able to fly with a thoracic temperature near 0 degrees C do so largely because of unusually low wing-loading, which permits a low energetic cost of flight.  相似文献   

9.
Calcitonin is a calcium regulating peptide hormone with binding sites in kidney and bone as well as in the central nervous system. The mechanisms of signal transduction by calcitonin receptors were studied in a pig kidney cell line where the hormone was found to regulate sodium pumps. Calcitonin receptors activated the cyclic adenosine monophosphate (cAMP) or the protein kinase C (PKC) pathways. The two transduction pathways required guanosine triphosphate (GTP)-binding proteins (G proteins) (the choleratoxin sensitive Gs and the pertussis toxin sensitive Gi, respectively) and led to opposite biological responses. Moreover, selective activation of one or the other pathway was cell cycle-dependent. Therefore, calcitonin may induce different biological responses in target cells depending on their positions in the cell cycle. Such a modulation of ligand-induced responses could be of importance in rapidly growing cell populations such as during embryogenesis, growth, and tumor formation.  相似文献   

10.
Although it is generally agreed that general anesthetics ultimately act on neuronal ion channels, there is considerable controversy over whether this occurs by direct binding to protein or secondarily by nonspecific perturbation of lipids. Very pure optical isomers of the inhalational general anesthetic isoflurane exhibited clear stereoselectivity in their effects on particularly sensitive ion channels in identified molluscan central nervous system neurons. At the human median effect dose (ED50) for general anesthesia, the (+)-isomer was about twofold more effective than the (-)-isomer both in eliciting the anesthetic-activated potassium current IK(An) and in inhibiting a current mediated by neuronal nicotinic acetylcholine receptors. For inhibiting the much less sensitive transient potassium current IA, the (-)-isomer was marginally more potent than the (+)-isomer. Both isomers were equally effective at disrupting lipid bilayers.  相似文献   

11.
Activation of muscarinic potassium currents by ATP gamma S in atrial cells   总被引:6,自引:0,他引:6  
Intracellular perfusion of atrial myocytes with adenosine 5'-(gamma-thio) triphosphate (ATP gamma S), an ATP analog, elicits a progressive increase of the muscarinic potassium channel current, IK(M), in the absence of agonists. In this respect, ATP gamma S mimics the actions of guanosine triphosphate (GTP) analogs, which produce direct, persistent activation of the guanyl nucleotide-binding (G) protein controlling the K+(M) channel. The effect of ATP gamma S on IK(M), however, differs from that produced by GTP analogs in two aspects: it requires relatively large ATP gamma S concentrations, and it appears after a considerable delay, suggesting a rate-limiting step not present in similar experiments performed with guanosine 5'-(gamma-thio) triphosphate (GTP gamma S). Incubation of atrial homogenates with [35S]ATP gamma S leads to formation of significant amounts of [35S]GTP gamma S, suggesting that activation of IK(M) by ATP gamma S arises indirectly through its conversion into GTP gamma S by cellular enzymes. ATP gamma S is often used to demonstrate the involvement of protein phosphorylation in the control of various cellular processes. The finding that cytosolic application of ATP gamma S can also lead to G-protein activation implies that experiments with ATP gamma S must be interpreted with caution.  相似文献   

12.
13.
The steady-state levels of potassium and sodium of taenia coli of guinea are critically affected by varying temperature in the narrow range 12 degrees to degrees C. For the accumulation of both cations the critical temperature, T(c), is 13.8 degrees C the presence of millimolar external potassium. The value of T(c), decreases 10.0 degrees C when the external potassium is raised to 10 millimolar. Since, at a fixed Temperature, the potassium accumulation follows a cooperative mechanism, the results are compared with the quantitative predictions of this approach. The itical thermal transition behavior can be described in terms of the cooperative cumulation process.  相似文献   

14.
Secretory chloride channels can be activated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase in normal airway epithelial cells but not in cells from individuals with cystic fibrosis (CF). In excised, inside-out patches of apical membrane of normal human airway cells and airway cells from three patients with CF, the chloride channels exhibited a characteristic outwardly rectifying current-voltage relation and depolarization-induced activation. Channels from normal tissues were activated by both cAMP-dependent protein kinase and protein kinase C. However, chloride channels from CF patients could not be activated by either kinase. Thus, gating of normal epithelial chloride channels is regulated by both cAMP-dependent protein kinase and protein kinase C, and regulation by both kinases is defective in CF.  相似文献   

15.
Lea DW  Pak DK  Spero HJ 《Science (New York, N.Y.)》2000,289(5485):1719-1724
Magnesium/calcium data from planktonic foraminifera in equatorial Pacific sediment cores demonstrate that tropical Pacific sea surface temperatures (SSTs) were 2.8 degrees +/- 0.7 degrees C colder than the present at the last glacial maximum. Glacial-interglacial temperature differences as great as 5 degrees C are observed over the last 450 thousand years. Changes in SST coincide with changes in Antarctic air temperature and precede changes in continental ice volume by about 3 thousand years, suggesting that tropical cooling played a major role in driving ice-age climate. Comparison of SST estimates from eastern and western sites indicates that the equatorial Pacific zonal SST gradient was similar or somewhat larger during glacial episodes. Extraction of a salinity proxy from the magnesium/calcium and oxygen isotope data indicates that transport of water vapor into the western Pacific was enhanced during glacial episodes.  相似文献   

16.
Calcium can function as a second messenger through stimulation of calcium-dependent protein kinases. A protein kinase that requires calcium but not calmodulin or phospholipids for activity has been purified from soybean. The kinase itself binds calcium with high affinity. A complementary DNA clone for this kinase has been identified; it encodes a protein with a predicted molecular mass of 57,175 daltons. This protein contains a catalytic domain similar to that of calmodulin-dependent kinases and a calmodulin-like region with four calcium binding domains (EF hands). The predicted structure of this kinase explains its direct regulation via calcium binding and establishes it as a prototype for a new family of calcium-regulated protein kinases.  相似文献   

17.
Arctic and antarctic fishes, living in contact with sea ice at -1.9 degrees C, have plasma equilibrium freezing points near -1.2 degrees C which are dependent on salt concentrations. These supercooled fishes have plasma protein concentrations much higher than other polar animals have, and the proteins impede ice propagation at temperatures down to -2 degrees C. Plasma protein concentration increases as environmental water temperature decreases.  相似文献   

18.
The reaction of calcite with hydrogen was investigated over a range of pressure, temperature, and time. The reaction initiates at about 500 degrees C. Its primarily temperature-dependent rateproceeds in a crystallographically anisotropic manner, and reaction products are CaO, Ca(OH)(2), H(2)O, CO, CH(4), C2H(6), and C (graphite), plus a black solid residue that may be hydrocarbon.  相似文献   

19.
Major features of the transcellular signaling mechanism responsible for endothelium-dependent regulation of vascular smooth muscle tone are unresolved. We identified local calcium (Ca(2+)) signals ("sparklets") in the vascular endothelium of resistance arteries that represent Ca(2+) influx through single TRPV4 cation channels. Gating of individual TRPV4 channels within a four-channel cluster was cooperative, with activation of as few as three channels per cell causing maximal dilation through activation of endothelial cell intermediate (IK)- and small (SK)-conductance, Ca(2+)-sensitive potassium (K(+)) channels. Endothelial-dependent muscarinic receptor signaling also acted largely through TRPV4 sparklet-mediated stimulation of IK and SK channels to promote vasodilation. These results support the concept that Ca(2+) influx through single TRPV4 channels is leveraged by the amplifier effect of cooperative channel gating and the high Ca(2+) sensitivity of IK and SK channels to cause vasodilation.  相似文献   

20.
The second messenger cyclic adenosine monophosphate (cAMP) is the most important modulator of sympathetic control over cardiac contractility. In cardiac myocytes and many other cell types, however, cAMP transduces the signal generated upon stimulation of various receptors and activates different cellular functions, raising the issue of how specificity can be achieved. In the general field of signal transduction, the view is emerging that specificity is guaranteed by tight localization of signaling events. Here, we show that in neonatal rat cardiac myocytes, beta-adrenergic stimulation generates multiple microdomains with increased concentration of cAMP in correspondence with the region of the transverse tubule/junctional sarcoplasmic reticulum membrane. The restricted pools of cAMP show a range of action as small as approximately 1 micrometer, and free diffusion of the second messenger is limited by the activity of phosphodiesterases. Furthermore, we demonstrate that such gradients of cAMP specifically activate a subset of protein kinase A molecules anchored in proximity to the T tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号