首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The maturation of T cells in the thymus is dependent on the expression of major histocompatibility complex (MHC) molecules. By disruption of the MHC class II Ab beta gene in embryonic stem cells, mice were generated that lack cell surface expression of class II molecules. These MHC class II-deficient mice were depleted of mature CD4+ T cells and were deficient in cell-mediated immune responses. These results provide genetic evidence that class II molecules are required for the maturation and function of mature CD4+ T cells.  相似文献   

2.
Self-nonself discrimination by T cells   总被引:28,自引:0,他引:28  
The alpha beta T cell receptor (TCR) recognizes antigens that are presented by major histocompatibility complex (MHC)-encoded cell surface molecules by binding to both the antigen and the MHC molecules. Discrimination of self from nonself antigens and MHC molecules is achieved by negative and positive selection of T cells in the thymus: potentially harmful T cells with receptors that bind to self antigens plus self MHC molecules are deleted before they can mount immune responses. In contrast, the maturation of useful T cells with receptors that bind foreign antigens plus self MHC molecules requires the binding of their receptor to MHC molecules on thymic epithelium in the absence of foreign antigen. The binding of the TCR to either class I or class II MHC molecules directs differentiation of the selected cells into either CD4-8+ (killer) or CD4+8- (helper) T cells, respectively.  相似文献   

3.
Cytotoxic T lymphocytes (CTLs) recognize class I major histocompatibility complex (MHC) molecules associated with antigenic peptides derived from endogenously synthesized proteins. Binding to such peptides is a requirement for class I assembly in the endoplasmic reticulum (ER). A mutant human cell line, T2, assembles and transports to its surface some, but not all, class I MHC molecules. The class I molecules expressed on the surface of T2 do not present peptides derived from cytosolic antigens, although they can present exogenously added peptides to CTL. The transported class I molecules may interact weakly with an unknown retaining factor in the ER such that they can assemble despite the relative shortage of peptides.  相似文献   

4.
Major histocompatibility complex (MHC) class I molecules display tens of thousands of peptides on the cell surface, derived from virtually all endogenous proteins, for inspection by cytotoxic T cells (CTLs). We show that, in normal mouse cells, MHC I molecules present a peptide encoded in the 3' "untranslated" region. Despite its rarity, the peptide elicits CTL responses and induces self-tolerance, establishing that immune surveillance extends well beyond conventional polypeptides. Furthermore, translation of this cryptic peptide occurs by a previously unknown mechanism that decodes the CUG initiation codon as leucine rather than the canonical methionine.  相似文献   

5.
Viruses frequently persist in neurons, suggesting that these cells can evade immune surveillance. In a mouse model, 5 x 10(6) cytotoxic T lymphocytes (CTLs), specific for lymphocytic choriomeningitis virus (LCMV), did not lyse infected neurons or cause immunopathologic injury. In contrast, intracerebral injection of less than 10(3) CTL caused disease and death when viral antigens were expressed on leptomeningeal and choroid plexus cells of the nervous system. The neuronal cell line OBL21 expresses little or no major histocompatibility (MHC) class I surface glycoproteins and when infected with LCMV, resisted lysis by virus-specific CTLs. Expression of MHC heavy chain messenger RNA was limited, but beta 2-microglobulin messenger RNA and protein was made normally. OBL21 cells were made sensitive to CTL lysis by transfection with a fusion gene encoding another MHC class I molecule. Hence, neuronal cells probably evade immune surveillance by failing to express MHC class I molecules.  相似文献   

6.
Limit of T cell tolerance to self proteins by peptide presentation   总被引:11,自引:0,他引:11  
Cytotoxic T lymphocytes (CTLs) recognize foreign peptides bound to major histocompatibility complex (MHC) class I molecules. MHC molecules can also bind endogenous self peptides, to which T cells are tolerant. Normal mice contained CTLs specific for self peptides that were from proteins of ubiquitous or tissue-restricted expression. In vivo, these endogenous self peptides are not naturally presented in sufficient density by somatic cells expressing MHC class I molecules. They can, however, be presented if added exogenously. Thus, our data imply that CTLs are only tolerant of those endogenous self peptide sequences that are presented by MHC class I-positive cells in a physiological manner.  相似文献   

7.
Cytotoxic T lymphocytes (CTLs) recognize foreign antigens, including viral proteins, in association with major histocompatibility complex (MHC) class I molecules. Brefeldin A, a specific inhibitor of exocytosis, completely and reversibly inhibited the presentation of viral proteins, but not exogenous peptides, to MHC class I-restricted CTLs directed against influenza virus antigens. The effect of brefeldin A on antigen presentation correlated with its inhibition of intracellular transport of newly synthesized class I molecules. Brefeldin A is thus a specific inhibitor of antigen processing for class I-restricted T cell recognition. Its effect on antigen presentation supports the idea that exogenous peptide antigens associate with cell surface class I molecules, whereas protein antigens processed via the cytosolic route associate with nascent class I molecules before they leave the trans-Golgi complex.  相似文献   

8.
Cells process exogenous proteins for recognition by cytotoxic T lymphocytes   总被引:14,自引:0,他引:14  
Cells exposed to intact, noninfectious influenza virus were shown to be recognized by class I-restricted anti-influenza cytotoxic T lymphocytes (CTLs). Both internal and external proteins derived from virions were processed by cells for CTL recognition. Sensitization required the inactivation of viral neuraminidase activity and could be inhibited by preventing fusion of viral and cellular membranes. These findings are important in designing vaccines to elicit CTL responses, since they demonstrate that cells can process intact, exogenous proteins for recognition by CTLs and suggest that such processing depends on introduction of exogenous proteins into the cytoplasm.  相似文献   

9.
Current vaccine development strategies for malaria depend on widespread immunological responsiveness to candidate antigens such as the zygote surface antigens and the sporozoite coat protein, the circumsporozoite (CS) protein. Since immunological responsiveness is controlled mainly by genes mapping within the major histocompatibility complex (MHC), the humoral immune response to the zygote surface antigens and the cytotoxic T lymphocyte (CTL) response to the CS protein were examined in MHC-disparate congenic mouse strains. Only two of six strains responded to the 230-kilodalton zygote surface antigen and another two strains responded to the 48/45-kilodalton surface antigen. From two mouse strains, expressing between them five different class I MHC molecules, there was recognition of only a single CTL epitope from the CS protein, which was from a polymorphic segment of the molecule. The restricted CTL response to this protein parallels the restricted antibody response to this protein observed in humans and mice. These findings suggest that subunit malaria vaccines now being developed may be ineffective.  相似文献   

10.
The role of major histocompatibility complex (MHC) class I expression in natural killer (NK) cell target recognition is controversial. Normal T cell blasts from MHC class I-deficient mutant mice were found to serve as target cells for NK cells in vitro, which suggests that MHC class I molecules are directly involved in NK cell recognition. Spleen cells from the mutant mice were deficient in their ability to lyse MHC class I-deficient target cells or NK-susceptible tumor targets, and mutant mice could not reject allogeneic bone marrow. Thus, class I molecules may participate in the positive selection or tolerance induction of NK cells.  相似文献   

11.
Major histocompatibility complex class II (MHC II) molecules capture peptides within the endocytic pathway to generate T cell receptor (TCR) ligands. Immature dendritic cells (DCs) sequester intact antigens in lysosomes, processing and converting antigens into peptide-MHC II complexes upon induction of DC maturation. The complexes then accumulate in distinctive, nonlysosomal MHC II+ vesicles that appear to migrate to the cell surface. Although the vesicles exclude soluble lysosomal contents and antigen-processing machinery, many contain MHC I and B7 costimulatory molecules. After arrival at the cell surface, the MHC and costimulatory molecules remain clustered. Thus, transport of peptide-MHC II complexes by DCs not only accomplishes transfer from late endocytic compartments to the plasma membrane, but does so in a manner that selectively concentrates TCR ligands and costimulatory molecules for T cell contact.  相似文献   

12.
Class II MHC molecules are specific receptors for staphylococcus enterotoxin A   总被引:30,自引:0,他引:30  
T cell proliferation in response to stimulation with Staphylococcus enterotoxin A (SEA) requires accessory cells that express class II major histocompatibility complex (MHC) molecules. Murine fibroblasts transfected with genes encoding the alpha and beta subunits of HLA-DR, DQ, or DP were used to show that the proliferative response of purified human T cells to SEA is dependent on class II molecules but is not restricted by the haplotype of the responder. Binding of fluoresceinated SEA to class II transfectants and precipitation of class II heterodimers with SEA-Sepharose show that the proliferative response is a result of SEA binding to class II molecules. The binding is specific for class II molecules and is independent of class II allotype or isotype. The ability of SEA to bind class II molecules may be a general characteristic of this class of antigens, now called "superantigens".  相似文献   

13.
Previous findings suggest that during cognate T cell-B cell interactions, major histocompatability complex (MHC) class II molecules transduce signals, leading to Src-family kinase activation, Ca2+ mobilization, and proliferation. Here, we show that antigen stimulation of resting B cells induces MHC class II molecules to associate with Immunoglobulin (Ig)-alpha/Ig-beta (CD79a/CD79b) heterodimers, which function as signal transducers upon MHC class II aggregation by the T cell receptor (TCR). The B cell receptor (BCR) and MHC class II/Ig-alpha/Ig-beta are distinct complexes, yet class II-associated Ig-alpha/beta appears to be derived from BCR. Hence, Ig-alpha/beta are used in a sequential fashion for transduction of antigen and cognate T cell help signals.  相似文献   

14.
A molecular basis for MHC class II--associated autoimmunity   总被引:52,自引:0,他引:52  
Class II major histocompatibility (MHC) molecules have an immunoregulatory role. These cell-surface glycoproteins present fragments of protein antigens (or peptides) to thymus-derived lymphocytes (T cells). Nucleotide sequence polymorphism in the genes that encode the class II MHC products determines the specificity of the immune response and is correlated with the development of autoimmune diseases. This study identifies certain class II polymorphic amino acid residues that are strongly associated with susceptibility to insulin-dependent diabetes mellitus, rheumatoid arthritis, and pemphigus vulgaris. These findings implicate particular class II MHC isotypes in susceptibility to each disease and suggest new prophylactic and therapeutic strategies.  相似文献   

15.
Major histocompatibility complex (MHC) molecules are exposed to large quantities of self and nonself antigens. It is not known what fraction of MHC molecules needs to be occupied by antigen to induce a T cell response. A quantitative study of naturally processed antigen indicated that T cells could be activated when only 0.03 percent of the total I-Ed purified from antigen-presenting cells (APCs) was occupied with antigen. B cells and macrophages processed hen egg lysozyme (HEL) with different efficiencies, but similar degrees of occupancy were required for T cell stimulation. Higher occupancy was needed for I-Ed-transfected L cells, possibly reflecting the requirement for other accessory molecules for efficient APC-T cell interaction.  相似文献   

16.
T lymphocyte activation requires recognition by the T cell of peptide fragments of foreign antigen bound to a self major histocompatibility complex (MHC) molecule. Genetic evidence suggests that part of the class II region of the MHC influences the expression, in trans, of MHC class I antigens on the cell surface, by regulating the availability of peptides that bind to and stabilize the class I molecule. Two closely related genes in this region, HAM1 and HAM2, were cloned and had sequence similarities to a superfamily of genes involved in the ATP-dependent transport of a variety of substrates across cell membranes. Thus, these MHC-linked transport protein genes may be involved in transporting antigen, or peptide fragments thereof, from the cytoplasm into a membrane-bounded compartment containing newly synthesized MHC molecules.  相似文献   

17.
The MHC-binding and gp120-binding functions of CD4 are separable   总被引:18,自引:0,他引:18  
CD4 is a cell surface glycoprotein that is thought to interact with nonpolymorphic determinants of class II major histocompatibility (MHC) molecules. CD4 is also the receptor for the human immunodeficiency virus (HIV), binding with high affinity to the HIV-1 envelope glycoprotein, gp120. Homolog-scanning mutagenesis was used to identify CD4 regions that are important in class II MHC binding and to determine whether the gp120 and class II MHC binding sites of CD4 are related. Class II MHC binding was abolished by mutations in each of the first three immunoglobulin-like domains of CD4. The gp120 binding could be abolished without affecting class II MHC binding and vice versa, although at least one mutation examined reduced both functions significantly. These findings indicate that, while there may be overlap between the gp120 and class II MHC binding sites of CD4, these sites are distinct and can be separated. Thus it should be possible to design CD4 analogs that can block HIV infectivity but intrinsically lack the ability to affect the normal immune response by binding to class II MHC molecules.  相似文献   

18.
Class I major histocompatibility complex (class I MHC) molecules, known to be important for immune responses to antigen, are expressed also by neurons that undergo activity-dependent, long-term structural and synaptic modifications. Here, we show that in mice genetically deficient for cell surface class I MHC or for a class I MHC receptor component, CD3zeta, refinement of connections between retina and central targets during development is incomplete. In the hippocampus of adult mutants, N-methyl-D-aspartate receptor-dependent long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics of neurons, reflecting a potential for diverse neuronal functions. These results demonstrate an important role for these molecules in the activity-dependent remodeling and plasticity of connections in the developing and mature mammalian central nervous system (CNS).  相似文献   

19.
Effective immune surveillance by cytotoxic T cells requires newly synthesized polypeptides for presentation by major histocompatibility complex (MHC) class I molecules. These polypeptides are produced not only from conventional AUG-initiated, but also from cryptic non-AUG-initiated, reading frames by distinct translational mechanisms. Biochemical analysis of ribosomal initiation complexes at CUG versus AUG initiation codons revealed that cells use an elongator leucine-bound transfer RNA (Leu-tRNA) to initiate translation at cryptic CUG start codons. CUG/Leu-tRNA initiation was independent of the canonical initiator tRNA (AUG/Met-tRNA(i)(Met)) pathway but required expression of eukaryotic initiation factor 2A. Thus, a tRNA-based translation initiation mechanism allows non-AUG-initiated protein synthesis and supplies peptides for presentation by MHC class I molecules.  相似文献   

20.
Cytolytic T lymphocyte (CTL) responses were evaluated in humans immunized with recombinant human immunodeficiency virus type 1 (HIV) envelope glycoprotein gp160. Some vaccinees had gp160-specific CTLs that were shown by cloning to be CD4+. Although induced by exogenous antigen, most gp160-specific CTL clones also recognized gp160 synthesized endogenously in target cells. These clones lysed autologous CD4+ T lymphoblasts infected with HIV. Of particular interest were certain vaccine-induced clones that lysed HIV-infected cells, recognized gp160 from diverse HIV isolates, and did not participate in "innocent bystander" killing of noninfected CD4+ T cells that had bound gp120.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号